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The deyelopment of contemporary accelerators stipulates
growing requirements to the accuracy of computations of electric
and magnetic field parameters. Numerical experiments on computers
modelling the behaviour of magnetic fields are significantly |,
faster and cheaper than a comparative prolonged and laborious pro-
cedure of physical experiments. The method of bOuQFary integral
equations /BIE/ or, in general, the method of boundary elements is
being used in solving theoretical and practical problems of experi;
mental physics quite often [1 -~ 6].

Generally speaking, nonsymmetric dense matrices are obtained
when the boundary integral equations are discretized. Besides,
there is available only some information on the spectru; location
for these matrices. When dealing with problems in practice, the
dimension of the system of linear algebraic equations may reach up
to 103 - 104, Centering our interest on the iterative methods of
solution of linear systems is therefore obvious.

VWe survey here some effective iterative methods for sqiving the
integral equations of the potential theory on surfaces of special
form. Using these methods we show how to construct economical algo-
rithme emploing both the differential equations and the boundary
integral equations in them. We analyse two-~ and three-dimensional
problems of magnetostatics that arise when the stationary Mexwell
equation is being solved. The integral equations of magnetostatics,
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written down for a domain with constant magnetic permeability,

are used in particular to describe exactly the boundary conditions
at infinity. To optimize the numericel aslgorithms that solve the
boundary value problems of magnetostatics in unbounded two- or
three-dimensional domains one can use the combined methods [7-10].
That, in fact, implies the use of the domain decomposition methed

with one of the subdomaina unbounded. )

THE PROPERTIES OF THE BOUNDARY INTEGRAL OPERATORS

We consider boundary integral equations obtained by a direct
application of Green’s formulae for harmonic functions in the spa—
ce R%, Let a closed Lyapunov surface 7 divide the space R3 into
two simply connected domains,_fli - the interior one and Jle -~ the
exterior one, so that f)iLj N L)_(le = R3 and__O_e is unbounded.

Let us consider a problem (I) of determining a function « (M),
harmonic in one of the domains_fli or_f)e, given the values of 4L
on the boundary [ /Dirichlet problem/ or the values of its normal
‘derivative on | /Neumann problem/. In the case of the exterlor
problem /(L,/, we set £4(0) = 0. We denote by O /Om the deriva-
tive with respect to the inner /in respect to.f)i/ normal to the
boundary [ and set

V(S):_jjn_’“‘(s)‘ sel .
Then therd holds Green’s formula
(BE +o¢ K) (M) = ¢ Lv(M) =0, MeR®  {1.1)

The parameter X = -1 corresponds to the interior problem; X =1,

to the exterior problem. The value of‘/s is defined by the formula
»

1+, ME L2,
p: 1 sy Me I,
1-o<,MeSZi.

E is the identity operator and the integral operators K and L are

defined by the relations

(pm
KL = J'K(M'P)/u (P)HOI_D = _Q/.’)—(T Q’:’T::}l/ﬁﬂz#(p)o(gp)
P v

4
y i ,
Ly = SL(MIP)V(P)dGP :ﬁf]ﬂm)) W(P)ds,
T r

where )}LMPI is the euclidean norm of the vector jZM?’ connecting
the points M,P, aﬁdlﬂvP is the inner normal vector. Given the func-
tion v(M), M &[] we obtain /from (1.1)/ the boundary integral
equation for «c(m), M e[ .

Considering the two-dimensional case /the problem (II)/ the
boundary integral equation for a harmonic function AL may be deri-
ved from (1.1) if the kernels of the operators K and L are defined

by relations

4D g iy L cdCer )
K(MP) =5 m%ﬂ (Ppy= T %ol )

LM PY= Ednn(MP) M P e R™.

