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06 anmpoKCHMalUMM HeJMHeHHhX I DaHHUYHbIX Ell_89—442,

HHTErpalibHbIX YPaBHEHHH IJIfi KOMGHHHDOBAHHOTO

‘MeTOOAa

PaccMaTpuBaloTcH HemnuHeidiHbie 'HY, BosHUMKawmue MpH pemeHHH
HeJIHHeHMHbIX 3a0a4 MArHHTOCTATHKH B KOMOHHUpOBAHHON IocTa-

.|HOBKe OJis HeorpaHHdYeHHON obnacTu., Ha ocHosBe MeTroma Tamep-

KHHa H3Yy4alTCcA anfdpoKCcHUMalHH BO3IHUKAWIHX OnepaTOPHLIX ypaB-—
HeHUuii, PaccMaTpuBaemble r'paHHUHBIe OIepaToOpe o6iaganT CBOH—
CTBOM CHIBLHOH MOHOTOHHOCTH, JIMMUHTI—HENpeprBHOCTH, MNOTEH—
IHaJIBHOCTH H HMEWT CHMMETPHUHYV IIpoH3BoaHyw ['aTo. Ha ocHo-
Be 3THX CBOHCTB MOJiydeHbl OLEHKH [OTPemHOCTH rajle pPRUHCKHX
NpHGIKEeHHH B npocTpaHcTBax CoGoneBa gpoGHoro nopsagka Ha:
COOTBETCTBYWIMX NOBEPXHOCTAX, PacCMOTPeHb OABYMEPHBII H
TpexMepHHii ciydyau. HaydueHb BONpPOCh CXOOHMOCTH HTEpPalHOH-
HLHIX TPOLECCOB DEelleHHA BO3HHUKAWUHUX LHCKDPETH3IHPOBaHHLIX cHc~
TeM ypaBHeHHi,

Pa6oTa BminmosiHeHa B Jla6opaTopuH BBIUHCIUTEIbHON TeXHHKH
U aBToMaTusauuun OUAU,

Hpenpm-rr O6BbeAWHEHHOro0 HHCTUTYTA AOEPHBIX HeolenoB aHuil. Jy6ra 1989

Gregug M. et al. E11-89-442
On Approximation of Nonlinear Boundary '
Integral Equations for the Combined Method

The nonlinear boundary integral equations that arise in
research of nonlinear magnetostatic problems are investi-
gated in combined formulation on an unbounded domain. Ap-
proximations of the derived operator equations are studi-
ed based on the Galerkin method. The investigated boundary
operators are strongly monotone, Lipschitz-continuous, po-
tential and have a symmetrical Gateaux derivative. The er-
ror estimates of the Galerkin's approximation in Sobolev’
spaces of fractional powers are obtained using the above-
mentioned properties of the operators, too. The problem

iwhas been studied on surfaces in two and three-dimensional

spaces. We answer also some questions on convergence con-—
nected with the discretized systems of equations.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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1. INTRODUCTION

This paper is concerned with some problems that appear in
the process of solving quasilinear elliptic¢ equations in an
unbounded domain with a bounded domain of nonlinearity. One
of the problems is how to approximate solutions taking into
account the boundary conditions at infinity. Different methods
were devised to solve this problem 1-12/_ One of the most ge-
neral approaches consists in the coupling of the boundary ele-
ment method and the finite element method /1237, Though, a
number of variants exist in the frame of this concept.

We will discuss the questions of approximation of nonlinear
operator equations for the trace.of the unknown function on
an auxiliary boundary (enveloping the domain of nonlinearity)
by the Galerkin method. The equations are formed using a spe-
cial class of the Poincare-Steklov operators/g/. We also men-
tion the iterative methods of solving the discretized equa-
tions.The rate of convergence of the given iterative processes
for the mentioned class of equations does not depend on the
discretization step. At the end we give error estimates of the
Galerkin approximations for some spline spaces that are defi-
ned on the selected auxiliary surface inR?, n = 2,3.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

We suppose that (1§:R3 is a bounded domain with Lipschitz
boundary T’y (it corresponds to the nonlinearity region), @ is
an auxiliary domain with Lipschitz boundary I' and Q,C Q.

The function p(x, t) is given and fulfills some or all of

the following coqditions (with x€ Q 1o BT € [0, = )):

px, = p(x, ) r >m(t -7), t>r, m>0, (1
Ju(x, t) t ~p(x, ] <Mt -r], - (2)
I%u(x,t)tlsM. | , (3)

Let gy denote the Robin potential on the boundary I'. We use
the following function spaces: Wé'g(ﬂ)s Y is the subspace
* 50
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of functions u &€ Wzl(ﬂ,) with the property that on I' is their
trace orthogonal to gy, i.e. (yo u, g,) =0, Wzl/gz(l") =X is
. *50

the subspace of functions u ¢ w21/2(I‘) orthogonal to g, and
W'2"11/2 (IY is the subspace of functions u< W;l 2 (I orthogonal
to unity.

