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In the process of solving elliptic boundary wvalue problems by

domain decompesition one can distinguish two main stages /17/:

i. solution of independent problems in subdomains (that can be done
in parallel};and

ii.solution of a problem on the separator lines(surfaces),which
arises from the conditions for the behaviour of unknown function
and its conormal derivatives on the boundaries of subdomains(the
latter,in its discrete variant,is called sometimes capacitance
matrix equation /6,7,17/). The second stage is the most
difficult one and is accomplished by iterative methods,usually
by the Preconditioned Conjugate Gradient (PCG) method. The
problem of the constyuction of preconditioners in case of
box-decomposition (the domain is partitioned by lines or
surfaces with cross-points into the great tnumber of subdomains)
and finite element approximation  of second order elliptic
equations have been discussed in /5,6,7,9,10,17/ and see also
literature cited there.

We shall consider the problem of the construction of effective
preconditioners in the case of finite difference approximation of
elliptic operators in the model boundary value problem:a rectan -
gular region in R",n=2,3,is partitioned by vertical and horizontal
lines into ~mu’ (in three-dimensional problem ~m') subdomains. 1In
each subdomain the value of elliptic operator coefficients are
constants,which can differ from each other by several orders for
different subdomains. To formulate the problem for unknowhs ¢ on
the boundaries of subdomains (capucitance matrix problem)

A p = (0.1)

and construct preconditioner E for matrix A& we wuse discrete
analeogues of Poincaré-steklov operators/12/. Poincare-Steklov
operators have been used in the analysis of convergence properties
of the domain decomposition iterative methods when region is
partitioned inte sérips in /1,13-15,11/. The discrete analegs of
Poincare-Steklov operators and their applications have been studied
in /2,3,10,15,18/. Some mnmultigrid methods with Poincare-Steklov
operator for the discrete sclution of elliptic problems is
discussed in /12/.



The main result of this work is given in Theorems 4 and 5 where
the condition number K(B'A) dependence on elliptic problem
parameters is discussed, and can be summarized as follows: the
convergence properties of iterative methods for the solution of
{(0.1) with discussed preconditioners are determined by (N/m), where
N is the mean number of unknowns in one direction, and convergence
properties are independent on jumps of elliptic operator
coefficients as long as these jumps only occur across the subdomain
boundaries. For the condition number X of matrix B "4 for
two-dimensional problem there is an estimate

K £ C(1+1n(N/m))* ,
for three-dimensicnal problem -
K £ C(N/m} (1+1ln(K/m))" .

The discussed preconditioners B can also be used for the
solution of elliptic problems when matrix & from (0.l) corresponds
to the elliptic operator with variable ccefficients in subdomains.
To do this it is necessary that the following condition holds true

.ciﬂ <A =< czﬂ ’
here ¢, >0 and ¢, <», & corresponds to the elliptic operator with
constant coefficients in subdomains. .

1.FORMULATION OF THE PROBLEM AND SOME PRELIMINARY DEFINITIONS

Let us consider on plane rectangle B with boundary @I, which is
partitioned by (m -1) vertical and by (m -1) horizontalllipes into
p=m m, subdomains ﬂij which are rectangles with sides a:,a;. These
lines form internal boundaries @ of subdomains naj":1+“ﬁ' j=l+m

We shall consider the solution of the finite difference analogue
of the following problem :

—,u_LjAW=0 xen‘_.j,i=1+ml,j=l+mz
[W]=0, [pdW/dn]=y, x<G {1.1)
[
w=0 xeall
As [-] we denote the' jumps of the unknown function and its conor -
wmal derivatives. Suppose, that pij=const>0 in nlj, i=l+m o, j=lim .

To approximate differential equations in (1.1) we use a stan -
dard five-point centered difference scheme on rectangular grid



"with displacement on h/2"/15,16/. (In each subdomain @, L ; We use a
uniform mesh with a grid size h =a; /N . h’-a /NJ with N, N,
internal grid points in x- and y- dlrectlons respectlvely, and w1th
boundary nodes displaced on h /2 or on h;/z relative the
subdomain boundary anij= k?lekj' here Gk are sides of rectangle
). As nrj we dencte the union of xnternal node set ﬁh and
nodes whlch go out of subdomain boundary on h/2;
as 60 kﬁ1rrj we denote the union of the points on a0, ; which
are in the middle of corresponding nodes. Respectiveiy as an and
I' we denocte a mesh on external 4N and internal 8 boundaries. As
rW we denote a trace of a gridfunction W on T or on én" or on an
respectively - it is an arithmetic mean value of two nodal layers
Wr,n,, and L hez between which boundaries are situated:
”W=(Wr.h,;+wr-wz e
as AW/&n we denote an outward normal derivative of gridfunction W:
AW/An=(Wp,, - ¥row.2 /B
Then we approximate (1.1) by the system

_ h L L1 .
- B W=0 onﬁ_tj,n—l-.hml,Jul.mz
[rW]=0, (¢ 8W/An]=y, on T (1.2)
rW=0 on an®

Here 4, corresponds to the discrete Laplacian, y is the projec -
tion of the given function y on the set of nodes on .

