


1. Introduction

To detect electromagnetic showers produced by high-energy gamma-
' quanta, hodoscopic calorimeters with a cellular structure are used in
gome experimental facilities (e.g. see Refs /1-3/). The processing of
the experimental data from these detectors consists in reconstruction
of the releaqed energy values and the ooordinates of the electromag-
netic shower cores.

In this paper an algorithm is proposed for the processing of
the data from an electromagnetic calorimeter with square cells of
sufficiently large size (as compared with the transverse size of the
shower). The method is based on fitting the given model of the shower
energy distribution in the calorimeter cells to the real data. This
is a computer/programme that is part of the software for the HYPERON
tacility 7457,

Here are general conditions defining the application range of
the method proposed:

1. The calorimeter cells have a square section and are tightly
joined together to make a "wall” (see Fig. 1). :

2. The trangverse dlmension of the shower does not exoeed the
gize of the cell, 80 a shower does not hit more than four adjacent
cells (a block of 2x2) (see Fig. 2). ]

3. Let the group of the calorimeter cells where the energy re-
lease took place be called a cluster. Each cell of the cluster has
at least one common side with any other cell of the oluster, and any
two cells of the cluster can be connected by a chain of the cells
of the same cluster, the latter cells Joined with thelr sides. Let
us suppose the probability of three or more-electromagnetic showers
hitting one cluster to be negligible.

4. The model distribution of the energy release of a shower
produced by a particle with the energy e and ooordinates x, ¥y
for the point of hitting the wall is as followa:

a) according to item 2, the shower releases energies eqs €2y 93,
ey in the block of 2x2 adjacent cells;

b) the energies ey are proportional to the energy e of the
incident particle, i.e.
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ey = e ri(x,y} (1)

¢) the quantities Ii(x,y) from item 4b are related to one
another as

1,8, = £, 1, (2)

(in accordance with the numeration in Fig. 2);
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d) coordinates X, Y are unambiguousl& recongtructed by the
ratios f,(x,y)/t.(x,5), 1<¢1<j<4.

Of all these assumptions relation (2) from item 4c Seems to be
least evident. Nevertheless, the model of the form

£, = Ry(x) R{(¥)
I, = By(x) Ry(y) (3
£ = Ry(x) Ry(y) ‘

£, = Ry(x) Ry(y)

turned to be good for description of the results obtained in the
test measurements at the HYPERON facility. The functions R, and R
were obtained by approximation of the experimental data /57. 2

The electromagnetic.shower Parameter reconstruction technique
to be considered below has been developed for processing the data
from the Shower Hodoscopic Detector (SHD) of HYPERON. It is mainly
based on relation (2) from item 4c, but it also contains several
general principles and procedures.

2. General scheme of reconstruction of Showexr parameters

'According to assumptian 2 of shower energy release, each shower
releases energy in several adjacent cells. On the other hand, aocord-
ing to assumption 3, the maxirum of two cell*groups can be combined
to make a cluster. So-it is convenient to divide all the calorimeter
cells, where qnérgy was released, into clusters. Thus every shower
is in its cluster, and in one cluster there is no more than two
showers., .

One must find out, how many showers are in a cluster (one or
two), and to reconstruct the parameters of the showers. Division of
the cells with the non-zero energy into clusters is a simple oombina-
toric problem, so we omit its solution. Note, however, that this part
of the programme covers up to 20-40% of the total processing time
even if° there is quite a low density of clusters per event (e.g. 2-5
clusters for 190 cells). Thus, its optimization may also be of im-
portance. .

Now we turn to the technique of reconstruction of shower para-
meters ingide a cluster. If C is the set of cells making up a clus-
ter, the model distribution of the enexrgy release is fitted to the
really measured values of the energy‘ o4 (1 € C) by the least squares
method:
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where @l, i€C are the."expected" energles, calculated by formula
(1) for each cell of the cluster. Formula (4) includes covariances of
occasional errors di at measurements of the energy ey . We assume
that the expressions of d1 through ey are known (e.ge di =c, +
c1'ei)- '

It the one-shower-per-cluster hypothesis yields a satisfactory
it (fl<fleim ), it 18 accepted. If not, the parameters. of two show~
ers are fitted. 2

Let us analyse the expression of ;X in formula (4). Taking
the hypothesis of one shower, one can find a block of 2x2 oells (let
it be denoted by B), where the shower released all its energy, for
each hypothetical position of the hitting point (x,y). Then

Y] 2 .
ei"ei e;
Iz.—_ Z (e:— &) + Z = (5)
. di - di .
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Quantity (5) can be minimized by the following scheme:

a) to look through all blocks of 2x2 cells running across the
given cluster;



b) to minimize only the first summand of (5) for each block B,
gince the second summand does not depend on the shower parameters
(e, xy ¥)3

¢) to choose the smallest value among all minimal values of the
function ]Cz , obtained above; it will provide the best fit for .
the parameters of one shower in the given cluster.