Axially symmetrie harmonic functions 4« in the space R3 with

cylindrical coordinates satisfy the equation

19 Q. _ >0. .
$4-89) + F -0, 920 00

I1f we consider these functions, i.e. the axially symmetric harmonic



functions /the problem (III)/, then the boundary integral equation

is obtained from (1.1) for the operators K and L with the kernels

K(M,P) = 95%—)3 G@,P) , L(M,P)= PG (M, P) |
‘ T
G(M.P>=£cf RY(M P @Iy, M=(p,2), P=(9,%),

0 4
R(M,P®)=[ (x-2,)0" + P'+ P4 2?5’0‘3"’7”]/2-
The boundary [~ in this case is the envelope of the original axi-
ally symmetric surface.
The Neumann problem for each of the sbove-mentioned problems

(1), (1) or (III) leads to a problem of solving an integral equa-
tion of the second kind

(F+xXKYau (My=W | Y=ocLy(M) M, (1.3)

and the Dirichlet problem reduces to a problem of solwing an equa-

tion of the first kind

Lv(M)=0 D= (o £+ K)acw (M) MeTl (1.4)

)

We will not dwell om the subject of solvability of (1.4), we just
mention that these questions are studied in the papers [11,12] and
that a stable algorithm in R2 is suggested in[13]. The Dirichlet
problem can obviously be transformed into the equation like (1.3),

if ite solution is sought in the form of the double layer potential:

A/(M)=£~a—aﬂ—LP7L-4(MIP)(¢,¢ (P)dE, | MPeR

where the unknown potential density(u (P) satiasfies the equation
A
- 2 —— u (M Mel™
(E o<f<)/u 7 o) (M) er,
and )"(M) is a given function.

. Let study the equation (1.3) in more detail. The operators

K,L : LE(F)'——*C(F) are bounded and K : C(") —= ¢ (") is comple-
tely continuous. There holds the following
Theorem 1 [11]. Given the problem (I) or (III) the operator L is
positive definite in LZ(F'). Given the problem (II) the condition
L D 0 holds in the subspace (v,1) = 0.

Let us denote the density of Rebin potential by gO(M) /func-
tion g is the density of Robin potential when K'go = g5y
(8pr80) = 1s K® is the adjoint operator to K/. We give the connec-
tion between the conditions of solvability of the equation (1.3)
based on the Fredholm’s theorems and the conditions imposed on the
given function v = 8u/a/w [11,12].
Theorem 2, Given X = 1 the equation (1.3) has a unique solution,
and if(v ,1) = 0,then (M,go) = 0 which is equivalent to 2(e0) = 0.
Now suppose O¢ = =1. Then for any V € L,(/) such that (v,1) =0
the equation (1.3) has & unique solution 4 € ¢(f) such that
é‘% »1) = 0 or (t,g,) = 0.

The convergence of the alternating iterative process is based

on the property

Im 6(K)=f | 6(KY (4, 1>, (1.5)

@ (X) denotes the spectrum of the operator K [14]. The number A =1
is a simple eigemvalue with the eigenfunction = 1, and the fumc-
tion gy(M) fulfils the relations (ggs1) # 0, Lgy = const. And-besi-
des, for both operators K and K“, none of the principal vectors
corresponds to the eigenvalue A =1 [11].
The convergence of the iterational processes to the solutiom

of the equation (1.3) on a convex domain is guaranteed by the pro-
perty of kernels K(M,P) to be nonnegative, E(M,P) 2 0. In thie case

the matrices approximating the integral operators have nomnegative
elements, too.



Let us consider a general approach to the construction of ite-
rative procedures that solve the equation (1.3) without ‘the preli-
minary discretization. This approach is directly applicable to
discrete analogues of (1.3) in the case of convex domains. We sup-
pose that the primary space X = C (I7) may be decomposed into a di-
rect sum of two subspaces Xl and X2, and that there is a projector
P mapping X onto Xl : PX = Xl. Then to find a solution we uae the

iterative process [15]
ey, = (E=AP) (A(E-PYa + W), A=~aK | (1.6)

Here it is suitable to use as the subspace Xl the space on which
is the operator E - AP easily invertible. Ae a subset of the bound-
ary set that defines the projector P we may elecf e.g. segments of
the boundary obtained by translation or rotation of its part, sphe-
re, surface of a cylinder or a parallelepiped with a square as its
base /in R3/, perimeter of a circle, boundary of & square /in R2/.
or same other special surfaces. Examples of investigations of the
convergence of iterations (1.6) are given in [16].

