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The development of contemporary aeeeleratore stipulates 

growing requirementeto the accuracy of computations of electric 

and magnetic field parametere. Numerical experimente on computers 

modelling the behaviour of magnetic fi~lde are significantly 

faater aud cheaper than a eomparative prolonged and laborious pro­

cedure of physical experiments. The method of boundary integral. 
equationa IBIEI or, in general, the method of boundary elementa ia 

being used in aolving theoretieal and practical problema of experi­

mental phyaica quite often [1 - 61. 
Generally apeaking, nonaymmetric dense matricea are obtained 

when the boundary integral equationa are discre~ized. Beaidea, 
~ 

there ia available on1y some information on the apeetrum location 

for these matriceB. When dealing with problema in praetice, the 

dimension of the syatem of linear algebraic equations may reach up 

to 10 3 - 10 4• Centering our interest on the iterative methode of 

solution of linear syetems ia therefore obvious. 

We survey here some effeetive iterative methods for s~lving the 

integral equations of the potential theory on surfaees of speeial 

forro. Using these methods we show how to construet eeonomieal algo­

rithms emploing both the differential equations and the bQundary 

integral equatione in them. We analyse two- and three-dimensional 

probleme of magnetostatics that arise when the stationary Maxwell 

equation is being solved. The integral equations of magn~tostatics, 
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written down for a domain with conetant magnetic permeability, 

are used in particular to deacribe exactly the boundary conditlcns 

at infinity. To optimize th~ numerical algorithms that solve the 

boundary value problems of magnetoetatics in unbounded two- or 

three-dimeneional domaina one can use the combined methods [7-10J. 

That, in fact, implies the use of the domain decompoeition method 

with one of the subdomaine unbounded. 

THE PROPERTIES OF THE BOUNDARY INTEGRAL OPERATORS 

We consider boundary integral equations obtained by a dire~t 

application of Green's fOrIDulae for harmonic functions in the spa­

ce Rn• Let a cLo sed Lyapunov surface r divide the .space R3 into 

two simply connected domains, ..o. i - the interior one and Sl - the . e 
exterior one, so that Sli u r U SL e = R3 and --O. e le unoeunded, 

Let us consider a problem (I) of determining a function.u.,( M), 

harmonic in one of the domaine..o.i or il , given the values o~ AA....­e

on the boundary I~ /Dirichlet problem/ or the valuea af ite normal 

'de rdva t í.ve on r /Neumann problem/. In the caae of the exterior 

prob-lem /SL / , we se t "uJoo) ;: O. We denote by a/dtn the deriva­e
tive wi th respect to the 1nner /in reepect to J2 i/ normal to the 

boundary I and set 

J 
V ( 5) = d..n fiA.., ( S) 1 SE f. 

Then therb holds Green'e formula 

((3 f + o( 1<) »-- (M) - IX' L V (M) z: OI ME: R3, ( 1.1) 

The parameter ex: ;; -1 correepondf!l to the interior problem; ex: =1, 

to the exterior problem. The value of j3 1& defined by the formula , 
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E ia the identityoperator and the integral operators K and L are 

defined by the relatione 

1< M.- =[1«1'1, p)M. (Ploq; =2~ f Co1r~PI1 ;;'p)»(P)Jõp ) 
r r pf'(I 

1 .f
L \I := ) L (M I p) V (P )dQp = 2ft 1ft N P 1-'\; Cp) cl õp 

Ir 
where IJL. MP I ia the euclidean norm of the vector JZ. MP ' connecting 

the pointe M,P, and I1Vp 1e the inner normal vec toor, Given the func­

tion V(M), M € r we obtain /from (1.1)/ the boundary integral 

equation for.JU- (M), M E r . 
Conaidering the two-dimensional case /the problem (11)/ the 

boundary integral equation for a harmonic function ~ may be deri ­

ved from (1.1) if the kernels of the operators K and L are defined 

by relations 
pI< (M, p) ==c.: kinx"(p 1'1)= _-1 ())1(/lPM ,m ) 

vt: O'm,.. > 5L I tip ;~Mpl 

LeM IP) ~ ~ ~Jt--1 (M) p) M, r e R'l-. 
~Jt. 