We shall also consider the problem (1.1) in the case of three
dimensions - in parallelepiped N with boundary an partitioned into
p=m m, m subdomains, and its discrete analog on the rectangular
grid "with displacement on h/2" (in each subdomain we use a
uniform mesh Q?jr with grid size hi=a:/Ni, hi=ai/Ni, h:=a;/N; )

It is convenient to analyse methods for the solution of (1.2)
with the help of Poincaré-Steklov inverse operators /1,12+15,11/.
We shall briefly describe the discrete analogs of those operators
as have been done in /15/.

Consider the Dirichlet problem in one of subdomains (for the
simplicity - hi=hi=1/N): see figure 1:

' . -8, W=0  in &"
r r . (L3)
e yW=[p' " ,p° 0" 1"z p on 20"y r*




Let gridfunction W be the solution of the problem (1.3). Let us
find VEAW/An:[AW/Anl,nW/ﬂnz,aW/nns,nwybn‘]T and define operator
s by :

™

v P P _P _P [
G (EIEIEIEY | e L

V= v: 51P::P:ag4 L =% ». (1.4)
v4 |1p4apoa 44 L4

Matrix S is the discrete analog of Poincard-Steklov inverse

operator. In this case it is easy to obtain formulas for evalua -
tion of the elements of the matrices Pij which form $™ , but below
we shall need only the elements of the diagonal blocks Pii'TheY
can be found by the solution of the problem (1.3), for example,
with g=[¢*,0,0,0]". Diagonal matrices P, have the following
representation /15/:

P =UlAU, , U =(uu=/‘2/N sin™ Y kil 4 W)

p -1 By +p"
A=diag 1 =2N— se———— } k=] + N (1.5)
B +1 oy -8 "

2z _ 2 mk |
ﬂk =1+2a+2yata” , a=sin IR

Here U, is a matrix of Fast Fourier Transform (FFT}. In the case
if subdonain 0 is parallelepiped, block dimension of £ in (1.4)
is equal to six and the diagonal blocks have representation:

T
P, =UTAU, U= U,

8, -1 By, +B )
A=diag{n =Nl — "‘—"_:., k,t=1 4+ N (1.5')
B +1 ”kt'ﬂkl

z 2 "k 2 ml
pkl-1+2a+24 ata , a=gln 5ﬁ+uin TR

In (1.5') '*' designates tensor multiplication of the matrices, u,
is defined in (1.5).

Properties of the operator $™ result from its functional de -
finition /15/:

(S 2W,rV)=D(W,V) » (1.6}

where D(', ) is guadratic form (discrete analog of the Dirichlet
form) which is given by, see /15/,



W -W v -V W - W, V. -V
+ + 11 k1l kl+1 k1 kl+4 k1l
D(WV)=S i QLLELINE Ly S + Yh b+
! oy fin h, h, h, h, 12
{1.7)
1AW AV
*2(FneaEn)

From properties of D{-,-) it tfollews that operator 5 'is
symmetric, non-negative definite in Lﬁ(an) and
KerS_‘z{rW=const on é0}.
The form D(:,-) for two- and three-dimensional problems has
one easily verified property which will be useful below:

D(W, +W, W +W, ) € C(D(W ,W )+D(W, ,W,)) (1.8)

here € is independent of b, ,h, ,h, .
Now consider "black and white" partitioning of the initial
domain I'=@ u@, in R",n=2,3, where
) N =u Q Q

B ifj-even ij’

in ¥

in ¥,

v iYioodd
= U A Q = U, Q. .
B i+tj+r-even ijr W i+j+r-odd ijr
Further we introduce cne-dimensional subscription and as #, denocte
the set of subscripts ‘1’ for which nleﬂn,in the same manner we
define the set L

In such subscription the grid I' on internal boundary @ has

representation:

T=uT or r=yr , (1.9)
le&n LE"V .

1
where r1=kg‘rf, rf is the net domain on the side of rectangle Q

in two-dimensional case, or rf is the net domain on the side of
parallelepiped @, in three-dimensional case; gq=4 in two-dimen -
sional case (g=6 in three-dimensicnal) if @ is "internal"subdo -~
main,i.e. there are no common points among the boundary 20, of o
and the boundary 0 of initial domain N; g=3 or g=2 (g=5 or g=4 or
g=3} if o is "boundary" subdomain,i.e. some sides of #, are on
the boundary 4m.

A direct sum of a finite-dimensional spaces ¥, we denote as
W=E&ﬂk, a vector ¢ which belongs to that sum - p=§@pk,pkeWk,
”PHW=§HPkHWk'

In each subdomain Q. we introduce the ,space &(D:) of h-harmo -
nic functions V, ,i.e. & ¥, =0 in ﬁ:. We shall say that some grid -



P -
function(vector) Ve¥(N") if V- 5 @V, ,VEV(Q]), ¥(@)e¥(a)) and
[¥V]=0 on T and yV=0 on an". The set of traces yV on ' of func -
tions from ‘V(I’lh) with I.: (T) inner product we denote X(I').

