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1. Introduction 

To detect electromagnetic showers produced by high-energy gamma
quanta, hodoscopic calorimeters with a cellular structure are used in 
some experimental facilities (e.g. see Reta / 1-31). The processing o! 
the experimental data from these detectors consists in reconstruction 
of the releas_ed energy values and the coordinates o! the electromag
netic shower cores. 

In this paper an algorithm is proposed tor the processing o! 
the data from an electromagnetic calorimeter with square cells o! 
sufficiently large size (as compared with the transverse size o! the 
shower). The method is based on titting the given model of the shower 
energy distribution in the calorimeter cells to the real data. This 
is a computer/rogramme that is part o! the software for the HYPERON 
facility ; 4 , 5 • 

Here are· general conditions defining the application range o! 
the method proposed: 

1. The calorimeter cells have a square section and are tightly 
joined together to make a "wall" (see Fig. 1_). 

2. The transverse dimension o! the shower does not exceed the 
size of the cell, so a shower does not hit more than tour adjacent 
cells (a block of 2x2) (see Fig. 2). 

3. Let the group o!. the calorimeter cells where the energy re
lease took place be called a cluster. Each cello! the cluster bas 
at least one common side with any other cello! the cluster, and any 

two cells of the cluster can be connected by a chain o! the cells 
of the same cluster, the latter cells joined with their sides. Let 
us suppose the probability o! three or more ·electro.magnetic showers 
bitting one cluster to be negligible. 

4. The model distribution o! the energy release o! a shower 
produced by a particle with the energy e and coordinates x, y 
!or the point o! hitting the wall is as follows: 

a) according to item 2, the shower releases energies e1, e2, e3, 
e4 in the block o! 2x2 adjacent cells; 

b) the energies ei are proportio~l to the energy e o! the 
incident particle, i.e. 



= e ti (x,y) (1) ei 

c) the quantities 
another as 

ti(x,y) from item 4b are related to one 

!1 f4 = f2 !3 (2) 

(in accordance with the numeration in Fig. 2); 

~x 

1. 2 
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Fig. 1 Fig. 2 

d) coordinates x, y are unambiguously reconstructed by the 
ratios ti (:x:,y)/fj(x,y), 1 ~ i < j t- 4 • 

Of all these assumptions relation (2) from item 4c seems to be 
least evident. Nevertheless, the model of the form 

t 1 = R1 (x) R
1

(y) 

t 2 = R2 (x) R1 (y) 

f 3 = R1 (x) R2 (y) 

f 4 = ~(x) ~(y) 

(3) 

turned to be good for description of the results obtained in the 
test measurements at the HYPERON facility. The functions R} and R

2 
were obtained by approximation ot the experimental data 15 • 

The electromagnetic.shower parameter reconstruction technique 
to be considered below has been developed for processing the data 
from the Shower Hodoscopic Detector (SHD) of HYPERON. It is mainly 
based on relation (2) from item 4c, but it·also contains several 
general Principles and procedures. 
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2. Gen~~ai schJime of reconstruction of shower pa;r:-amet~ers 

'According to assumption 2 of shower energy release, each shower 
releases energy in several adjacent cells. On the other hand, accord
ing to assumption 3, the maximum of two cell•groups can be combined 
to make a cluster. So it is convenient to divide all the calorimeter 
cells, where ~ne.rgy was released, into clusters. Thus every shower 
is in its cluster, and in one cluster there is no more than two 
showers. 

One must find out, how many showers are in a cluster (one or 
two), and to reconstruct the parameters of the showers. Division of 
the cells with the non-zero energy into clusters is a simple combina
toric problem, so we omit its solution. Note, however, that this part 
of the programme covers up to 20-40% of the total processing time 
even it•there is quite a low density of clusters per event (e.g. 2-5 
clusters for 190 cells). ~hus, its optimization may also be of im
portance. 

Now we turn to the technique of reconstruction of shower para
meters inside a cluster. If C is the set of cells making up a clus
ter, the model distribution of the energy release is titted to the 
really measured values of the energy ei (i EC) by the least squares 
method: 

J
2 - ~ (e,-~-d2 . 

- L . cl· - inf 
HC l 

(4) 

where ~i' iEC are the "expected" energies, calculated by formula 
(1) for each cell of the cluster. Formula (4) includes covariances of 
occasional errors d1 
that the expressions 

at measurements of the energy e1 • We assume 
of di through ei are known (e.g. di= c0 + 

cf ei). 
If the one-shower-per-cluster hypothesis 

fit <1-J..<Jeim. ), it is accepted. It not, the 
yields a satisfactory 
parameters of two show-

ers are fitted. 
l. 