‘Now we restriet the equatior (1.3), according to the theorem
2, to the invariant /with respect to K/ subspace Elﬂftqﬂu,go)ao}.
Since from (go,l)afo follaws that X can be decomposed into a di-
rect sum X = El + R, we have for the spectral radius G(K-) /oper—
ator K~ is the restriction of K onto E;/ the inequality 6(x7) =
= q < 1. In an equivalent norm N1\, from [15] we then have
&=, £ q +€& for arbitrary small £> 0. This of comrse implies
that for PX - E, the simple iteration method (1.6) converges at
the rate of geometric series. If the domain with boundary [ is a

convex set then l’~“! coincides with C-norm and we can set € = 0.

Al

When we have a convex surface we may establish a sufficient condi-
tion for the convergence of iterations (1.6) that is weaker than
(1.5). Briefly stated the condition says that the number )\ = 1 is

a simple eigenvalue greater than any other, i.e.

max | Al =g <. (1.7)
Neo(K), A4

It folows from an integral analogue of Perron’s thecrem for a com-

pletely continuous operator K with positive kernel and a fixed point

Ka =4, 4 =1, This property passes on to the matrices that ap-
proximate integral operators. That is why the part of the following
theorem cdncerning convex surfaces holds for the /below(mentianed/
systems of linear equations that approximate eq. (1.3), tooe.
Theoxem 3 [16]. Let PX ~ E; and q< 1 is defined by (1.7). Then
there exists an equivalent norm on B, such that the proceas (1.6)
converges at the rate of a geometric series with the factor q +¢,
€£€>0 is arbitrarily smalle Let the surface be a convex set, Then
for a projector P such that PX C E; process (1.6) converges in

C-norm and

g —ale £ Qo lagg—ally , 9,€G.
Discretization of BIE (1.3) /on special surfaces/ is performed
via piecewise constant interpolation and collocation. Let us remark
that when the point M lies on an edge of the surface ™ the para-
meter X in eq. (1.3 ) takes on the values not equal to %+ 1. Since
the points of collacation do not lie on the edges this property of
X is not put to usge in discretization. Nevertheless, for piece-
wise linear base functiaons changes required to compute the matrix
elements are eaeily ﬁerformed. N
Let us divide | into N parts: I =A;& r;5 diem f-1 £n> o,
and represent Ai(s) in the form a(s) = Zi—;'uiqpi(ﬂ’ where CP;[(")
. i

is the characteristic function of{', i = 1,N.
7




Suppose the centres of gravity of r"i are the collocation

points 8+ Then we get a system of linear equatiens
(F + « KA) U = xph ; tph = LA Vv, (1.8)
approximating eq. (133), where j

U= (#ygycyuepy)t V= (\/(s,)),“,v(SNJ)T, V(s)y=u(s)yBn,
Kht{&bj}) L/\z {f‘__‘;—j) ‘:101‘:4/ )

and

4= (ks o) pesdds | 42 [L(s 5B (s)ds .

ITERATIVE METHODS FOR EQUATION (1.8)

The cheoice of the methods depends on the properties of the
system. One of the factors influencing the behaviour af the system
is structure of matrices K, and Iy. For exsmple, the block struc-
ture of matrices K, ,L, [ 2], in the case the boundary | is a circle
or a square in problems (II\,(III) end a parallelepiped with square
basis [17,187] or a cylinder in problem (I) shows that for special
surfaces of the given type it is possible to attain significant
economy in computational resourceas. The results of these investi-
gations enable for instance to reduce essentially dimension of the
array where the matrices Kh’Lh are stored, or to use fast algo-
rithme based or the Fourrier transform to multiply these matrices
by & vector /here comes into play the Toeplitz block structure of
these matrices/. When we consider also the spatial symmetries
/esymmetries/ of [~ we may lower the number of unknowns of the
system (1.8).