Each element vlefwm:') can be represented as
wf on I‘r
(1.10)

V‘l‘ B where :',Vt= N
0 on Fl,i$k
q
Then, X(F)= £ @&x(r,), X(I )=k;’e;x(r:‘); X(r ) consists of the
1ed -

»
elements ¢ =¥V, , e‘i’(Q:' )i x(r:‘) consists of non-zero components

v
pf of the trace rv%, and respectively each element peX(l') is
9

=X &p , pltkgi@pt. In accordance with (1.9) we introcduce cope -~

Le¥ -

B

rator of permutations T such that T T=E, X(F)—'—X'(F), where
X1(r)=E &x(r ).

1Le$
»

Let us introduce operators § '=I &y S ' and R = au S,
le&. 1 e&v

here S:* is defined in (1.4). It must be mentioned that matrices
S:’ have block dimension g in accordance with definition of in -
ternal boundary [, , see above. Consider the system of algebraic
equations from which the unknown vector eeX(l) must be found:

hAep=35"p + TR Tp =y {1.11)

where v is taken from {1.2). Let us determine properties of & from
(1.11), to do this we shall follow /2,15/.
Lemma 1. Matrix A is symmetrical and positive definite in X(T').
The proof of symmetry of & is based on the properties of D(-, )
in (1.6),(1.7):
for each U,ch(n“), yU,yVeX({l') we have

RrU,pVi= 5w (ST 20U 2V )+ £ p (ST 20 2V )=
Led Led

" v (1.12)
=X wD (U .Y) +E pD (U, V) = @UAV).
le&' le&v

rositive definiteness follows from inequality

min w, - (8,7U,rU) £ (A70,7U) £ max y - (R7U,7U)
14

L=1%p L=1+



where A&, is operator from (1.11} under the condition that b=l
1=1 + p, with easily verifying properties '
i
Anmna; KerA\n=O; A°2¢E, a>0.
Now let us assume that in (1.2) function v is given in such a

way that system (1.2) is solvable,i.e. for each Ve?(nh) holds true
P
(¥ VY=L, 8.0 (R V). (1.13)

Theorem 1. The solutiocns of (1.2) and (1.1i1) are equivalent,
i.e. if we¥(N") is the solution of (1.2},then p=yWeX(C) is the
sclution of (1.11) and vice versa, if peX(l') is the solution of
(1.11) ,then there exists Wé?(nh) solution of (1.2} such that
7W=¢ on .

The proof in cne direction is obvious because the system
{1.11) is nen other than different record of the con-
ditions on ' from (1.2).

Let peX(T') be solution of (1.11). Solving Dirichlet problems
in each subdomain Q, with ¢ as boundary condition on 40 we find
gridfunctions W, such that yW =p and for each UeW(ﬂh) holds true

AWl
(U, .4 g7 V= 0 (U W ), 1=+ p.
Summing these expressions we obtain: )
AWl AWL AW
I {7V ¢ ) A E O (¥U e ) = U, [Hggl )=
1 ¥LBR s l"laﬁ Led 1 An

lLed
L] w B

P
. = I, 4 0 (U W)
On the other hand, from (1.11) (&p,rU)=1§i#lDl(Ul,Wl)=(w,7U).

AW
Comparing these expressions we obtajin I @[psﬁ]l=w. That proves
Led -

B
theorem 1.

2.THE CONSTRUCTION OF PRECONDITIONERS

For the approximate solution of the system (1.11) let us con -
sider an iterative scheme:



In ocur case the choice of a particular iterative method which is
defined by the choice of iterative parameters r_  is not essential.
For the purpose of this exposition we may think of PCG method /8/.
The importance of making a "good" choice for preccnditioner B

is well known. B should have two properties:

a) operator B should be easily invertable, 1.e. expenditures to
evaluate B~'y should be much smaller than those to evaluate Ay
b} operator B should be spectrally close to A in the sense that

o
condition number K of B 'A& should not be large. Clearly, xs;l,
1
where o, and a are constants such that

« (Bp,p) < (Rp,p) € o, (Bp,p) for all peX(r). (2.1)

These two properties will guarantee that the work per iterative
step in applying preconditioned method will be small, and that the
number of steps to reduce the error to a given size will be also
small.

To construct such preconditioner B we decompose X(I') on X (I)
and X (I') so that each function peX (') can be unigquely represented
as p=p_+p , where v X (T}, pbexk(r). The expediency of such de -
composition will be obvious from the below exposition when the
examples of the choice of X (I') and X (I'} will be given.

For all ¢,veX(l}) holds true

(Ap,v)=(hp_ v )+ (Re_,v )+2(Re v )
and as preconditioner let us define operater B such that
(Be,v)=(B p_ ,v )+(Re ,v ), (2.2)
where B is block-diagonal matrix

B,~ I @w, diagS" + T (I @ aiags " )
IGJ' Led

L

(2.3)
“dlagst=(P, ., i=1 + g}, see (1.4)
and for all yW,rVeX(r) holds true
: ~ P IO o,
(B, rW,rV)= L p (aiags W ¥V ) = I m E D (LA (2.4)

W, V' nave been defined in (1.10).



The process of inversion of B consists of two stages:
I. The solution of the problem

(RxpL ,UL)=(V,UL) for all vLE&TL (r}. (2.5)

Below estimates of the work for the solution of (2.5) will be
given for the concrete choice of X (). Usually X ([} is chosen in
such a way that realization of the first stage is not difficult.