Let us analyse the expression of J in formula (4 ). Taking 
the hypothesis of one shower, one can find a block of 2x2 cells (let 
it be denoted by B), where the shower released all its energy, tor 
each hypothetical position of the hitting point (x,y). Then 

A )l!. 2 -yJ. _ ~ ( ei - ei ~ ei 
J-. - L d· ;- L ol.i 

iE.B l i~c,B 
(5) 

Quantity (5) can be minimized by the following scheme: 
a) to look through all blocks of 2x2 cells running across the 

given cluster; 
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b) to minimize only the first summand of (5) for each block B, 
since the second summand does not depend on the shower parameters 
Ce, x, y)f 

c) to choose the smallest value among all minimal values of the 
'f' 2. function ~ , obtained above; it will provide the beat fit for 

the parameters of one shower in the given cluster. 
The above scheme allows the one-shower-inside-a-cluster hypo

thesis to be reduced to a problem of minimization of the quantity ;. ~ y 
"1 (e.i - ei 

L(e,x,~)= L cl.- (6) 
bd l 

for four arbitrary figures e 1, e2, e3, e4 interpreted as the energy 
releases in t~e block of 2x2 cells. This problem is solved in the 
maximum general form in section 3. 

Checking the hypothesis of two showers, one can find two blocks 
of 2x2 cells (denoted by B1 and B2), where two showers released all 
their enerr, for each pair of the hypothetical points (x(1), y(1 )), 
(x( 2), y< 2 ), where the primary particles hit the blocks. Then 

( 
A ):2.. 2. 

,r!l.. = \ ei - ei + y- ei 
J-, L d. · L cl.i c1) 

iE.8
1
uB

2 

1 
ifC,(B1 VB.z.) 

Quantity (7) can be minimized by the following scheme: 
a) to look through all pairs of the blocks of 2x2 cells running 

across the given cluster; 
b) to minimize only the first summand in (7) for each pair of 

blocks B1 and B2 , since the second summand does not depend on the 
shower parameters; 

c) to choose the smallest value among all minimal values of 
the function J'- , obtained above; it will provide the best fit for 
the parameters of two showers in the given cluster. 

The form of the first summand in (7) largely depends.on the mu-
tual position of blocks B1 and~- Four variants are possible: 

1) blocks B1 and B2 coincide; 
2) b1ocks B1 and B2 have two common cell; 
3) blocks -B1 'and B2 have one common cell; 
4) blocks B1 and B2 do not intersect. 

In the fourth case the first summand in (7) becomes a sum of 
two summands of form (6), each depending only on the parameters of 
one shower. So each summand is minimized separately, using twice 
the minimization algorithm of (6), described below in section 3. 

Cases 1-3 require independent solutions, they are described in 
sections 4-6 of the present paper. 
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3. ·Fitting the parameters of one shower inside a~iJ)_ck of 2x2 cells 

• According to (1), function (6) is re-written as 

4 )~ 
L ( . ) = "'> ( £i - e.ft (x,y) 

e,x.1;1 _ {- cl· (8) 

· t=f l 

In the point oi the minimum of function (8) 'i1L/'de = o, which allows 
the Wlknown e to be expressed through x, y: 

4 
e. = L 

i=1 

e, .f Jx,:J.) / ±_ ff (x,~) 
d;, i-=1 ci.i. . 

Substituting it to (8) we reduce our problem to minimization of the 
quantity 

. 4 ~ / L {.x,j) = z_ :h <x_,~> _ (s 
L=1 c{t ?-

e, .f i (x,;J));!... 
(1• . 

(.. L=1 

The vital procedure is the introduction of new variables 

Uk= -jk {x,1f) / ft e;. .f ;_ (:x,;1) 
cl; 

k = 1,2,3,4. Then (9) becomes of the form 
4 u. ~ 

L(u..,u.z,U_3,u4)= L. J. 
l =-1 " 

It follows from (2) that 

U1 Ui, = U.1.,~ 

and from the definition of (10) it follows that 
4 

L 
c-=1 

u, el= { -- . 
di. 

(9) 

(10) 

(11) 

(12) 

(13) 

To stress the importance of introducing the variables ui, we 
note that they can be considered as the independent_variablea with 
restrictions.(12) and (13) imposed on them. Thus, minimization of 
the function of the general form (8) is reduced to minimization of 
a concrete simple function (11) on the variables Ui with restric
tions (12) and (13). For the reconstruction of coordinates x, y by 
the known ui one can use assumption 4d on the model distribution. 

