

объядинвнный институт ядерных исследований
 дубна

567

E11-87-367

B.SYowitski

SIMPLE STATISTICAL MULTIVARIATE APPROACH

 TO WEAK SIGNALS EXTRACTION

 TO WEAK SIGNALS EXTRACTION}

Submitted to the Second International Tampere Conference in Statistics, June 1-4, 1987, Finland.

1. INTRODUCTION

Numerous methods of applied statistics are widely used in many fields of knowledge and practice. In high energy physics where experimental devices and their operation are especially expensive, convenient selection of the most effective approaches to analysing data is very important. On the other hand, a discussion of concrete examples being drawn from different domains and illustrating great necessity of statistical treating of empirical data can stimulate in the first place the development of such methods which have direct practical significance.

The paper contains two examples of simple application of some elements of the multivariate analysis. In general they concerns a problem of a detection of weak signals accompanied by a substantial background.

Let us consider a situation, typical enough in experimental high energy physics, when heavy relativistic fragments (protons, deutrons, tritons, alphas) emerging from inclusive nuclear reactions are detected by an electronic device (see, for example, /1-3/2 If alphas are used as impinging particles and light nuclei as a target, then protons and deutrons are predominantly emitted particles. So, heavier secondary fragments which are of great interest too, produce very small signals and their indentification is a problem equelly important as difficult.

Relativistic fragments can be in principle identified by their electrical charge 2 (latter: charge) and rest mass M(latter: mass). Information about a charge can be drawn from the ionization effect registered using scintillation counters (SC) as a random signal of the amplitude $A_{j} \sim Z^{2} / 4 /$. Hence for each Z (being equal to 1 or 2) and each i-th SC we have the (Gaussian-like) distribution $f_{Z, i}\left(\Lambda_{j}\right)$. Furthernore the particle mass M is easy to estimate by means of the measuring of time-of-flight of the particle penetrating through the k-th couple of counters. Then we have again, as above, the (Gaussian-like) distribution $f_{M, k}\left(M_{j}\right)$ for particles of a given kind. Remark must be made yet that the mass M is to estimate after the particle charge 2 is established only, because In this case at each Z value there are different M_{j} - distributions. Our goal is to determine from sample the composition function $\sigma^{\prime}(Z, M)$ of secondary particles when in each j-th event (i.e.

Por each particle) are detected n independent random numbers $A_{j}^{(i)}(i=1, \ldots, n)$ and some signals allowing us to get I independent as well random numbers $M_{j}^{(k)}(k=1, \ldots, 1)$ if the particle charge Z is found out earlier. Numerical analysis has been performed using experimental data obtained by means of the MASPIK spectrometer of JINR $/ 3 /$, where $n=5$ and $1=2$. As follows from the above discussion the problem under consideration may be solved by the two-atep method: 1) charge determination, and 2) màss determination.