II. The solution of the problem

B p,=f, f=y-Ap_ * (2.6)

q
From (2.3) we have that evaluation of vector ‘¢ =% Q[k§1®(Po)r]
L

-]
in two-dimensional case can be done by seolving ((m -1}m +(m, -1)m ]

problems on common interface l"]l‘ of each two subdomains (fig.2):
!

Fu= wu P:(ku *u R us= £, les,, Les (2.7)
1 11
r’ r? K
Here we denote us=(e ), . On fig.2
L
r? @ ol o r! k=1, k| =3, Ptk and Pk'k are given by
1
r re (1.5). Operator F ' have represen -
tation:
Fig.2
-y T . 1 11 -t z
F™'=ueu,, #=diag{¢ =(u A 4+ 217} 1=1 + N) (2.8)
S

At . J\:‘ , U, are given in (1.5).

S0, for the solution of (2.6) in two-dimensional case Fast
Fourier Transform (FFT) can be used and the work for inversion of
B, is estimated by

m L
i

. . T .
Q=C(m -1} £ N: lnN: +C(m, -1), ILN :l.nm’z . (2.9)

L =1
1
If we consider the solution of (2.6) in three-dimensicnal
case, then for the evaluation of ¢ it 'is necessary to solve
[(m -1)mm +(m-1)m o +(z, -1)m m ] problems (2.7} on commen in -
terface l‘r of each two subdomains (now it will be a rectangle),



l
where P:k and Pu , are given by (1.5'). Also FFT can be applied
and the work requn:ed for inversion of B, in three-dimensional

case is estimated by

Q=C(m -1) £ _:3_‘1: N“lnN*N’»C(m 1), _”_ln‘n"lnﬁ‘n".

(2.10)
+C(m, -1), z N’N"lnN"Nk

1k Z
The estimates for « and « from (2.1) depend on the choice of
X (F) and X (I') and will be obtained for the concrete examples.
Now we shall formulate some general assertions. In what follows, C
without subscripts will denote positive costant which is inde -
pendent on mesh size h{ and of M -
Lemma 2. Suppose that C, ,C ,C ,C, from inequalities
C, (Re, ,p )+C {Re ,p ) £ (Ap,p)
c: (Bupa 'pn} < (R‘po 'Po) < cz (Bnpo 'po)
for all ¢ eX (T'), ¢ X ('), g=p +p <X(I') are Known.
Then, & and «, in (2.1) are defined by « '—'min(Co,C'_)min(C" 1),
o =max(C ,1).
Lenma 3. ¢ is independent on mesh size 1'1J and on M :
co d:(1+cl_ )t
The first statement of Lemme 3 follows from property (1.8) of
Dirichlet form and from (2.4): for all P, =rWeX ([') holds true

P P q wk #
(Reg epgd= T, 4y D (W W )=, T 4 D (F W, F W)

P q
S(:L IME D (Wt 'w:.( )-C(IBDPO 'Po) )

Suppose that we know < such that holds (&¢L,pL)S(—1._, (Ay,»). Then
L

for all e=p +p €X()
(e, 10, )=(h (p +p_ P ) P, +p, ~p }SCL(Rp,p)}+(Rp ,p ) 15C(1+C]" ) (Rp,p)
That proves Lemma 3.
From Lemme 2 and Lemma 3 follows
Thearem 2. Let C, and C_ are known from inequalities (2.11):

C (Be_,p ) = (Bp,p)

for all p=p +p eX(T) (2.11)

C (Borp, P} £ (Rpy.p )

Then, for the condition number K=o /o from (2.1) holds true
X £ ¢[c min(c, ,1)]"*

10



3.THE STUDY OF SOME PRECONDITIONERS

Decomposition X(F}=X (T)+X (T} which defines preconditicner B
is based on the idea that estimates for C_ and C in (2.11) for
operators & and B, corresponding to the whole domain should be
obtained by means of estimates for the operators corresponding to
subdomain or a group of subdomains. In practice this condition
gives that convergence properties of iterative methods for the
solution of (1.11) depend on one parameter of subdomains - Ni, and
are independent on the number of subdomains inte which initial
domain is partitioned. :

We shall consider in detail two examples of preconditioners B
for two-dimensional problems and one for three-dimensional. It is
clear that the set of possible preconditioners is not limited by
those examples.

Each gridfunction uex(rk) in two-dimensional case can be uni -
quely represented as u=u+u , where gridfunction u, =0 at edge nodes
¢, and X, of mesh subdomaln F and u_ is linear functlon along F
with the same values as u at edge nedes: u (%, Jau(z ), i=1,2.

S0, we define decompos1tlon I(r )=X (r )+x (F )}, where Ig(rr)

consists of u, elements, X (r )y - of -

Then, X, (I)=Z s[kgl@xo.(rL)],. X (F)=x e[k:*:iaxk (Ff)1. Precondi -
le&. le.S‘.

tioner with such choice of subspaces we denote as P1L2.

In second example for two-dimensional case we choose uL=const
as IL(Fk) so that for the gridfunction u =u-u_ holds true (u ,1)=0
wEex (). This preconditioner we dencte as PiC2.