The above scheme allows the one-shower—inside-a-cluster hypo~

thesis to be reduced to a problem of minimization of the quantity

L (ex9)= z Lo Bt ©

for four arbitrary figures e1, €y €3 e4 interpreted as the energy
releases in the block of 2x2 cells. This problem is solved in the
meximum general form in section 3.

Checking the hypothesis of two showers, one can find two blocks
of 2x2 cells (denoted by By =and 32), where two showers released all
their ener for each pair of the hypothetical points (x(1) (1))

(x(2 ’ ) where the primary particles hit the blocks. Then
2 (ei-&:) ei
y = Z - ; . Z o; (7)
i€ B,uB, ie C\(B,UB,)

Quantity (7) can be minimized by the following scheme:

a) to look through all pairs of the blocks of 2x2 cells running
ecross the gliven cluster;

b) to winimize only the first summand in (7) for each pair of
blocks B1 and 32' gince the second summand does not depend on the
shower parameters;

¢) to choose the smallest value among all minimal values of
the function 2 » Obtained above; it will provide the best fit for
the parameters of two showers in the given cluster. '

The form of the first summand in (7) largely depends, on the mu-
tual position of blocks B and B2 Four variants are possible:

1) blocks By end B, coincide-

2) blocks By and 32 have two common cellj;

3) blocks\B1'and B, have one common cell;

4) blocks By and B, do not intersect.

In the fourth case the first summend in (7) becomes a sum of
two summands of form (6), each depending only on the parameters of
one shower, So each summand is miniwmized separately, using twice
the minimization algorithm of (6), desoribed below in section 3.

Cases 1-3 require independent solutions, they are described in
sections 4-6 of the present paper.
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3. ‘Fitting the parameters of one shower inside a block of 2x2 cells

' According to (1), function (6) is re-written as
4
— e @,
[ (e, x:,y) 2: (e: f( ) (8)

In the point of the mlnimum of function (B)KEL/?e, 0, which allows
the unknown e +to be expressed through x, y:

Z eﬁ(x;g /Z ‘f(x}})

Substituting it to (8) we reduce our problem to minimization of the
quantity

e 4, 50 21

The vital procedure is the introduction o: new varlables

4 ;
— e; filx
Ue = §, (:r)g)/; ,_fd__zl o
k = 1,2,3,4. Then (9) becomes of the form

4 .2 :
Lo(w, sy Uss Uy )= Z1 Hd— , an
, =
It follows from (2) that ‘
U, Uz., = Uy Uy (‘12)
and from the derinttion of (10) it follows that |
Z u—&:e—i“—— 1. (1;3)

=1 . y
To stress the importance of introduoing the variables Uy, we

note that they can be considered as the independent,variables with
restrictions (12) and (13) imposed on them. Thus, minimization of

“the function of the general form (8) 1s reduced to minimiéation of

a concrete simple function (11) on the variables wy with restric-
tions (12) end (13). For the reconstruotion of coordinates x, ¥y by
the known uy one can use assumption 44 on the model distribution.

It is convenient to reduce the number or>variab1e§ to three by
introducing a new one: t = u /u1. Then uy = t u; aend, in virtue of
(12), u =t u2, so (11) i3 of the form - :



L(unu.zoi)“ ul(_--f'_—_)"-u (_L 0(4) (14)

and restriction (13) becomes of the form

“1(§L+£%)+ “—"J(%‘*’Jﬁ %)zi' (15)

If t is fixed, the winimun of (14).on the variables uy, up with
restriction (15) is achieved at

u1=(%+t'%3)(t+ £)/D
(16)

where y
. v 2 N
e .t ej) (1 t ) (el eu)(f _g).
= + + = 24t =)+
D ( d,4 day dy ds. t dy/ \dy g /1T)
Substituting these values to (14) we obtain
, . 2
g £
He [—+ = —_—+ — (18)
L “') ( d, ds da dy D.

Punction (18) is a fractional-rational one with polynomials of
the 4-th power in the numerator and the denominator. There is no much
difficulty in winimizing it. Making the derivative L!'(t) equal to
zero, we obtain an equation of the 6th degree. We only need the roots

in the region L''(t) > O (there are no more than three roots). The
presence of the good initial approximation

't - 63 + e-,
c @+ e,
facilitates essentially finding the roots. (In order "to see" this
approximation, one should use assumptions 4b and 4c: t = u3/u.l =
uy/uy = eyfeq = egley ).