Axially symmetric harmonic functions ~ in the syace R3 with 

cylindrical coordinates satisty the equation 

~ é) ( ~) .3.2."u. (1.2 ) ? ~O.? ~ 9~~ f ~ =: O 

If we consider these functions, i.e. the axially symmetric harmonic 
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functione /the prob1em (111)/, then the boundary integral equation 

is 'obtained from ~.1) for the operatore K and L with the kerne1e 

r< (M )P) = ~ Ô~p G(M I p) , L ( M , P) == f G( M) ~) ) 

-1 J)(:GeMI p):= 5L R--1(t1) P, cp )dy; 1 M = (fi Z) I p= (~o,.to») 

o ~
 

R(M, p/ <p) =[ (Ã --?v l pl fu~ - 2 ffo C01 'f]
J. ~ . 

The boundary r in this case 18 the envelope of the original axi­

a11y eymmetric surface. 

The Neumann prob1em for each of the above-mentioned prob1~e 

(1).(11) or (111) 1eada to a prob1ea of solving an integral equa­

tion of the aecond kind 

te-« 1<) M (M) =-4J) ~""o(Lv(M)) M6 r) (1..3) 

and the Dirlch1et problem reducea to a prob1em of 801~ing an equa­

tion of the first kind 

L veM ) == <:D ) 
<P ~ (o( E + 1<) ~ (M) ME r. (1.4) 

We will not dwel1 oa the eubject of eo1vabi1ity of (1.4), we juet 
mention that theae questione are etudied in the papere [11,12] and 

that a stab1e algorithm in R2 i. suggesteq in [13J. The Dir1chlet 

prob1em can obvious1y be transformed into the equation 1ike (1.3). 

it ite solution i~ eought in the farm of the doub1e layer potential: 

,.() (M ) = fgm !L -.( ( M, P) i" (P) cl6 ) M, P (3 R3
)p 

r P 
where the unknown potential denei ty f" (p) eatis:riee the equation 

(E - o< t<) t- =: 1~M) M (M)) M 6 í) 

and j(M) 1e a given function. 

, Let etudy the equation (1.3) in more detai1. The operatore 
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K,L : t2(r}~ C(r) are bounded and K : o(r) -- cU') Ls comp1e­

tely continuoua •. There holde the fo11owing 

Theorem 1 [11). Given the prob1em (lI ar (III~ the operator L ie 

poeitive definite in L2( r ) . Given the prob1em (11) the condition 

L >O holde in the aubapaee (V,l) = O. 

Let us denote the deneity of Robin potentia1 by gO(M) /func­

tion go ia the density of Robin potentia1 when K*go : go' 
* .(go,gO) z 1. K ia the adjoint operator to K/. We give the connec­

tion between the conditione of eo1vabi1ity of the equation (1.3)
 

baaed o~ the Fredho1~'s theorems and the conditions impoeed on the
 

given function V = dM/dl"V [11,12].
 

Theorem 2.. Given ex ;: 1 the equation (1.3') has a unique solution,
 

and if(V,l);: O,then (,u,gO) ='0 which ie equiva1ent to .-u(oo) =o.
 

Now auppo se o< ;: -1. The:o fol!' any V E L2 (r) auch that (y,l);: O
 

the equation (1.3) haa a unique solution M.- € C(r) such that 

0. ,1) = O ar (..u ,gO) ;: O. 

The convergence of the a1ternating iterative procees ie baeed 

on ihe property 

Y.m 6'(1<.)= 0 ) õ(K) C (--1, t » (1.5 ) 

~(x) denotes' the I!Jpectrum of the operator K [14]. The number >. c 1 

i8 a eimple eigeaya1ue with the eigenfunction ~;: 1, and the fuac­

tion gO(M) fulfi1s the re1ations (80,1) ~ O, LgO = conet. And·besi­

de!, for both operator. K and K~, none er the principal vectora 

corresponda to t?e eigenvalue À = 1 [llJ. 