Preconditioner for three-dimensional preblem with a choice of
X (r) and X (T) as in PlC2-case we denote P1C3.

Now, for the solution of the problem (2.5) a methed similar teo
Galerkin method can be applied: the unknown function geX () is
represented as

oy k k -
?L_Lz a(k 10u1)‘ weX (M)
where “L—” v, Y, o, =ul(z ), i=1,2 for P1iL2 (3.1)
. W=, for P1C2, PIC3
here N, M, N Are the numbers; v, - linear functions such that
i= :

r
v, (2. )= , i,3=1,25 v, - gridfunction which is equal to 1 in
0,147 N
k A
each node of T . Choosing (v, } = . and
¢ onl"- orFkwEL

11



k v: o r
v, ) = . as basis functions in X (') and sub-
0 onf ,r¥k,s#l
.

stituting (3.1) into (2.5), we obtain a system of algebraic equa -
tions

An=w (3.2)
for the unknowns n=(u} (¢, ),i=1,2; k=1+q; lef, } for PlL2-case,

n=(n*, k=1+q; le$,) for P1C2, P1C3. '

Matrix & in (3.2) is gymmetrical, positive definite and sparse:
in P1L2-case there are 14 non-zero elements in one row(column) of
matrix R in Plc2-case - 7 non-zero elements; in P1C3 - 11 non-
zero elements. Dimension of & is independent of the dimension of
the whole problem (1.11) and is equal to 2R for P1L2, R for PlC2,
where R=[(m -1)m, +(m, -1)m, ]. In Picd-case A has dimension
[(111’--1)111!1:|’+(mz -1)m, mo+(m-l)mm ]. For the solution of the problem
{3.2) direct and iterative methods can be applied (for instance
PCG method) .

Now we shall make an estimate of condition number R-;' , See
Theorem 2, for the preconditicners introduced above. This e;timate
can be obtained by estimates of C: and C:_ for operators from
(2.11) corresponding to each subdomain, because in all cases men -
tioned above, on the elements ¢ €X (T, ) operator Sl'l is positive
definite and Kers;" =0, therefore the following theorem can be
verified directly by (1.12) and (2.4):

Theerem 3. Suppose that for each subdomain & , 1l=1 + p, we know
C:' and C'; from inegualities
(S e e ) € (57 p,p) {3.3)
, c (diagsM e, ,p,) < (S %, P,) (3.4)
for all e <X (T ), ¢ €X (). psp +p <X(F ). Then in (2.11)
cl_snin L C = min Ci .

L 2p l=1+p

1

Remark 1. In (3.4) c=l ,
proklem

is the minimal eigenvalue of the

(s v,z) = A' (dlagSM v,2), vex (F ) (3.5}
for all zexo (l'L ). '
For the estimate of the condition nusber K (2.1) two following
theorems hold true "
Theorem 4. For the preconditioners P1L2, P1C2 we have:
K £ C(1+1ni)A"",

12



L

min 18 a minimal eigenvalue

where IN--max(N‘l Nj), A= nmin 1; . A
L=1+¢p
of the problem (3.5) on X (T ) corresponding to P1L2, PiC2.
Theorem 5. For the precond;t;oner P1C3 we have:
i

K< cm(1+1nmn' ,

where W= max(N N’ :N,). A= min al A'  is a minimal eigen -

Illl.ﬂ' mLn
value of Ehﬁrproblem (3. 5)lo;+; (r.) corresponding to P1C3.

In order to prove theorems 4 and % estimates of CL from (3.3)
should be obtained. First we shall do that for two-dimensional
case (Theorem 4). Lemma 4 given below expresses C through para -
meters (N N’) of mesh subdomain n for PIlL2, P1c2 cases. The
proof of this lemma will be given for P1L2, in PlC2-case the proof
is analogous to P1L2.

Vector pLeIi(fl) has representat}on pL=k§£@p:, where p: is
projection of some linear functiocns ¢, on the node set Fr. Gene -
rally speaking, the wvalues of pi
at the vertices of subdomain @ can
have discontinuities and let this
difference be 2d, at the k-vertice.
(see fig. 3).

Fig. 3

Lemma 4. For CL in (3.3) holds true:

€ 2 C[(L+lnN) (1+N(1+1nN)e+0(1/N})] ™

where 9=ck§1d{)/max|ph|’, N=max(Ni,Ni).

