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1. Quasipotentional approachll’Z/is used intensively + for

deicgiption of two connected particles system such as qq , e e ,
p My etc. As the exact analytic solutions are known only for same
simplest potential, wide application of this approach needs to
develop the numerical methods of solving the gquasipotentional
equations with different potentials.

In general case, for two scalar particles connected system the
quasipotentional equation in momentum space may be presented in
the form -

6 L p,E)wip)= 1721 [ V(p,k;E)v(K)IdK/E, , (1-1)
where G(p,E) is a Green function, wy(p) is a wave function of relative
motion of connected 5ystem/3/,E is an energy of connected system.

Let us consider the equation (1.1)with the potential that
describes a quark-antiquark interaction:

V(p,k;E)=V1(p,k;E)+V2(p,k;E), (1.2)

where the potential

v, (psksE)=—as (p-k)? (1.3)

is an analog of Coulomb potential and describes interaction at a small
distance, and the potential .

vz(p,k;E)=n/(p—k)4 (1.4)

is locking and ensures limitless growth of eigenvalues of Eq. (1.1) and
is more similar in concept to the phenomenological type.

When choosing the potential in such a manner,in the framework
of the nonrelativistic case Eq.(1.1) bhas the form:

(E—p2/2—vo)w(p)=~1/(2n)3j(—a/(p—k)2+n/(p~k)4)w(k)dk, (1.5)

where a shift of spectrum VO is introduced.If integrating Eq.(1.5)

in angles, in central-symmetrical case we obtain the following
equation:

(p2/2+V_—E)pl )=a/n?ln Pkl (k)dk—p/ Tt 24 (pri0 "2 pk)dk. (1.6)
p o Eletp pik|” af((p-k [ v - (1.
0

(o]
Here p(p)=py(p), w(p)=y¢(|p|). If we amplify the Eq.(1.6) by the
condition p(0)=0 and the norm condition

« 2
Jetp)dp=1 , (1.7)

V]

we arrive at the eigenvalue problem.

2. The main requirement for computing mass spectrum and other

characteristics of vector mesons by Eq.(1.4) is great computation

accuracy of eigenvalue (EV) and eigenfunction (EF).Thus, for

the numerical computations to be performed, we must solve the problem

of computing the invariant subspace of great order matrix (with
®order NiIN, where N¥1000), which is not solvable in practice, if we

do not take into account the special structure of the matrix. B
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In order to solve the arising algebraic problem a numerical
algorithm has been devised utilizing the Multi-6rid subspace
iteration method and efficient procedures for the processing
of the Hankel and Toeptlitz matrices that emerge in the
Galerkin discretization of an integral operator as well as
the special algorithms for improving the accuracy of
approximate solutions by the Richardson extrapolation.The
computations have been performed on the CDC-6500 computer,In so
doing the main memory capacity in use is G=(2p+0O(1))IN+O(p°),
where p is the number of computated EV.

Let us illustrate the basic characteristics of the algorithm by
solving Shrédinger equation with the Coulomb potential, which we
obtain from Eq.(1.6) by p#=0

2 «° p—k
(p /2—x)w(p)=—a/nj1n}E;F+w(k)dk. (2.1)
o

This equation has an exact solution. If a=1, there exists the formula
2
kn=—1/(2n }, n=132333... (2.2)

The results of numerical computations for the first four EV
depending on N discretisation order are tabulated in Table 1.

Table 1
N Al A2 A3 Ad
27 -0.500003758 [|-0.12478302 —0.050508256 |-0.0089176
28 -0.49999798 ~0.12496973 ~0.054147826 |-0.0050906
27 ~-0.4999964 -0.12498776 —0,054654526” —-0.00817317
210 -0.49999568 ~0.12499518 —0.054965435 [-0.011246485

Now consider the relativistic equatidn with locking
potential

2

[
(pz—nE)w(P)=ﬁ/ﬂf((P—k)_ +(p+k) z)w(k)dk, (2.3)

(o]
which we get from Eq.(1.6) when a=0 and the corresponding change
of the left—hand side has been made. Here nE=(2E—2m)m/4, where m is

a mass of particles forming the connected system, and M=2m is a
mass of the connected system. There is an analytic solution of
Eq.(2.3)

M =2m(1+AZ ) (2.4)

here {n—function Airi zeros, and A=2(ﬁ/m3)(2/3).
Let us apply Eq.(2.3) to a description of mass spectrum of J/¥
and Y-particles.Values of parameters # and m are determinated by

masses of two low level/S/.Using the # and m values obtained

Eq.(2.3) allows to numerically compute the masses of the rest of
excited states (see Table 2). The numerical results of calculating
the mass spectrum of J/¥ and Y-particles by formula (2.4) with
the help of values of 3 and m obtained are listed in Table 2.