We would like to add that the above procedure camnot be used only
in two quite rare cases: ey = ey= 0O eand e, = ey = 0. In these cas-
es function (18) achieves its maxXimum either at t = 0 or at t =oo,
which turns its minimization into a simple task.

4. Checking the hypothesis of two showers for a block of 2x2

Here we consider cage 1 from section 2 with blocks B1 and Bz
coincided. In this case B1U B, is a block of 2x2, and the first

summand of (7) includes 4 experimentally measured energies, denoted
by ey 1€ i< 4, as in section 3. At the same time1the model c(].}s)ltri-
bution of two showers depends on Six parameters e x
e 2 y X 2 ' ¥ 2 « Such an redundancy of parameters lead.s to 8 pos~
sibility of reducing the first summand of (7) exactly to zero, i.e.
the equations /éi =e;: have an exact solution at i€ By U By. More-
over, this is not. a. gingle solution (a set of these solutions makes
up a two-dimensional surface in the six-dimensional space of para-
meters of two showers). . :
Usually, the model "does not allow one to choose "the best" of
all solutions. So it is enough to show one of them. It can be easily

. obtained by employing a concrete form of the functions ri(x,y) from

(1). In model (3), adopted for the SHD of HYPERON, it is enmough to
agsume that the energies e4 and e, are released by one shower,
and e3 and e by the other. Then there is no difficulty in recons-
tructing the shower parameters.

.

5. Checking the hypothesis of two showers for a block of 2x3

Here we consider'case 2 from section 2. In this case B1 ) B2
makes up a block of 2x3 cells. We numerate the cells as shown in
Fige. 3 and denote the respective energies by €q» €3y 33 €4, €5y Oge
The block of 2x3 can be positioned- horizon-
tally and the problem will have a similar
solution,.

The number of unknown parameters (e(1)
3 % LD, () @) (2 X)) cotmetdes

, w:l.th the number of measured energies (eq-eg)e

5 6 : It allows the aasumption that in the general
case the equation e:L =e;y 1&41€ 6, has
a solution, and this is the only golution.
To obtain it, we assume that block® B1 con-
_8ists of cells 1-4, and block B, consists
‘ of cells 3-6. Then, according to (1),
= e(1)r$1) ;- AN e“)té”

- e(1)151) + e(2)11(2) o - .19)
e(”rf) + e(a),ga)

Figc 3
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e(2)152) R e(z)ria),

‘where the functions ri” and rj(_Z) depend on (x(1), y(1)) and



=(®, ‘(2)) respectively. setfing % equal to ey and solving
eqe (19), )we obtain

j—g— :;(1) —e—'_ , ;1)=i1—w: es .
TR et e
P 4 eses—eyes
PT T eg-ege - (20)
5}@ P esey—eseq
.4‘” P ee,—eses

The ratios . 1(1)/1(1) ’ fiz)/f(2) allow one to find respective

coordinates x(1) (1) and X 2), y(2) using assumption 4d. Using
the coordinates, we can find the values of 111) ’ fi2 . and the
energles e 1 s © from eq. (19). Thus, the solution is found
exactlye.

However, the solution obtained will have a sense only if
e(1) > 0 and e(2)3> 0. It follows from (20) that in order to have
this it 18 necessary and sufficient that three quantities

at = ei eg=es €5y art = ej eg=e, esy are = ey e4-ep €5

are-all negative or all positive at the same time.

It the hypothesis of two showers is in good agreement with the
e -eg data, the above condition is satisfied and one can f£ind an
exact solution by formulas (20).

If the hypofhesis of two showers does not agree with the
e,~eg data well enough, but the discrepancy is not very large, the
following "trick" is possible. As shown, the first summand in (7)
reaches the absolute minimum (zero; in the point beyond the region
of allowable values 1(1 =0, 2)> 0, It the minimum of (7) 1lies
in the close vicinity of the boundary of the region of allowable
values, the wminimum of (7) is achieved at the boundary of the region.
This boundary congists of points, for which 111 = 0 for some
1£1< 4, or :t:g_2 = 0 for some 1< i£ 4.

The -latter conditions mean that one of the showers hits only
two of the six cells. It is easg to show that checking two variants,
Ig ) 141) = 0 and k2 (2) = 0, is enough. In both variants
the first summand of (7) becomes a sum of two summands, each depend-
ing on the parameters of only one shower. Each of the summands is
oinimized by the method described in section 3.

Finally, let the hypothesis of two showers be in very poor
agreement with the measured energies eq=eg,y SO that the above con-
siderations cannot be applied. Then minimization of (7) would re-
quire some iteration schemes of the general form, and the above solu~
tion could only be used as the initial approximation. Usually, how-
ever, this work has no sense for a simple reason: if the hypothesis
of two showers poorly agrees with the data, it should be rejected
without specifying the shower parameters, because it is senseless
to £it the hypothesis known to be ‘inadequate to the real data.