A proof of Lemma 4. For the simplicity we consider subdomain
ﬂ: asg "internal" subdomain with mesh size h:=hi=1/N. Inequality
{3.3) holds true for gridfunctions ¢ +const and ep+const . Let us
choose a constant in such a way that grid functions p =p,_+const,
p=p+const have zero values in one of the edge-nodes . of one of
the mesh subdomains Tl, and let us prove Lemma 4 for such functi -
ons. Let us give two auxiliary assertions combining which we
immediately obtain Lemma 4

<

Al. For all pLeIL(rt) holds true

(7%, .%,) < C{L+N(1+1nN)68+0(1/N) )max |3, [
where @ is defined in the conditions of Lemma 4. '
42. For all g eX (F\ ), p X (T,), 6=&L+p°ex(rl) holds true .

max|p, |*€ C€(1+1nN) (sl‘"&,,‘o) .
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For a proof of Al let us represent & as a trace of some

h-harmonic function: p =¥ ., w =V, 4 Z (wk+wk), where V_ is a pro -
jection on mesh subdomain n of function V =uxy+ﬂx+sy+c with
values o k=1 + 4, at the vertxces of rectangle Q, which are equal
to the mean values of p at these vertices. And the traces of

¢ onr "
and Wk are rwk , j=1,2; where ¢. are projections on T,
0 onr itk 1

of linear functions dkx which vanish in one of the edge nodes of

rf. Using (1.8) ve have:

“ z

° - k k
(S5 b ) S OV VG E T (R840 (3.6)

It is easy to obtain that

+
(57 ¥V, 7V, )€, T, @ LY _,,-,tp NI e _1[w K- i@ 1N, (3.7

where y (2 ) are the values of p at the edge nodes tj of F:,
j=i,2; k—1A4 To estimate the second part of (3.6) we use (1.5),
and, for instance for j=1, we have:

k_ k Lk _ ol " /2 jOS) nnc;-g/z)_
‘Sl:(Pkk¢1 '¢i)_(UNAUN¢ '¢ ) ugtk b b dk 3:-1 sin—

After simple transformations we obtain t{SCd: %cosec'(%%),

and for 5f

& < cdk ): A, cosec’ (ZN) (3.8)

To estimate al=Aicosec'(%%), we use the form of Ai given by (1.5).
It can be easily shown that an equality

1+zn’+2n(1+r,’)“’ > exp(fn), 0n<1, {=1n(3+27 2)

holds true. Since siniz= N‘ , 12i<H, so ﬁiSexp([i/N), B, are given

by (1.5), and , _,
L+pl l+exp(~271)
- < = 1
p:_pin £ j-exp(-20i) = =(i).
Since »{i) have maximum at i=1, so for ¢ we obtain
B -1 . .
o < CN m—cosec’ (Gh) < eN(l+cosec(Gy)) < CN(1+«§),

and respectively for 6 (3.8):
&' < Cd:N(1+1nN)- (3.9)
Now combining (3.9) and (3.7) we obtain first assertion.

14



Remaerk 1. Since in the initial conditions pof the problenm
(1.1),(1.2) there is condition of continuity of unknown function
across the boundaries of subdomains, so dk-C/N, therefore we can
consider

s - <

(S,'#, ., ) < Cmaxlp |*

r
where C=O(1)f

A proof of A2. Since |p | attains its maximum at one of the
edge nodes on one ef the subdomains Fr where °, vanishes, $o an
inequality holds true:

- z o
nax|e |"% max|e +¢,

Let maximum |§]' is attained in node r of F,, then

|*= max|p|* .

max|p|*=[p(r) [*=|Fe v (r)|'< C(F|e, )7, (3.10)

where @,  are Fourier coefficients of representation of ¢ in basis
v, }, v, are normalized eigenfunctions of S;‘. We considexr that
for all v, there exists M independent on N such that max|v, [SM.
This property follows from the same property of eigenfunctions
of operator S:’ when 5:‘ corresponds to the c¢ases in which the
form of ite eigenfunctions can be found (these are - when S;‘is
given on a boundary of a circle, when S:‘ is given on a part of a’
boundary of rectangle, see (1.5), (1.5')) and some topological
considerations. Continuing the sequence of inequalities (3.10) and -
applying H&lder inequality, we obtain:

max[p{*s €(F 3 )feal = C(F 3) (ST H.8),
where e are eigenvalues of oberator-sf'. Sihce 5s§§_= 5p$, , 8o

N L3
6=4i§1% + A, are given by (1.5). Function (BB ")/ (B, +8_ )S1, for
i .
all i=1 + N, and since Bin(%ﬁ)a%, i=1 ¢+ N, so
N
s <cgzr adh £ ey, (3.11).

The second assertion is proved and hence Lemma 4.

A proof of the analog of Lemma 5 for three-dimensiocnal problem
(for the preconditioner P1C3) is accomplished in almost the same
way as for two-dimensional. Therefore we shall not give its full
proof, we ghall only show the differences which in particular lead
to the appearance of factor "W" in the expression for the
condition number K.

15



Taking into account Remark 2, the analog of Lemma 4 in three-
dimensional case is as follows:
Lemma §. For PiC3 case we have the estimate for CL in (3.3):
¢l » crN(i+1nN} 3T, N-max (K. ,N ,N]).
In the proof of Lemma 5 the differences with two-dimensional
case appear at the stage of estimate of the sum (3.11) of magni -
tudes inverse to the eigenvalues of operator S;’ which corresponds