Table 2.
"J/W(MEV) HY(Hev)
Mexp. M(2.3) M(2.4) | Mexp. M(2.3) M(2.4)
3096.940.1 | 3096.9 | 3096.93 9460.+0.2 9460 9462

© 3686.0%0.1 | 3686 3686.11 10023.4+0.3| 10023.4 | 10027
4159 * 20 4168 4168.48 10355.520.5( 10482.8 |10489.95
4415 * & 43589.5 | 4594.8 1057717 10885 10898.9

A=0.1457Bt5.16t10:2 A=0.037097tb.5!10:§
m=1.1548+1.3%10 m=4.353418.2¢10

Table 2 shows that the numerical results of calculations of
the masses spectrum by (1.6) and the computations by the formula
(2.4) coincide in three first figures.

I.The use of the potential which consists of both the Coulomb
potential and the locking part, allows to describe simultaneously
both mass spectrum and lepton decay widths of vector mesons .To
determine the vector mesons lepton decay widths we use the Van Royen-—

Weisskopf fDrmulalb/, that can be written in momentum space

taking in account quark colour, in a following manner:

[+ ]
_ 2 2 -2 2
ry.ete=16nd eqﬂv¢lfp(p)dpl ’ (3.1)

where o=1/137,M, is a meson mass,e_is a quark charge,and wave
v 'q

I8 ${p) 15 s walissd Ly vunditiun (i./). LOmMpUtatiOns  OF

meson masses were performed by using the formula:

Hv=(4.+E)m' » (3.2)
where E-solution of Eq.(1.6),and m‘=mq/2—reduced quark mass.
Table 3 results the computations of mass spectrum and lepton decay
widths of J/¥-particle. Parameter values m‘=0.71552i1.34310_5,
a=0.1922511.2'10-4,B=0.41432t3.9t10_55nd Vo=0.545lltB.6l10-5 have

been fitted in masses of the first three states and lepton widths

of the basic state/S/.
Table 3
HJ/W(Hev) rJ/W (Kev)

Mexp. " Mtheor. Fexp. I'theor.
30%26.9+0.1 3096.9 4.8+0.6 K.77
3686.0+0.1 3686.0 2.1%0.3 2.97
4159 * 20 4153 0.75%0.1 2.24

4415 * &6 4563.5 0.44+0.14 1.8




As shown in Table 3, Eq.(1.6) describes the mass spectrum quite
right, but gives too high values of lepton decay widths for
excited states of the cc system.

4.lL,et us turn our attention to the discussion of the relativistic

quasipotential equation/Z/:

w [+
1+p2({14p%-Erptp)=a/n [in $+: p(K)dk~a/n [ (p-k) 2+ (ptk) "2y p(k)dk.
(o] o (4.1)

For the meson mass to be calculated, we use the formula

M,,~2Em, (4.2)

where m is a quark mass, and in order to calculate the width T

we utilize expression (3.1), where the wave function p(p) is the
solution of Eq.(4.1).Now we fix free parameters m=1.492810.00003,
a=0.56103%0.000006,(3=0.016005%+0.00009 in the ¥-particles set the
first two states masses and in the J/¥-particle basic state lepton
width.

Table 4 shows the results of calculations of the J/¥% mass
spectrum with Eq. (4.1).

Table 4
HJ/W(HEV) Ty p (Kev)

Mexp. Mtheor . Fexp. 'theor.
3096.910.1 3096.9 4.8+0.6 4.5
3686.0+0.1 3686.0 2.1%0.3 1.28
4028 * 10 3972.9 0.7520.15 0.81

4159 * 20 4169.9 0.77%0.23 0.78
As seen from Table 4, the description of the width rV+e+e_ is

better than in the framework of the nonrelativistic approach.
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ONMHCHIBAWMHX ' CIIEKTP MAacCC BeKTOpPHHX ME30HOB
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OnucaH 4YHMCITEHHLE! anropHTM Oyis PemeHHs1 KBasSHIIOTeHIHAJIb—
HBIX HHTErpajbHbIX YpaBHEHHHl B HMIYJIbCHOM NpPOCTpaHcTBe. IlIpu-—
BE[l€Hbl PE3YNBTATHl YHCJIEHHEX PACYETOB CNEKTPa MacC M MHPHH
JIENITOHHBIX pacrnagoB BEKTOPHLHIX ME30HOB B CPAaBHEHHH C [IaHHBIMH
¢usnyeckoro skcrnepuMmeHTa.

Pa6oTra BhmonHeHa B JlaGopaTopHH BBHMHCIHTENBHOH TeXHHKH
H aBToMmaTtusauuu OMUAHU.

Ipenpunr O61enuHensoro HHCTHTYTa AAEPHBLIX HccnenoBaHuii. [y6ua 1988
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T?e description of the numerical algorithm for solving
quazipotential integral equation in impulse space is pre-
sented. The results of numerical computations of the vec-
tor meson mass spectrum and the lepton decay width are gi-
ven in comparisom with the experimental data.
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