It is convenient to reduce the number of variables to three by 
introducing a new one: t = u3/u1• Then u

3 
= t u1 and, in virtue of 

(12), u4 = t u2, so (11) is of the form 
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( 
1 e--) :)... ( 1 -e--) _ 2 - + - + U - +-- (14) L {u1) U.u t) - U.1 o/1 d3 .2. d.z. ol4 , 

and restriction (13) becomes ot the torm 

( e1 , e3) u ( ~..2. .1 e4 ) _ i U1 ~ + 1:. d + :i, -.,- + L d - ' (15) 
011 3 C1.2, 4 

If t is tixed, t~e minimum ot (14)-on the variables u1, u2 with 
restriction (15) is achieved at 

U1 === (5:.1. + t e3 )(j_+ t.2)/D 
ol1 d 3 cl..2. d.4 , 

(16) 

where 
u.,_ - ( e.,_ + t -~ ) ( J_ -i- t.:i. ) / D 

dJ. d1t ol1 o!3 , 

( el+ 
D == d1 

t e.3 )9...( 1 t2. ) + ( eJ.. t e4)2-(, e--) . 
d; d.i t- d. 4 ct:i.. + d~ d1 t- c13 (17) 

Substituting these values to (14) we obtain 

1 e--)( f e-)I L (t) = (- + - - + - D 
d1 cl.3 cl:i. cl" · 

(18) 

Function (18) is a !ractional-rational one with polynomials of 
the 4-th power in the numerator and the denominator. There is no much 
ditticulty in minimizing it. Making the derivative L'(t) equal to 
zero, we obtain an equation of the 6th degree. We only need the roots 
in the region L 1 ' ( t) ~ O ( there are no more than three roots). The 

presence ot the good initial approximation 

t c:: 
0 

e3 + e~ 
e1 + e:z. 

facilitates essentially finding the roots. (In order "to see" this 
approximation, one should use assumptions 4b and 4c: t = u 3Ju1 = 

u4/u2 ~ e/e1 ~ e4/e2 ). 
We would like to add 

in two quite rare cases: 
es function (18) achieves 

that the above procedure cannot be used only 
e1 = e4= O and e2 = e3 = o. In these cas
its maximum either at t = 0 or at t =co, 

which turns its minimization into a simple task. 

4. Che_c_king the hypothesis o! __ two showers tor a block_ of 2Z2 

Here we consider ,case 1 .. ·from section 2 V(ith blocks B1 and B2 
coincided. In this dase B1'u B2 is a block ot 2x2, and the tirst 
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summand of (7) includes 4 experimentally measured energies, denoted 
by ei, 1~ i~4, as in section 3. At the same time the model distri
bution of two showers depends on six parameters e (1), :x:(1), y(1), . 
e<2 ), :x:<2), y(2). Such an redundancy ot parameters leads to a pos
sibility of reducing the first summand of (1) exactly to zero, i♦ e. 
the equations ~i = ei • have an exact solution at i € B1 U B2• More
over, this i~ not a.single solution (a set of these solutions makes 
up a two-dimensional surtace in the six-dimensional space of para
meters of two showers). 

Usually, the model does not allow one to choose "the best" of 
all solutions. So it is e·nough to show one ot them. It can be easily 
obtained by employing a concrete form ot the functions !i(:x:,y) from 
(1). In model (3), adopted tor the SHD of HYPERON, it is enough to 
assume that the energies e1 and e2 are released by one shower, 
and e 3 and e4 by the other. Then there is no difficulty in recons
tructing the shower para~eters. 

5. Checking the hypothesis of two showers for a block ot 2x:3 

Here we consider·case 2 from section 2. In this case B1 U B2 
makes up a block ot 2:x:3 cells. We numerate the cells as shown in 
Fig. 3 and denote the respective energies by e1, e2 , e3, e4 , e5, e6. 

! 

3 

5" 

2 

lj 

G 

Fig. 3 

The block of 2:x:3 can be positioned horizon
tally and the problem will have a similar 
solution. 

The number of UDknown parameters (e(1 ), 
:x:<1), y(1), e<2), :x:< 2), yl 2)) coincides 

with the number of measured energies (e1-e6). 
It allows the assumption that in the general 
case the equation ~i = ei' 1 -'. i -~ 6, bas 
a solution, and this is the only solution. 
To obtain it, we assume that block B1 con
sists of cells 1-4, and block B2 consists 
of cells 3-6. Then, according to (1), 

1 = e(1 )f(1) . ""e e(1 )f(1) 
1 1 ' 2 = 2 
~ = 8 (1)f(1) + e(2)f(2) 

3 3 1 (19) 

/'-
8

(1 )f(1) + 
8
(2)!(2) 

84 .. 4 . 2 

A
8 

_ 
8

(2)f(2) • "'e _ e(2)f(2) 
5- 3' 6- 4, 

where th~ !unctions tf1) and ff2) depend on (:x:<1>, y<1)) and 
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(x(2), y<2)) respectively. Setting 'El'i equal to ei and solving 

eq. (19), we obtain 
;c.1> f w it flt) e i _ I 3 1 es-

f''' = .f."' - €:i. ' Ji ... i =- ~i ... 1 = e6 4. :i. 