2. Charge determination

As has been pointed out previously in each j-th event 5 amplitudes $A_{j}^{(i)}$ are registered for a particle having the charge Z and the mass \mathbb{K}. Because predominantly light component is created in the reaction of alpha particles with light nuclei at $4.5 \mathrm{GeV} / \mathrm{N}$ then $\mathrm{A}_{j}^{(1)}$ - distributions, experimentally obtained, correspond practiosily to one-charge particles, i.e. those having $Z=1$. Similar distributions for $Z=2$ one can get by different ways, but simplest one and correct enough is to produce them from those at $Z=1$ taking into account that $A_{j}^{(1)} \sim Z^{2}$. So, in principle it is possible to aeparate secondary particles by their charge at the acceptable algnificance levol (SL). For this purpose, as usually, it is necessary to choose for each so a desired value of SL associated with the one-tall test with critical region on the right for the $A_{j}^{(1)}(2 a 1)$ - distributions and to estimate appropriate probabilities of a Type II error (one-tail test with critical region on the left for the $A_{j}^{(1)}(Z=2)$ distributions). Figure 1 shows the $\mathbb{A}_{j}^{(1)}$ - distributions for all 5 SC abtained at two different conditions of SC operation (solid and dashed histograms). These conditions can be (qgacribed by means of the variance coefficients (VC) $x_{i}=\frac{\Delta A^{(1)}}{\bar{A}^{(1)}}$, where $\Delta A^{(i)}$ is the standard deviation and $\bar{A}^{(i)}$ is the average value of the relevent $A_{j}^{(i)}(Z=1)$-distribution when random amplitudes $A_{j}^{(1)}$ satiaiying the condition $A_{j}^{(1)}<3 \cdot A_{o}^{(1)}$ are taken into account only ($A_{j}^{(1)}$-distribution attains ite maximum at the value $\mathbb{A}_{0}^{(i)}$). In Pigure $1 \mathbb{A}_{j}^{(i)}$-distributions on the left correspond to the hypothesis 2 a 1 and those on the right have been obtained using the condition $A_{j}^{(1)} \sim 2^{2}$. Arrows ahow (for both values of x) three va-
lues of $\dot{Q}^{(1)}$-quantiles: $Q^{(1)}=$ $2 \overline{\mathbf{L}}, Q^{(2)}=2.5 \overline{\mathbf{I}}$ and $Q^{(3)}=3 \overline{\mathbf{L}}$, which are of practical interest and essociated with admissible values of probabilities $p_{Z}^{(1)}$ of both types error $\left(P_{2=1}^{(1)}=10^{-2}+10^{-3}\right.$ for a Type I error and $\mathrm{P}_{\mathrm{Z}=2^{(1)}}^{(1)} 10^{-1}+10^{-4}$ for a Type II error, relevant to each 1-th SC and two hypotheses $\mathrm{Z}=1$ or $\mathrm{Z}=2$ corresponding-
 $\bar{A}(5)$) and $Q(1)$ means therefore 5-tuple criterion as well, i.e. $Q^{(1)}=\left(Q_{1}^{(1)}, Q_{2}^{(1)}, \ldots, Q_{5}^{(1)}\right)$. So, since all 5 SC are strictly mutually independent we have ${ }_{5}$ for the set of these $S C \overline{P_{2}}(5)=\prod_{\bar{D}}^{5}(5) P_{Z}^{(i)}$. Numerical values of $\frac{2}{P_{Z}}($ for both types error are given in the Table (we stress that a Type I error is associated with the hypothesis $\mathrm{Z}=1$ whilst a Type II error is connected with the alternative hypotheBis 2 た 2).

We can see that the 5-tuple criterion only juat discuesed is very effective one: it

Figure 1 makes possible to achieve particle aeparation by their charge Z if the ratio $r=\sigma(Z=2, M)$, $\sigma(Z \times 1, \mathbb{M})$ is such small as about 10^{-14}. Nevertheless, this criterion is sensitive enough with regard to operation conditions, 1.e. It markedly depends on x. Therefore it is of interest to consider another combination of five amplitudes $A_{j}^{(1)}$ as rapaom variables and in the first place the simplest one: $\bar{A}_{j}=\frac{1}{2} \sum_{i=1}^{5} A_{j}^{(1)}$ and relevant averaged amplitude criterion. Numerical reeulte for \bar{A}_{j}-distribution and two hypotheses ($Z, 1$ and $Z=2$) as
well as two x coefficient values（ $x_{1}=0.30$ and $x_{2}=0.53$ ）are com－ pared in the Table with similer data concerning 5－tuple crite－ rion．One can conclude that although the criterion based on ave－ raged amplitude is more stable with regard to x changing，it is by a factor of even about 10^{10} of magnitude less effective than the 5－tuple one．

Table

Numerical values of the probabilities $\bar{P}_{Z}^{(5)}$ for all SC and \bar{P}_{Z} （determined for averaged A_{y}－distribution）associated with Q－
quantiles and two alternative hypotheses：$Z=1$ and $Z=2$ ．Results are quoted for two samples of former empirical data relevent to different SC operation conditions which are characterized by the variance coefficiente x_{1} shown in Figure 1．Here $x^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{5}^{(k)}\right)$ ， $A_{j}=\left(A_{j}^{(1)}, A_{j}^{(2)}, \ldots, A_{j}^{(5)}\right)$ and $Q^{(1)}=\left(Q_{1}^{(1)}, Q_{2}^{(1)}, \ldots, Q_{5}^{(1)}\right)$ ，each $Q_{i}^{(1)}$ being equai to：$Q_{1}^{(1)}=2 \bar{A}_{1}, Q_{2}^{(1)}=2 \bar{A}_{2}$ ，etc．， $\bar{x}_{1}=0.30 \pm 0.05, \bar{x}_{2}=0.53 \pm$ 0.06 ．