to parallelepiped. In accordance with (1.5'} for lij we have:
). | N

$=6F I + £C 15 7 (14 € EN(1+1nN).
LE1jE1 lij Niz1j=14 +3.Tj-
So, combining Theorems 2 and 3, lemmas 4 and 5, taking into
account Remarkg 1,2 we obtain assertions of Theorems 4 and 5.
Theorems 4 and 5 in the form of how they represent condition
number K do not allow yet to speak about the dependence cf the
behavior of K on the parameters of discretisation, because for the
time being the dependence of minimal eigenvalue of the problem
(3.5) on those parameters is not defined.We have failed to obtain
this dependence theoretically therefore we present hypothesis
about the behavior of the minimal eigenvalue of the problem (3.5)
which can be strictly justified in the case of finite-element
approximation /5/. Below we shall illustrate our hypothesis by
numerical experiments.
Hypothesis. For the minimal eigenvalue of the problem (3.5) holds
true:
o (L 17s casanN),
N=max (N, ,N,) for P1L2, P1CZ: N=max (N, ,N, ,N,) for P1C3.
The results of numerical experiments which illustrate this

hypothesis are given in table 1- Table 1
Numerical experiments have been log N ;:n
carried out for the problen Pi1L2 P1CZ P1C3
{3.5) with operators S, and 2 1.9 5.1 5.0
diagS;‘ corresponding to the 3 3.1 7.8 7.5
unit square for P1L2, P1C2 4 4.5 10.3 10.5
cases (to unit cube-for P1C3) 5 6.3 13.2 12.9
with uniform mesh size h=1/N. & 8.1 16.3 15.3
7 10.6 19.7 e
8 12.4 23.8 —

Taking into account the suggested hypothesis about the
dependence of the minimal eigenvalue of the problem (3.5} on the

16



parameters N; we have the following estimates for K=o /o in (2.1)
for preconditioners Pi1L2, P1C2:

K < C(1+1md)®, N=max(N; N} {3.12)
for preconditioner P1C3:
K € O (1+1lnd)?, N= max (N, NN} - (3.13)

To summarize shortly aforesaid let us note the basic proper -
ties of iterative methods for the solution (1.2) with precondi -
tioners P1L2, P1C2, P1C3.

I. The convergence properties of iterative algorithms depend only
on local characteristics of subdomains - the number of internal
grid points N:,Ni,N:, and are independent of the number of
subdomains into which initial domain is partitioned;

II. The convergence is independent on jumps of elliptic operator
coefficients #, as long as these jumps only occur across the
subdomain boundaries;

IIX. With a growth of the number of unknowns the convergence
properties become worth and this deterioration is defined by the
behavior of K=a, /o in {2.1) which is given, under the .introduced
suggestions, by (3.12), (3.13).

Let us estimate the work required for the solution of (1.11})
by PCG method. For the simplicity we consider that the full number
of grid points in initial domain is equal to M (¥ - in three
dimensional case), the number of subdomains into which initial
domain is partitioned is equal to m (m in three-dimensional
case), the number N of nodes in each subdomain is (Hjm)' ((M/m)*y.
Applying for the sclution of Dirichlet problems in each subdomain
(evaluation of the vector v=Ap) the method suggested in /4/, we
obtain that the work reguired for implementation of one iterative
step of PCG with preconditioners P1L2, P1C2 is estimated by

. H
2 M M z max 2.
q,=0[mM(1ln" = + InZ} + (=m) (;;i“ m} ],
==)] for P1C2, ==2 for P1L2.
In three-dimensional case with P1C3 - by
Iy
z M M 3, max 2.8
- = + + =
q, O[mH’(ln A 111;) m (y“.‘“ m} ],
here a depends on the iterative method for the solution of the

problem (3.2}, for example, «=1/2 for CG method: M= max p, ,
l=1-p
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H = min ¢ . Then the work reguired to reduce initial A-norm of

L=14-p
the errer E =¢-¢. by a factor of ¢ is estimated by

Q, =0(q, ln% ins ™)
for two-dimensional problems, and by

Q,=0(q, (M/m'/* 1nd 1ne
for three-dimensional problems.

It is also necessary te note that the wain labor-intensive
stages of iterative methods for the solution of (1.11) can be
parallelized: evaluation of vectors v=ARe¢ and udB;‘v, B, is given
by (2.3), is reduced to the solution of (ma) independent
pirichlet problems in each subdomain and independent problems
(2.7) on the common interface of each two subdomains. If there is
computer with the corresponding number of processors then these
problems can be solved in parallel. And as scon as  the suggested
above algorithms have mechanism of a global information transfer

min

™)

(the problem (2.5),(3.2)}) then these algorithms can be
parallelized in a wide range of the processors number variation
/17/.

Remark 3. If in the conditions of the problem (1.1}, (1.2} there
is Neumann condition %%‘Bﬂ =n on a part ¥ (on one or on several
1

sides of the domain M) of the boundary 11 instead of Dirichlet
condition yW|,, =0 then preconditioner B is constructed in almost
1

the same manner as discussed above. But in that case the trace
®, =rW|y; on M nust be considered as unknown function and
1

preconditicner must be constructed for modificated system instead
of (1.11):

[} &
¥P, | 4 _ W
T
&
ee, ee [P 7
where A,p,y are given in (1.11), & , R are constructed of
P, PP,

P {1.4) in accordance with block representation of unknowns.