The convergence of the iterationa1 processes to the eo1ution 

of the equatiolll (1.3) 011' a coavex domain is guaranteed by the pro~ 

pe~ty of kernels K\M,P) to be nonnegative, K(M,P) ~O. In thie case 

the matricee approxiaatimg the integral operators have nonnegative 

e1ementa, too. 
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Let us consider a general approach to the construction of ite­

rative procedurea that solve the equation (1.3) without the preli­

minary àiscret~zation. This approach ia directly applicable to 

discrete analogues of (1.3) in the case of convex domains. We BUp­

pose that the primary space X =cCr) may be decompoeed into a di­

rect SUID of two subspaces Xl and X2' and that there i. a projector 

P mapping X onto Xl : PX =Xl. Then to find a solution we use the 

iterative process [15J 

.cc 
..H-

- ( E - AP ) - J(A ( E - P ) .a. -+ lp) 
I
A -= - D( J< (1.6)

~ k 

Here it 1e suitable to use as the subspace Xl the space on which 

is the operator E - AP easily invertible. As a eubset of the bound­

ary set that defines the projector P we may elect e.g. segmente of 

the boundary obtained by translation or rotation of its part, sphe­

re, Burface of a cylinder'or a parallelepiped with a square ae ita 

base lin R3/, perimeter of a cirele, boundary of a square /in R2/. 

or some other special surfaces. Examplea of investigatioDa of tllle 

convergence of iteratioDS (1.6) are given in [16J. 

·Now we restrict the equatioR (I.), according to the theorem 

2, to the invariant /wi th respect to KI eub sp ace Ela [..u/(.«,gO) ao}. 
Since from (gO,l)~O follows that ~ can be decompoaed 1nto a di­

rect sum X = El + R. we have for the spectral radiuB Õ(K-) loper­

ator K- ia the restrictioB o~ K onto E11 the inequality ()(K-) = 
= q <1. In an equivalent norm 11-11* frem [15J we then have 

/I K- 1/ ~ ~ q ... E. for arbitrary 811all é > o. Thil!l of eourlle i.çliea 

that for PX - EI the eimple iteration method (1.6) converges at 

the rate of geometric se rã e s , If the domain wi th boundary r ie a 

convex set then li - Ui( coincides with C-narm and we can set é =o. 

6 

When we have a convex aurface we may establish a sufficient condi­

tion for the convergence of iterations (1.6) that is weaker than 

(1.5). Briefly etated the condi tion saya that the number À -= 1 ie 

a eimple eigenvalue greater than any other, i.e. 

tYnQ X 1:\ I = q. < 1 (1.7)
Àecr-(K), ;>..J1 

It ·~olowe fram an integral analogue of Perron'e theorem for a com­

pletely continuouB oper~tor K with positive kernel and a fixed point 

K tU =li, "L.L = 1. This property pasees on to the matricea that ap­

proximate integral operatore. That is why the part of the fol1owing 

thaorem concerning convex surfaces holde for the /belo~ mentioned/ 

systeme of linear equations that approximate eq. (1.)), too. 

Theo·rem 3 [16J. Let PX - El and q < 1 Ls defined by (1.7). Then 

there existe an equivalent norm on E1 such that the pzoce ae (1.6) 

converges at the rate af a geometric eeries wi th the factor q + é, 

é >0 ia arbitrarily small. Let the Burface be a convex sete Then 

:for a projecto.r P sueh that PX C El process (1.6) converges in 

C-narro and 

" L/.k - M.- IIC ~ q"k 1/).1..0 - .u.. /lC ) C}1 ~ q. . 
Discretization o:f BIE (l~)) lon apecial eurfaces/ is pertormed 

via piecewise constant interpolation and collocation. Let us remark 

that when the point M lies. on an edge of the surface r the para­

meter oc in eq , (1.)) takee on the valuesnot equal to ± 1. Since 

th~ pointe of collocation do not lie on the edges this property of 

()( ie not put to use in discretiz.ation. Neverthelese, for piece­

wise linear base fUnctions changea required to compute the matrix 

:: L..u i <Fi (e), where criCs) 