P_{2}	$x^{(k)}$	$Q^{(1)}=2 \bar{A}$	$Q^{(2)}=2.5 \pi$	$Q^{(3)}=3 \bar{A}$
ヘ⿵冂𠃍冂ํ	$x^{(1)}$	1． $1 \cdot 10^{-10}$	$0.9 \cdot 10^{-12}$	$2.0 \cdot 10^{-14}$
$\underset{10}{0}$	$x^{(2)}$	1． $1 \cdot 10^{-7}$	$6.0 \cdot 10^{-9}$	$4.0 \cdot 10^{-10}$
$\overline{\mathrm{V}}$	$\mathbf{x}^{(1)}$	$1.0 \cdot 10^{-16}$	1．2． 10^{-11}	$1 \cdot 2 \cdot 10^{-7}$
Cin	$x^{(2)}$	1．0． 10^{-10}	3． $1 \cdot 10^{-7}$	2．0． 10^{-3}
র্ত্ট	\bar{x}_{1}	$(1.1 \pm 0.3) \cdot 10^{-2}$	$(4.4 \pm 2.3) \cdot 10^{-3}$	$(2.3 \pm 1.9) \cdot 10^{-3}$
$\underline{1010}$	\bar{x}_{2}	$(4.5 \pm 1.9) \cdot 10^{-2}$	$(2.5 \pm 1.0) \cdot 10^{-2}$	$(1.4 \pm 0.6) \cdot 10^{-2}$
	\bar{x}_{1}	$(2.7 \pm 3.6) \cdot 10^{-3}$	$(0.6 \pm 0.2) \cdot 10^{-2}$	$(0.9 \pm 0.4) \cdot 10^{-1}$
$\begin{aligned} & \text { y̌a } \\ & 18 \text { Nid } \end{aligned}$	\bar{x}_{2}	$(1.6 \pm 1.8) \cdot 10^{-2}$	$(7.9 \pm 7.8) \cdot 10^{-2}$	$(3.1 \pm 1.8) \cdot 10^{-1}$

3．MASS DETERMINATION

If the charge Z of a registered particle has been establi－ shed yet as discussed previously，its mass M can be already esti－ mated correctly．So，we have two values of M（ m_{1} and m_{2} ）for each particle which are measured independently and defined by charge as well．Then the problem arises again to build a criterion，suffi－ ciently effective and simple at the same time to be used simulta－ neously when an experiment is in action，which enables us to sin－ gle out reliably enough the particles being produced with very small probability．It is evident that a criterion based on univa－ riate statistic is too flimsy．To make sure of this let is look at Figure 2 （upper part）where an empiric mass distribution for a sample of size $N=4 \cdot 10^{4}$ of former experimantal data is drawn．On the x axis values of m_{1} are marked since they are measured with better accuracy than similar m_{2} values．We can notice that only protons（p） and deuterons（d）placed with－ in central parts of relevant distributions are to be simply separated in this way whereas other particles（ t ，alphas and nuclei of ${ }^{3}$ He）are sinked into complex background originating mainly from long tails of p and d mass distributions．Therefo－ re it is useful to consider a 2－dimensional distribution（or scatter plot）of events consis－ ting of points（ $m_{1}^{(j)}, m_{2}^{(j)}$ ） whose coordinates are measured vaiues of m_{1} and m_{2} ．As an il lustration in Figure 3 it is shown the plot of such kind for particles having $\mathrm{Z}=1$ ．One can see that as expected the majo－

rity of points explicitly concentrate within elliptic surface, like the 2-dimensional Gaussian distribution of uncorrelated random variables, i.e.

$$
\begin{equation*}
\left(\frac{m_{11}^{(j)}-m_{1}}{\sigma_{11}^{\prime}}\right)^{2}+\left(\frac{m_{21}^{(j)}-m_{1}}{\sigma_{21}}\right)^{2} \leq p^{2} \tag{1}
\end{equation*}
$$

where M_{1} means exact value of the mass of particles of 1-th sort, $\sigma_{11}\left(\sigma_{21}\right)$ is the standard deviation of the central part of associated $m_{11}\left(m_{21}\right)$-distribution, 1. e. when $\left|m_{k i}-M_{i}\right| \leq p \cdot \sigma_{k 1}$ ($p \cdot \sigma_{k i}$ being of the order of the proton mass), $k=1$, $2 ; \mathrm{p}=1+3$ depending on desired value of a significance level/5/. Nevertheless, we

Figure 3 can also perceive two long belts of the width of $\mathrm{p} \cdot \boldsymbol{\sigma}_{11}\left(\mathrm{p} \cdot \sigma_{21}\right)$ along the $m_{2}\left(m_{1}\right)$ axis for each sort of particles. If we compare both of mass distributions (see Figure 2, upper histogram, and Figure 3), we shall ind that just these belte determine lower limits of ocourrence frequancy for particles heavier than deuterons if an analysis is carried out, for instance, using an univariate approach only. Accordingly, the inequality (1) treated as a selection criterion of particles should be complete by adequate additional condition:

$$
\begin{align*}
& \left.\left(m_{1}^{(j)}>p \cdot \sigma_{11}\left(m_{21}^{(j)}\right)-u_{1}\right) \leq p \cdot \sigma_{21}\right) \\
& \left.\left(m_{21}^{(j)}\right) p \cdot \sigma_{21}\left(m_{11}^{(j)}-u_{1}\right) \leq p \cdot \sigma_{11}\right) . \tag{2}
\end{align*}
$$