4. NUMERICAL EXPERIMENTS

In this section we shall present some results of numerical
experiments which illustrate the convergence properties of the
preconditioning algorithms using P1L2, PicC2, P1C3 as
preconditioners when used in conjunction with CG method.
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In the below examples the domain Q where initial problem (2.1)
is defined, is unit square {cube) partitioned into identical sguare
{cube} subdomains Q.. (a ;) with sides a:=ai=a;=a<1 for all i,j,r:
in each subdomain there is wuniform mesh with grid size
h:;hi=h;=h=a/ﬂ for all i,j,r. The integer n is defined to be the
number of iterations required to reduce the &-norm of initial error
E =p-p, by a factor of £=0.00001 for two-dimensional problem and of
£=0.0001 for three-dimensional problem,i.e
1.2 /2

(Rie_-p),e ) "< s(B(p ~r), e, )

[ ig to be the observed reduction defined by
1 fram
_ [E_,E) ‘
Pe= {RE_,E T

Table 2 presents results which illustrate convergence behavior
of PCG methed with P1L2, P1C2 as preconditioners, in the dependence
on discretisation parameter N and on the jumps of elliptic operator
coefficients M, ; Aacross the boundaries of subdomains. Problem (1.2)
has been considered in domain € partitioned into 25 subdomains

nij,i,j=1 + 5.

Table 2
P1L2 Pi1C2

h_1 1
i og N A #1 M2 a8 21 B2

P, nie, n | p, nl e, nl e, n e, n
1/4 2 0,05 4 [0.09) 5 |0.06( 4 |0.18| 7 |(0.27| 9 |(0.21] 8
1/8 3 0.09| 5 |0.13| 6 |0.09( 5 |(0.23] 8 (0Q.34| 11|0.25
1/16 4 0.14) 6 (0.19| 7 |0.13| & |0.27| 9 {0.40| 13|0.37| 11
1/32 5 0.20| 7 |0.23( 8 |0.21] 7 |0.31| 10|0 45| 15{0.39| i2
1/64 6 0.23] 8 |0.26] 9 |0.23] 8 jO.34| 311|0.49] 17|0.42] 13

Column marked "a" presents results for the case when Laplace
equation in each subdomain (”15'1' i,j=1+8) is defined. Columns
marked "ul® and "w2" present results for the cases when elliptic
operator coefficients have jumps across boundaries of subdomains.
Figure 4 gives the values of pij in each subdomain for "w1" and
"u2" cases.
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153 ' p2

75 500 10 0.3 800 1 1 1 1 1

o.01| 10° 1 20 1100 1 12000] 500010000 1

0.1 700 10" 920 80 1 10000 1 3000 1

100 200 0.1 1000 10 1 5000| 700 | 12000 1

1 1000| 100 0.05 1 1 1000 1 1 1
Figure 4

Table 3 presents results illustrating convergence behavior of
PCG method for three-dimensional problem with preconditioner FPI1C3.
The problem has been considered in cube partitioned into 27
subdomains © i,3,r=1+3.

ijref

Table 3
P1C3 o2
h_1l 4 u3 o3
== llog N
anN [ n A n Py n
1/2 1 0.13| 5 (0.19| 7 |0.39| 11
1/4 2 0.201 7 |o.28] 9 |0.55| 16
1/8 3 ©.25| 8 10.38] 12]0.64] 21

Figure 5 gives the values of B in each subcube for "u3" case.

3 i 10 8 3 1 883, 3 33
1 0.1 10 889) 22 0.3 9 8.8 2
1000 1 10 47 10 (0.88 101 3 55
oLzx<1r73 1/73¢cx¢2 AR 2/34x¢1
Figure 5
The example "u3n with discontinues coefficients in

three-dimensional c¢ase have been taken from /5/, and for
comparison, in column marked DD2 in table 3 we present the results
from this work /5,pp.15-16/ which 1illustrate the convergence
behavior of PCG method with DD2 as preconditioner /5/.

The examples presented above give an idea of how the
convergence of iterative methods for the solution of (1.11) changes

in the dependence on discretization of the problem when partition
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is fixed, l.e. when the number of subdcmains in each direction is
fixed. Now let us illustrate the convergence properties I1in the
dependence on the number of subdomains when discretization is
fixed: the initial decomposition of the domain @ in two-dimensional
case is chosen as partitioning into 4 subdomains ﬂlj,i,j=1 + m, m=2
(in three-dimensional case - into 8 subdomains nijr, i,3,x=1 + m,
m=2), when mesh size in each subdomain is h=1/32. Now let us
increase the value of m by a factor of two (the whole number of
subdomains is m® (m'}) without changing h. In doing so, the number N
of grid points in one direction in each subdomain decrease by a
factor of +two. Table 4 presents results which illustrate
convergence behavior of PCG with PlL.2, rI1CZ, P1C3 as
preconditioners in the dependence of m when Laplace eguaticn in
each subdomain is defined. '

Table 4
n
n N
P1L2 Pic2 P1C3

2 16 S 7 8
4 B 4 6 6
B 4 3 5 6
16 2 1 4 -

Data of table 4 are in full accordance with theoretical conclusions
that the convergence of iterative processes with preconditioners
introduced above is defined by the number N of grid points inr one
direction in esubdomains and 1is independent of the number of
subdomainsa into which initial domain is decomposed.
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