In analogy with the Dirichlet operator y, /1}/ the trace ope-
rator with the domain of definition V, yo'go: Vs X is a 1i-

near continuous operator, too. Let us suppose that a linear
operator G;¢ (X » X*) is selfadjoint and positively defi-
nite, i.e. Vu,v e X:

] 2
_ (Gu,v) =(u, Gv), Gu,u)2 mGIIIUHX , m61 >0. (4)
In the boundary problem that we will investigate in gene-

ral form, it is necessary to find a function u €V, satisfy-
ing the integral identity:

3 .
[2 a (X.W)ﬂ’—dﬂ +a(Gyyot yom) = [ ¥y nds + B [a(s) y n(s)ds,
qi=1 .0 I r (5)

~ -1/
for arbitrary nc V. The functions ¢ ¢ Wz'll 2(1'1) and q&

- Wz"ll/z(f'), and also the numbers a2 0, B 2 0 and coefficients
aj(x, w), w=gradu, i =1, 2, 3 are given. By V we denote
the space V, or the space H1(Q).

If we' set a=1, 8=0, V=V .and Gy =L-1(E + K), with in-
tegral operators L,K defined by the formulas

cos(fpypfip)

. .

Ku= — [ ——u(P) do, , (6)
BT r Jipyl® g

Lv = L HrPMrlv(P)'daP , (7

2 r

PM cT, and Il‘PMI "is the length of the vector rpy defined
by the segment PM, then we obtain combined magnetostatic equa-
tions in general form. The solution of this problem can be
harmonically extended onto all R® under the condition that

lu@) [ <0 LY, || > o « If we seta =0, B8=1, \~I.=V, we
X

get the Neumann problem, and for V = HYQ) we get. the homoge-

neous Dirichlet problem. There holds the following theorem.
Theorem 2.1, Assume that u(x,t) fulfills the conditions

(1), (2). Then the boundary value problem (5) of the Dirich-

‘2

»

‘(DUES

functions in X

let, Neumann, or combined (¢ =1, 8=10, V =V) type has a
unique solutionu € V. ' .

The nonlinear Poincare-Steklov operator S: X*- X is defi-
ned by the relation /8,107

»

(Sq, ) =(y0'g°u5n)_ Yn.eX*, (8)

where Yo.g "is the trace of the solution of the Neumann
*50

problem (5) onT. : '
Theorem 2.2. Sup?ose there hold the conditions (1), (2).
Then the operator S™': X - X* is potential, Lipschitz-conti-
nuous and strongly mpnotone. If the condition (3) is fulfil-
led, the operator S~ is Gateaus differentiable and there
holds the estimate ‘

@™ @u,w <My, | (9)

and if the function t - -g—t-(u(X, t)t) is ivcovntinuous for al- .

most all x € Q, then the operator (S"1

)" is symmetric and po-
sitively definite. . :

3. THE DISCRETIZATION METHODS

The properties of the operator G=(E + K)"1 L describes
Lemma 3.1. The norm ”V”é = (Gv,v), v €X* is equivalent
to the norm of the space X% the norm {{ul|®_ = (G-lu,u),

y €X is equivalent to the norm |[-|lx , and the operator

.is symmetric.

For a=1, B=0, V=V the equation (5) is equivalent to
the operator equation

-1 (10)

u+ G lu=0, ne X

According to Theorem 2.2 & is Lipschitz-continuous and
strongly monotone and therefore the equation (10) has a uni-
que solution u*c X .

We will study a finite dimensional approximation of the

" operator equation (10), thus creating new equations, and for-

mulate a theorem on the convergence of the iterative proces-
ses that solve the created equations. '

Let X, CX be a linear subspace in X with the induced norm,
and h,,..., hy complete, linearly independent system of base

.- The operator I, € L(X » X) is the inclu-



" sion operator and it's adjoint is the operator I} ¢ L(X*- X*)
We will study a system of equations with Galerk1n type solu-
tion u, € X,

¢ tu )+ @ ) =0, (11)

that, following/g/
in Xn:

» can be written as an operator equation

¢ u,=0, @ =IxaI , & :X (12)

n n

*
- X3

The'identity ||I u || =|u,|| implies /% that the properties
of the operator ® are transferred to @ . It is not difficult
to prove’?/ the following assertion on the error estimate of
the solution u,:

Lemma 3.2, Assuming that the conditions (1), (2) are ful-
filled, the equation (12) has a unique solution, such that
there holds an estimate

gy —u*lly <38 it [[v-u*lly . (13)

veX,

n

Next we outline the iterative process to solve equation
(12). Equlvalent norms in X, and X} are defined’?” via the
operator I} G I =9,

Theorem 3.1, Suppose the conditions (1), (2) are fulfil-
led. Then for r < (0, 2M¢ ) the iterational process
: Un,i —VUp,i-1
In [""-,——'—-— =-OQup g, i=1,2,. (14)

converges to the solution u, € X of equation (12) at the rate
rql

Hu, ; =u ll

n,i ”(Dun 0 ”.x* ’

where q = max {1 - mq},, 1~ (Dr; for arbitrary initial appro-
~ximation u,o € X, _

It is easy to see that for r=2(Mg+ mq,) we get q(r) =
=Mg- mg) Mg + mg) ™~ -1 | Here mg and Mg are constants of strong
monotonicity and Lipschitz-continuity of the operator ¢.