~lementa are easily performed. N 

Let ua divide r into li parts: r =LVI ri ~ dia­ r i. ;- h :> 0, 
N 

and repreaeni M(s) in the fOrJa ,(..«(a) 
-<-=1 

ia the characteriatic function offi, i = 1~. 
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Suppose the centres of gravity of r i are the co I Locat í.cn 

points si. Then we get a aystem of linear equatiwns 

(C + o( 1<h) U ::: <..ph 

approximating eq. (1~3), where 

U'= (AJ.. 1 1, - ") ;lL I'J ) T 

1< h. -= { ~~i } 1 Lh = 
and 

lf-';. :: LI-. V ) (1.8) 

1) 
v= (V (S1), ... ,V(SN))T) V(S)=dU(S)ftM) 

{ t~i] ) -r:I N ) 

-!<.ij=SI«S"slr(S)dS, <=fU s, ,s)J(slds. 
r J r 

ITERATIVE NLETHODS FOR EQUAT10N (1.8) 

The choice o,f the methode dependa on the propertiee of the 

eyetem. One of the factors inf1ue.ncing the behavã.oux af the e,-stem 

ia structure of' matrlcea Kh and ~. For examp1e, the b10ck et:ro.c­

ture of matricee Kh'~ [2J, in the case the boundary r ia a cire1e 

or a square in problema (11),(111) and a para1le1epiped with equare 

basie [17,181 or a cy1inder in prob1em (I) shows that for specia1 

surfacea of the gl~en type it ia possib1e to attain significant 

economy in computationa1 resourcee. The resulte of these invest1­

gations enable for instanee to reduee essentia11y dimension of the 

array where the matrices ~,~ are atored, or to use faat a1go­

ritbms based on the Fourrier tranaform to multip1y these matricee 

by a vector /here comes into p1ay the Toeplitz b10ek structure of 

these matricea/. When we consider also the spatia1 symmetries 

laaymmetriesl of r we may 10wer the number of unknowns of the 

system (1.8). 

~ Let A denote a matrix Kh for any of the above-discussed 1­

aurfaces and 1et the dimension of the prob1em with this matrix 

be N. Equation (1.8) wi th i ta matrix of the syatem E + A 10(= II 

ls Bo1ved by the sp1itting method for the nonse1fadjoint operator 

B = E ... A 

kB~(Uk.d _ U k ) '" i ~ (B u - \fJ ) 
} 

(2.1 ) 

where 

5 oc; ~ CE -I- e 1<4 ) ( E+ ~ 1<.2.) ) B", J< 1 -+ K.z . (2.2 ) 

Lower and upper b10ck-triangu1ar matricea K1, K are ae1ected so2 
as to have K1 =E + K3, K3 ? C and to enaure the invertibi1ity of 

their diagonal bloeka. For ~lready 1isted apecial 8urfaces the 

matriees K1, K2 with mentioned propertiea can be constructed [2, 

18J. Optima1 specification of the parameter ~ is done in practice 

with the he1p of numeriea1 experimento Confidence in thus defined 

~ stem f~om the fact that the spectra1 radiua of the itera~ional 

operator ia virtua11y independent of the diacretization step and 

ia determined on1y by a geometry of r. It therefore suffices to 

perform a few computations on a low-dimeneional ~rid. The conver­

genee of the process defined by eq •. (2.1) for convex surfaeee ie 

eatab1ished in [2,18J. 

When we take into aecount the spatia1 aymmetry of r we solve 

eq; (1.8) by a Seide1 method to get 

B ( U k-t~ _ Uk ) '" - (E --I- A) Uk 
-t 4J. (2.3 ) 

The ana1ysia of convergence can be found in [2,6]. 

We wi11 now give an examp1e of numerica1 computatione per­

formed on EC-10Gl ueing FORTRAN programa intended for ao1ving eq. 