6. Checking the hypothesis of two showers for a block of
geven cells

Here we consider case 3 of section 4. In this case B1UB makes§
up a block of seven cells (Fig. 4a, 4b). We numerate the cells as
‘shown in Fig. 4a and denote the respecti-
ve energles of e1;e7. If the block is
6 7 placed as shown in Fig. 4b, the problem
is solved in a similar way.

3 4 5 let By consist of cells 1-4 and B2
consist of cells 4~7. Then ey = e4 + e4 ’
{ 9 where e& and ea' are the energies re-
leased in cell 4 by the first and second
Pig. 4a showers respectively. If the two-shower
hypothesis describes the e 1=e7 data well,
then in virtue of (2)

e4 .;:ez-e3/e1 “and e;f;:es-eG/e7.

These relations allow an approximate es-
timation of ea and ei' « Taking into
account the requirement that e; +'e;' =

Fig. 4b . €4y ome can propose the following es-
timation: )
a8y e v e“’-.—cb:. e,
) e, v " € 14
e, —= 1 . e, =
! ey __5_9_ ? P elsy Eses
e €y €3

Then one can estimate the parasmeters of both showers by their
energy release ey, e,, es e4 and e,', e5s.€gs €7 5 Tespectively.
To do this, one should twice apply the method described in section 3.
If there is good agreement between the two-shower hypothesis and the
experimental data, we shall obtain the minimum of the first summand
of (7) with a high accuracy.




In the general case, however, the obtained estimations can be
only considered as the initial approximation to the sought-for so-
lution. In this case in our programme further minimization of the
first summand in (7) went on by the iteration scheme of quite a ge-
neral form. We only note the general %rincigles of this scheme.

1. Elimination of the unknown e 1), e 2) (shower energies) by
the method described in section--3 for one shower. After that only
four unknown quantities remain (x(1 ’ y(1 R x(2), y(Z)).

2. Going to new iﬁdependent arguments -uik) s, k=1,2, as in
section 3 for one shower (the index k of the variables uik is the
number of the shower, they are determined as in section 3).

3. Going further to new independent arguments

s (&) ugk)/u$k) P s(6) uék)/u$k)

(k 1is again the number of the shower), which actually generalizes
the variable t of section 3 of the case under consideration.

4. Application of the known method of the gradient descent with
the variable gtep for minimization of the first summand of (7) by
t(1), s(1 , t(2 y 8 2 .

Implementation of the above principles in the data processing
programme allowed a relatively fast and accurate procedure of re-
construction of the shower parameters. Nevertheless, thig procedure
is quite slow as compared with the methods described in sections
3-5. It was not further optimized, because the clusters of this type
(i.e: with the blocks like 4a or 4b) are quite rarely encountered
in practice.

7. Results of the test'processing of the experimental data

The above algorithm was used to reconstruct -the events in the
experimental investigations of the KT~ meson decays at the HYPERON
facility. To calibrate and check the algorithm, the decays Kt —»—

argre (TF° —= 2} ) were reconstructed., At first the energies and
coordinates of gamma-quanta, reconstructed by two methods, were com-
rared. The first method uses the programme with the above algorithm,
the second one involves the standard package MINUIT 6/ for minimi-
zation of functional (4). Figs 5a and 5b show distributions of the
differences of the electromagnetic shower core coordinates reconstruc-
ted by the two methods. As seen, in 98% of the cagses the difference
of the coordinates is within 26 ( & = 10 ma) 74/, Pig. 6 shows
distributions of the differences of the reconstructed energy values.
They are also in good agreement within the measurement errors
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The main advantage of the proposed algorithm is its fast action.
Fig. 7 shows the time distribution of the reconstructed two-cluster
events (KT —-Jr* I, gro —>»2K ). For these events the programme
with the above algorithm reconstructs the energies and coordinates of
the showers 8.1 times faster than MINUIT. It reduced the processing
time almost by an order of magnitude(the comparison was carried out

at an IBM/AT~-type computer).

,The proposed method also allqwed a 10-12% increase in the number
of the reconstructed decays of XK*-mesons owing to a higher efficiency
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lap-
of the algorithm in determination of the parameters of thi ov:ioiz-
ping showers (when wore than 5 cells of the electrotagnetic ¢

meter are in operation)- Fig. 8 shows the effective

mass of WO from the decays
K+ — JT° for 2028 recon-
structed events. The mean
value of the T ° mass is in
good agreement with the table
value (134.9 MeV), =nd the
peak width (30 MeV at half-
meximum) corresponds 1o the
one obtained in gimulation
and agrees with the egperi-
mental data and .
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