Remark 3.1. Since the operator S~ -1 s potential, equation
(10) can be solved also by gradient methods (like the method
_ of steepest descent of the method of conjugate gradients).

If we set { =@ (uq,i,), We get the modified Newton-Kan-

torovich method, and for r =1, § =07 (u -1) ve get the

n,i

4

{

Newton method. Local convergence of these methods follows
from the properties of the operator ®. Nonlocal convergence
of newtonian processes is given by the next theorem /187,

(u(x t)t),

t € {0, »), is differentiable in t for almost a11 X €Q,. Then
the cont1nuous Newton method

au
ar

converges to u* for arbitrary initial approximation u,c X .
Note that the use of equation (11) is connected w1th cer-
tain inconveniences in practice. Each part is therefore modi-
fied in such manner, that we obtain a constructive way of com-
puting coefficients of the algebraic system (12). Pertaining
to the first addend, it is possible to use finite-element ana-
logue of the Poincare-Steklov operator 8™ for suitable trian-
gulation of the domain Q18 Operator G~ is usually approxi-
mated by the collocation method and then the corresponding
inner and outher equations are '"glued" together in a certain
set of points on the boundaryl . However, the questions of
convergence of approximations of this type for the combined
problem still do not have strict theoretical foundations’/2/.

Theorem 3.2. Suppose that the function t »

=~ [0, EN] ™ @, (), w(®) =uyE X, ul) €X,, (15)

4. ERROR ESTIMATES

Here, specific error estimates of the Galerkin method for
equation (11) are given assuming that the boundary I' is a
smooth surface. Suppose that for n = 2, or 3 the boundary '
is a simply connected surface (manifold) of class €%, and

HG(D, o > 0 is Sobolev space of fractional degree/u/
The fam11y of subspaces Xn=Sh'r ,n =3 (RY is defi-
ned’?/ 1n accordance . with the choice of regular family

Sﬁ'r CH (D) of boundary finite-element spaces’20/. Letter
h is a parameter of triangulation, and r denotes the smooth-
ness of piece-wise polynomial elements of order k-1. ) ,"’
Note that the solution u* of equation (11), n=2 3, is an‘ ‘
element of H7(I) p 92 1/2. Approximation properties 72]207
of the system Sh , b =3 imply
Theorem 4.1. For arb1traryl o€ R, such that £<r <k,
f <o <k foru*cH?,e >1/2, there holds the estimate

(16)

/

e \ ,
oy =l g o s Ml g o

where u  is a solution of equation (11), n = 3.



Iﬁ the case n= 2, we use ’}¥ the family of.spaces X, =
= $9 (0. ) of boundary elements onI, corresponding to;the space
of %—periodic, (d—l)—continuouslyndifferentiablg splines of
degree d on I', where the grid-region Q;x= {t,] i=0, ...%hil
satisfies onI' the condition tg =ty with a regular stgp N
=ty -ty 8 =0, .00y N. The approximation properties
of the system $2(Q,) imply the following:

Theorem 4.2.h Fgr arbitrary t,0 &R such thato gd+1,
t <o, t<d+ 1/2 there holds the estimate

g =l s e’ lutllyo 7).

wheré u* G,VHO(F),A and u, is a solution of the equation (11?.
Notice that -in the case of piece-wise linear elements, i.e.
k=d+1l=2, 1 =1, for u*= H2('), i.e. o0 = 2 there holds

an estimate
oy - urlly son® sl s Sae

where 0 <t < 3/2 for n= 2 and 0t < 1 forn = 3.

5. NUMERICAL EXPERIMENTS

As an illustration, results of a numerical experiment show-
ing the convergence in h of the problem (10%, 9efiqed on a
boundary of a parallelepiped I, are given jf using finite-
differencies approximation of the operator 8 and.an appro-
ximation of K and L by the colquatiqglmethod.on piece-wise
constant base functions, for Q7 = % (E +K). The boundary
value problem in R3, X=@&y,2z) €R .

. 1 . . ' V
Au = p(X), ul=)=0, u®) = O(TEI_E)' kIXl s, (19)
iS transformed into the equation (10) defined on the boundary
'=901. The function p(X) is given by

Cx, Xen, cn - {X| |x] <15, |y <05, |2] 505},

pRX) =
0, X RN\L, [ CEAP=0
n, |
olut ' CP
and exact solution of (19) is u*(X) -1 f-——g—l—dP.

: . 4n | X - P} f
Numerical experiments were carried out on a sequence o

three grids h,(8,8,8) » h,(16,16,16) - hg(32,32,32) on the

6

Table
hy 8x8x8 16x16x16 32x32x32
A R
h, 0.0399 0.0195 0.0089

boundary of awparallelepiped [1. The results of computations,
given for Ahi = max |uh -u*|,1i=1, 2, 3 in the Table,
dll i

clearly show the O(h) approximation.
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