(1.8) by the above-mentioned methods. We have uaed the prograrn 

solving ElE on the surface of a paral1e1epiped with square as ita 

baeie. Given below in Tab1e 1 are the resulte of computations and 
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fundamental characteristics of an algorithm for a sequence of three 

grids that have been constructed on the surface r =an , where n 
denotes a cube with an edge a.9. As a test function we have used 

the harmonic function .M-(M) ::: IM - Mol-l , MO E n. The grid W k' 

k ~ 1,3 is defined by Pk points on every edge of the basia 

k-l i t .Pk :: P ,PO=4, and qk po n s on every edge. pe.rp endã.cu'l az- to the02 
basia, qk = q02

k-l, qO=16. The dimension N of the problem is theJl 

N ; N(k) = 2Pk(Pk+ 2qk). AlI computations have been done double­

precision. Indexed letters TK, T~ denote the computation timeTL, 
/see./ required to compute the matrices Kh , ~ and ~ =LnV in that 

order, and T denotes the time /aec./ needed to solve the eystem 

(l.S). Letter G denotes the general case of the iteration method 

(2.1) and S denotes the special case, where the iteration method 

(2.3)was constructed taking into conside~ation three planes of sym­

metr.y fo~ rJ. The number of i terations of (2.3) till the relative 

accuracy 10-4 for S is not reached and the number of iterations of 

(2.1) till the absolute accuracy 10-4 for G ie not reached in both 

caees on the grid 6J k i8 denoted by Nk• 

Table 1 

W k '1'K TL TlfJ 'r Nk 

S 1.65 1.20 0.33 6.14 8 
4:x4x16 

G 1.65 1.16 4.28 29.0 4 

S 12.1 S.59 2.49 33.4 5 
8:x8x32 

G 12.6 8.63 32.6 160.1 3 

S 99.5 65.6 20.4 331.0 4 
16rl6x64 

G 112.1 65.2 290.1 1312.0 3 

10 

The use of Richardson'a extrapolation on the given sequence 

of grids has given an additional improvement of effectivity of the 

computational processo,. 
The estimate of the computational time T to solve the problem

i 
\! (l.S) on the grid 604 of dimenaion 32x32x12S with the. symmetriea
• taken into account ia about 48 mino 

Note that the dimension of the syatem (l.S) on the grid uU ie 
3 

N(3) =460S, and the time of solution ia cca. 22 mino /for the ae­

curaey ? 10-4/ . Estimates /rox EC-I061/ show that more than 200 

houra woul~ be need~to solve a aimilar system by the Gauss method. 

APPLICATION~ IN MAGNETOSTATICS 

Economieal algorithms for solving BIE on special surfaees [S, 

17.18J ean be used in magnetoatatics to restrict the domain of in­

vestigation for two- or three-dimensional problema involving sealar 

potential. Effieient application of BIE ia possible also when a 

yeetor potential is uaed in two-dimensional problema [7J. 

Coneider the eystem af Maxwell' a steadY-Btate equations for 

isotropic medium : 

45r . 
)to:+, H = C J --&'/}?'V t-l ( M) =- O ) 

(3.1)1\'-11-4> PC 

dCv- B = O B=f(IHI)~ ) 

with the eonditione at the boundary between different media: 

m . "( B.z. - 6 ) == O /11. X (1-11. - 1-/1 ) := o. (3.2) 
1 

Problem (3.1)-(3.2) ia traneformed into a problem of finding 

two scalar funetione <fI and ~ defined by 

H := H
D 

- rz.-ad. ~ M ç; f2./.'I . (3•.3) 
~=-~QJtft H G JL,ú. 

II {. 
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where JL
l 

U ~ u f2~= R3, ? =1, 

by the formula J (n \) _ ~ do >< I""" - R 
1-1,,(M) - C v ' I R - R,\3 

M E 511 , 

d Vi 

and HO is defined 

I 

• 

Gu: :::: 4J(M) I ME n) LL (~)Ir = A.'/'(~) ) 

Algorithmlo Givem an approximation..ú,k (}) we compute..u.. k+1(!} 

eucceeeive1y eo1ving the fo11owing equatione. 