+ Let A denote a matrix K, for any of the above-discussed

surfaces and let the dimension of the problem with this matrix
be N. Equation (1.8) with its matrix of the system E ¢ A /X = 1/

is solved by the splitting method for the nonselfadjoint operator

B=E+ 4 :

Be(U'- %) = Le (BU -¥) (2.1)
where

Br=(E+eK)(E+eK,) , B=K,+K, . (2.2)

Lower and uppex block-triangular matrices Kl, K2 ere selected so
as to have Kl = E ¢+ K3, K3 2 ¢ and to ensure the invertibility of
their diagonal blocks. For already listed special surfaces the
matrices Kl, K2 with mentioned properties can be constructed [2,
18]. Optimal specification of the parameter % is done in practice
with the help of numerical experiment. Confidence in thus defined
% stem from the fact that the spectral radius of the iterationgl
operator is virtually independent of the discretizetion step and
is determined only by a geometry of 7. It therefore suffices to
perform a few computations on a low-dimensional grid. The conver-
gence of the process defined by eq..(2.1) for convex surfaces is
established in [ 2,18].

When we take into account the spatial symmetry of [ we solve
eq; (1.8) by a Seidel method to get ’

B(Uk*‘-Uk>’—(E+A_)Uk*CP~ (2.3)

The analysis of convergence can be found in [2,6l.

We will now give an example of numerical computations per-
formed on EC-1061 using FORTRAN programs intended for solving eq.
(1.8) by the above-mentioned methods. We have used the program
solving BIE on the surface of a parallelepiped with square as its

basis. Given below in Table 1 are the results of computations and

9



fundamental characteristics of an algorithm for a sequence of three
grids that have been constructed on the surface ]ﬂ =Eaf1 , whereY1
denotes a cube with an edge aw9. As a test function we have used
the harmonic function (M) = | - M| ™}, ¥y € M. The gria @

k = i:; is defined by Py points on every edge of the basis

Py = po2k'1, p0=4, and Qe points on every edge perpendicular to the
basis, q; = qozk'l, q0=16. The dimension N of the problem is then

N = N(k) = 2p, (p,+ 2q,)e All computations have been done double-
precision. Indexed letters TK’ TL’ Ty denote the computation time
/sec./ required to compute the matrices K, I, and Y = LV in that
oxder, and T denotes the time /sec./ needed to solve the system
(1.8). Letter G denotes the general case of the iteration method
(2.1) and S denotes the special case, where the iteration method
(2.3)was constructed taking inte congideration three planes of sym-
metry for f]. The number of iterations of (2.3) till the relative
accuracy 10-4 for S is not reached and the number of iterations of
(2.1) till the absolute accuracy 10~4 for G is not reached in both

cases on the grid QJk is denoted by Ny.
A\ ]

Table 1
Wy Tx T, Ty T N
1.65 1.20 0.33 6.14 8
4x4x16
G 1.65 1.16 4.28 29.0 4 .
S 12.7 8.59 2.49 33.4 5
8x8x32
99.5 65.6 20. 1.0
16x26x64 4 7 !
G 112.7 65.2 290.1 1312.0 3
10

The use of Richardson’s extrapolation on the given sequence
of grids has given an additional improvement of effectivity of the
computational process.

The estimate of the computational time T to solve the problem
(1.8\ on the grid Lu4 of dimension 32x32x128 with the symmetries
taken into account is about 48 min.

Note that the dimension of the system (1.8) on the grid Wy is
N(3) = 4608, and the time of solution is cca. 22 min. /for the ac-
curacy 2 10™4/. Estimates /for EC-1061/ show that more tham 200

hours would be neededto solve a similar system by the Gauss method.
APPLICATIONS IN MAGNETOSTATICS

Economical algorithms for solving BIE on special surfaces [8,
17,18] can be used in magnetostaties to restrict the domain of in-
vestigation for two- or three-dimensional problems involving scalar
potential. Efficient application of BIE is possible also when a
vector potential is used in two-dimensional problems [7].