5 (◄) :f (1) e3 e6 - e" es . .3 
4 -JTu= 11.1' -

. 
e1 e6 - e,,i e5 

, 
. 1 ' (20) 

f~~ st>_ e1eq- e.2.e3 
Ji~= it- e., e6 -e~e5 

The ratios. ff1 )/f~ 1), ff2>;f(2 ) allow one to find respective 

coordinates x(1), i 1) and :)2 ), y(2 ) usirig assumrion 4d. Using 
the coordinates, we can find the values of ff1), fi2 ) and the 
energies e<1 ), e<2 ) from eq. (19). Thus, the solution is found 
exactly. 

However, the solution obtained will have a sense only if 

0 <1 ) ~ o and e<2) ~ o. It follows from (20) ·that in order to have 
this it is necessary and sufficient that three quantities 

d' = e1 e6-e2 e5, d 11 = e3 e6-e4 e 5, d' 1 ' = e 1 e4-e2 e3 

are all negative or all positive at the same t:illle. 
If th~ hypothesis of two showers is in good agreement with the 

e1-e6 data. the above condition is satisfied and one can find an 
exact solution by formulas (20). 

If the hypothesis of two showers does not agree with the 
e 1-e6 data well enough, but the discrepancy is not very large, the 
following "trick" is possible. Aa shown, the first summand in (7) 
reaches the absolute minimum (zero~ in the point beyond the region 
of allowable values ff 1 ) ~ o, tf2 ~ o. If the minimum of (7) lies 
in the close vicinity of the boundary of the region of allowable 
values, the minimum of (7) is achieved at the boundary of the region. 
This boundary consists of points, for which ff1) = 0 for some 
1 ~ i ~ 4 , or tf) = 0 for some 1 ~ i6 4. 

The•latter conditions mean that one o! the showers hits only 
~o)of the six cells. It is ea~) to show that checking two variants, 
f 3

1 
= tl1) = 0 and t~ 2) = f~2 = o, is enough. In both variants 

the first summand of (7) becomes a sum of two summands, each depend
ing on the parameters of only one shower. Each of the summands is 
minimized by the method described in section 3. 
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Finally, let the hypothesis of two showers be in very poor 
agreement with the measured energies e1-e6 , so that the above con
siderations cannot be applied. Then minimization of (7) would re
quire some iteration schemes of the general form, and the above solu
tion could only be used as the initial approximation. Usually, how
ever, this work has no sense for a simple reason: if the hypothesis 
of two showers poorly agrees with the data, it should be rejected 
without specifying the shower parameters, because it is senseless 
to fit the hypothesis known to be.inadequate to the real data. 

6. Checking the hypothesis of two showers for a block of 
sey~_Il_ ~_ells 

make, Here we consider case 3 of section 4. In this case B
1
VB

2 
up a block of seven cells (Fig. 4a, 4b). We numerate the cells as 

·shown in Fig. 4a and denote the respecti
ve energies of e 1-e7• If the block is 
placed as shown in Fig. 4b, the problem 
is solved in a similar way. 

3 

{ 

6 7 

Li 5 

2 

Fig. 4a 

Fig. 4b 

Let B1 consist of cells 1-4 and B2 
consist of cells 4-7• Then e4 = e4 + e41 , 

I II where e4 and e4 are the energies re-
leased in cell 4 by the first and second 
showers respectively. If the two-shower 
hypothesis describes the e1-e7 data well, 
then in virtue of (2) 

' I '' I e4 -:::::: e 2-e3 e1 and e4 -~ e5 . e6 e7" 

These relations allow an approximate es
timation of e4' and e4'

1 
• Taking into 

. I II account the requirement that e
4 

+ e
4 

= 
_e4 , one can propose the following es
timation: 

€.2 e,3 e.s-e6 e --e --
' e " " e,. 'f e - 1 e = 
'i - e.,ie3 +- ~ ' ,, · e.:t.e.3 + e.,e6 

e 1 e.. . e., e,. 
Then one can estimate the parameters of both showers by their 

energy release e 1, e2, e3, e4 and e,j_', e5, .. e6 , e
7 

, respectively. 
To do this, one should twice apply the method described in section 3. 
If there is good agreement between the two-shower hypothesis and the 
experimental data, we shall obtain the minimum of the first summand 
of (7) with a high accuracy. 
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In the general case, however, the obtained estimations can be 
only considered as the initial approximation to the sought-for so
lution. In this case in our programme further minimization of the 
first summand in (7) went on by the iteration scheme of quite age
neral form. We only note the general principles of this scheme. 