T:he functions ~1' ~fL satisfy equations 

d-t-v-(t-(I tp-ad Yf- I )~d reuJ =O J M 6 Q!'-) 
.6 Cf

1 
=­ O, <-f-1 ( (0) = O) H 6 S2~ ) 

(J.4) 

•, I 
" vk+1 =d,uCtJ 1 % =("- (I qj<.Cld .u: (5) I) V k+~ 

Offl. d' 

( E" + 1<) ÁÁ-
k + 1/2 _ L~ ::= O I 

(J.7) 

with conditions on the boundary r~ M. 1< +1 = (ti .; -t. )Á./.. k .s: ~ A.A-k ~ 4/.2. 
) 

O< ./{ < -I. 

~:: - /' O'f'-ad ff" I) ~;;: 

~(p)-' <Pt'(p)~ Sã" f-ioJ~ 1 

+ (H o I Ih) z: o, 

?E r("-j ÕE Ç-t, 
(J.5) 

One etep of this -prooe ae correeponde to solving the Dirich1et prob­

1em in rl and to solving the integral equation at the boundary 

for the extexior Neumann prob1em, with a subsequent re1axation. 

where O la a continuoua curve connecting po í at e PO' P & Çu • '.fo 

account for the condition f 1 (00) =O we use a boundary integral 
ligari thm 2. Given an approrlmation ,.u.k(J)' ~ E r, (,uk, ~) =o 

we compute ~k.l(j) Buccessive1y solving the fo11owing equations. 
equation (l.J). 

Let f1 be a cy1inder or a paral1elepiped with 8quare basis (E + 1< ) J< - L v J< 4 1 :: O) JE r J 

and.suppose that n contaiJ:ls the domain [2~, i.e. ri:; DrU UD, 

whfre. D =nn il l o Now we coneider a ~oundary value problem, 

equivaleat to (Jo4)-(J.5), for whlch the equation: 6. <r1 = O is de­
{ 

G,u.. =: 4J ( M ) I 

(. M I ~ o ) ":= O) 

'\ -1 4 
(jti -=t- (Ifad ~.ll) vk + ) 

am. 
,M. k -+ -f/.:t =..u. ( S) ) 

n G n J 

(J.8) 

fined on1y in domain D, and the conditlon 
--u.- k-+1 = (-1- ·AJ M.,k+

1/2 ~ J. Á.A.- k.) o < ~ ~ 1. 
,1/ (E - 1< ) Cf> -- L ~fJ = O 1'1 E" r 

-1 olYV 

halda at the exterior boundary r . We denote. 

(J.6) 
Here we solve the Neumann boundary va1ue problem with the operator 

G in n , provided (M ,gO) a O /thia 1e equi'Valent to (LI.. ,1) = 01 

M (M) = {Cfft­ 1 M e D.f.J. ) 
ep~ ) H ~ D-:: n (1 J1;{ 

Let us auppose that eqs. (J.4),(3.5) define on rl li differen- It ie important to notlce, that after the syetem (3.4)-(3.6) 

and BlE at the boundary r for the exterior Dirichlet prob1em with 

re1axation. 

tia1 operator UM. Then, jUBt as in the papere [7,8,17J~ one of has bee~ diecretised, the rate of convergence of a1ternating iter­

tUe fo11owing iterative processes can be eaployed to solve the ative processes (J.7) and (J.8) practica11y does not depend on the 

eyatem (3.4)-(3-: 6). 
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dil!!cretization at ep , i t depend.- onl.y 

the geometry of domains.,Çt and F'l , 
li 13 

on the function f'l(t) and on 

~ 



The questiona of solvabili ty for nonline.ar aystema (J.4) - (J.6) 

in Sobolev spaces and verification of convergence of i terative pro­

cesses (J.7), (J.8) have been studied in [19~lOl. Numerical 

examples illustrating Bolutione of the combined syetem (J.4)-(J.6) 

using BIE on special surfacea may be found in [2,18,19J. 

Considerable part of results that have been described in here 

can alsa be applied to a wider class af problems that appear in 

mathematical p~Y8icso 
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