Congider the system of Maxwell’ s steady-state equationms for

isotropic medium :

pot H=gf o om H(M=0, g
dev B =0

= | "
y B f‘ ( HIDH S
with the conditions at the boundary between different media :

/n.'(Bl—Q):O, m x (H,-H,)=0. (3.2)

Problem (3.1)-(3.2) iz transformed into & problem of finding

two scaler functions 991 and %?g defined by

H'—‘Hovgzbadcﬂ , ["]GQJ)

egadh | HeD )
TR



where.fll U C}x U S%;L= R, H=1, 1€ §2,, and Hy is defined

by the formula

A % x (R-R")
HO(M)= 3 V! )R_RI)S

The functions cypl,ﬁu satisfy equations
dmv(ﬂ(‘?ad%’)gﬂad?ﬂ) O ME_(Z((L, ) (3.4)
AP =0, P(x)=0, Me _(24 )

with conditions on the boundary rzu,

a% /,{(fj/mad ﬁoﬂ)——ﬁ'% (HOl/”L )=0,

P, (P)= Gu(P)= § Hods , Pe Ta g < [
where &‘ is a continuous curve connecting points PO, PEe r{u To
account for the condition ‘]01 (00) = 0 we use a boundary integral
equation (1.3).

Let I be & cylinder or a parallelepiped with sq_uare basis
and. suppose that [} contains the domain .Q{u, jee. [1= Q/u U D,
where D = N ﬂ 1° Now we consider a boundary value problem,
equivalent to (3. 4) (3.5), for which the equatiom: A(Pl =0 is de-
fined only in domain D, and the condition

o7, (3.6)
(E-K)e, /L—L— , Mel
holds at the exterior boundary T" « We denate
MeQ
o (M) = CP& k o

¢, , McD=Mn L.

Let us suppose that eqs. (3.4), (3.‘5) define on [] & differen-
tial operater GAt. Then, just as in the papers [:7,8,17], one of
the following iterative processes can be smployed to solve the

system (3.4)-(3.6).

12
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Algorithm }. Givern an approximation ,u,k (jr) we compute uk‘l( §)

successively solving the following equations.

Gu =P(M), Me 7, (e) - w5(5),

40 e (1 gratax (D
(E+’<)M’<+4/2—L2 :os o

=G s Rak 2 0c R<,

One step of this process corresponds to solving the Dirichlet prob-
lem in [ 1 and te solving the integral equation at the boundary

for the exterior Neumann problem, with a subsequent relaxation.

Algorithm 2. Given an approximation At (f) g el , (u,k,go) =

we compute 4L "1(§) successively solving the following equations.

(E+/<>u.<——Lv}“4=0, fér;

GM :w<M)) aa_'u:_ =(L((’3,{Qd,,u,k,) l<+4) MG[—]I
m (3.8
("u,ﬁo)=0 Mk*4/2=M(§)) )
k+4 (4 £*1/24 ,ﬁ,u/k 0 < /ﬁ_ :<//

)

Here we solve the Neumann boundary value problem with the operator
G in[1, provided (u ,go] = 0 /this is equivalent to (u »1)y = 0/

and BIE at the boundary | for the exterior Dirichlet problem with

relaxation.

It is important to notice, that after the system (3.4)- (3.6)
has been discretized, the rate of convergence of alternating iter-
ative processes (3.7) and (3.8) practically does not depend om the

discretization step, it depend® only on the function /VG:) and on
the geometry of domains thandl'l.
1



The questions of solvability for nonlinear systems (3.4)-(3.6)

in Sobolev spaces and verification of convergence of iterative pro-

cesses (3.7), (3.8) have been studied in [19,10]. Numerical

examples illustrating solutions of the combined system (3.4)—(3.6)

using BIE on special surfaces may be found in [2,18,19].

can

Considerable part of results that have been described in here

also be applied to a wider class of problems that sppear in

mathematical physics.
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