1. Elimination of the unknown e( 1), e(2 ) (shower energies) by 
the method described in section--3 for one shower. After that only 
!our unknown quantities remain (x< 1 >, y< 1 >, x< 2 >, y< 2 >). 

2. Going to new ~dependent arguments ufk) , k = 1,2, as in 
section 3 !or one shower (the index k of the variables ufk) is the 
number of the shower, they are determined as in section 3). 

3. Going further to new independent arguments 

t(k) u(k);u(k) 
3 1 

s(k) u(k);u(k) 
2 1 

(k is again the number of the shower), which actually generalizes 
the variable t of section 3 of the case under consideration. 

4. Application of the known method of the gradient descent with 
the variable step for minimization of the first summand of (7) .by 
t<1), s<1), t< 2 >, s<2 >. · 

Implementation of the above principles in the data processing 
programme allowed a relatively fast and accurate procedure of re
construction of the shower parameters. Nevertheless, this procedure 
is quite slow as compared with the methods described in sections 
3-5. It was not further optimized, because the clusters of this type 
(i.e. with the blocks like 4a or 4b) are quite rarely encountered 
in practice. 

7. Results of the test•processing of the experimep.tal data 

The above algorithm was used to reconstruct .the events in the 
experimental investigations of the K+- meson decays at the HYPERON 
facility. To calibrate and check the algorithm, the decays K+ ~ 

1(+,'Jro (']r 0 -Ji-- 2/) were reconstructed. At first the energies and 
coordinates of gamma-quanta, reconstructed by two methods, were com
pared. The first method uses the programme with the above algorithm, 
the second one involves the standard package MINUIT 161 for minimi
zation of functional (4). Figs 5a and 5b show distributions of the 
differences of the electromagnetic shower core coordinates reconstruc
ted by the two methods. As seen, in 98% of the cases the difference 
of the coordinates is within 26 ( 6 = 10 mm) /4/. Fig. 6 shows 
distributions of the differences of the reconstructed energy values. 
They are also in good agreement within the measurement errors 14!. 
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The main advantage of the proposed algorithm is its fast action. 
Fig. 7 shows the time distribution of the reconstructed two-cluster 
events (K+ ~'.Jrt-3ro, :;r 0 ~2e ). For these events the programme 
with the above algorithm reconstructs the energies and coordinates of 
the showers a.1 times faster than MINUIT. It reduced the processing 
time almost by an order of magnitude(the comparison was carried out 
at an IBM/AT-type computer). 

The proposed method also allowed a 10-12% increase in the number 
of the reconstructed decays of K+~mesons owing to a higher efficiency 
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of the algorithm in determination of 
ping showers (when more than 5 cells 
meter are in operation). 

1'10 

N 

5 HeV 

70 

0 
105 ,135 165 

wo mass lHeV) 
Fl9, 8 

::, 

the parameters of the overlap
of the electromagnetic calori-

Fig. 8 shows the effective 
mass of 'Ji 0 from the decays 
K+ -- 'JT-t-:JT 0 tor 2028 recon
structed events. The mean 
value of the Ti 0 mass is in 
good agreement with the table 
value (134.9 MeV), and the 
peak width (JO MeV at half
ma:x:imum) corresponds to the 
one obtained in simulation 
and agrees with the eXP.eri
mental data 17/ and 187. 
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The Sho,wer Hodos_copic Detector (SHD) ii,_ an impo,rtant 
. part of .the· detector HYPERON (INP~ JINR) as well.as 

niany other up;-to..:date: detectors.' I_t is .a .calo.ri~et'er with 
. rectangular cells •. · In the present paper we consider a ' 
model.of the distributi'on of-energy release in.the SHD 
c~lls and prop<Jse as analytical solutio

0

nof the problem 
. of fitting the .. model <distribution to experimental\ data. 

The .correspondi.U:g·progrannne-wasin~luded.in the HYPERON 
software and· allowed orie, to raise· the rate of ·the. data i · 
processtng 8-9' times with abcnit_l 0% reqc1bilitJ::increa~e .·'I·, 

The investigation has·. been performed at the Laboratory 
of Computing Techniques and Auiomationi JINR. . .· . 
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