Now we can apply this complex criterion, 1.e. ((1) or (2)) as a aelection rule to single out from a sample, in particular such particles whose production probability is very amall in comparison with others. The result of such a selection is shown in Figure 2 (middle and lower histograms).

Finally, we have to eatimate an efficiency of the method. For this purpose one can oalculate from a sample of experimental data an admiasible minimal value of the ratio y $\mathrm{a}_{\mathrm{o}} \sigma\left(\mathrm{Z}_{n}, M_{n}\right)$, $\sum_{m n} \sigma^{\prime}\left(z_{m}, M_{m}\right)$ for particies of the $n-t h$ sort being of interest and produoing very small signal. Qualitatively this can be done by means of the inequality:

$$
\begin{equation*}
y \geqslant \sum_{m \neq n} \alpha_{m} \cdot \beta_{n m} \tag{3}
\end{equation*}
$$

Here α_{m} is the aignificance level associated with a mass distribution of particles of the n-th sart, and $\beta_{n m}$ is the probability of a Type II error, i.e. when a particle of the m-th sort is taken as a particle of the n-th sort. Numerical values of these probabilities (α_{m} and β_{nm}) can be estimated directiy from the (m_{1}, m_{2}) acatter plot as shown in Figure 3. In the case under consideration (see Figure 3) we can get for y, using our complex criterion ((1) or (2)) at $p=3$, the value significantly amaller than 10^{-6}. Therefore the mass diatribution for tritons (middie histogram in Figure 2) is practically without background. The same concerns the lower histogram (Figure 2), too where mass distributions for particles with $\mathrm{Z}=2$ are displayed.

4. CONCLUSION

The particular case taken from experimental high energy physics and described in the paper proves that the multivariate approach to analyaing data, whenever possible, may give an apprecieble advantage over the univariate one. This remains true even if measured values taken as random variables are correlated to a certain degree (see, for example, /6/). Moreover, often it is not necessary to use more complicated or sophisticated statistios as selection criterions (teste) whose power may turn out remarkable amaller and their application may cause in practice even some difficulties (as, for instance; ω^{2} statiatic in $/ 5,6 /$).

Some numerical results used in this work have been published earlier ${ }^{/ 4-6 /}$.

aCKNOWLEDGEMENTS

I wish to express my appreoiation to Professor M. G. Meshcheryakov for his permanent interest and enoouragement.

REFERENCES

1. I. M. Anderson, Jr., Ph.D. thesia, Lawrence Berkeley Laboratory Report LBL-6769, 1977; L.M. Anderson et al. Phys.Rev.C, 1983, v. 28, N. 3, p. 1224.
2. V. G. Ableev et al. JINR, 13-10568, Dubna, 1977
3. L. S.Azghirey et al. JINR, D2-82-568, Dubna, 1982, p. 83.
4. B. SLowithaki et al. JINR, P10-86-831, Dubna, 1986.
5. B. SLowingki et al. JINR, P1-87-51, Dubna, 1987.
6. B. SLowinski et al. JINR, P10-86-832, Dubna, 1986.

Простой многомерный статистический подход
к выделению слабых сигналов
Описаны два примера применения многомерного анализа данных. Эти примеры довольно типичны для экспериментальной физики высоких энергий. Они иллюстрируют преимущество дажє простого многомерного статистического подхода к анализу численных результатов, если такой подход возможен, по сравнению с одномерным подходом. Показано также, что такой подход может быть построен в виде ңабора простьх и быстрых процедур, пригодньх для работы экспериментальной установки на линии с вычислительной машиной.

Работа выполнена в Лаборатории выпислительной техники и автоматизации ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Słowinski B.

Simple Statistical Multivariate Approach to Weak Signals Extraction

In the paper two examples of application of the multivariate data analysis are described. These examples are typical enough for experimental high energy physics and illustrate an advantage of even simple multivariate appro ach to analysing numerical results, whenever possible, over the univariate one. It is pointed out too that such approach may be constructed as a set of simple fast proce dures suitable for using when an experimental device operate on-1ine with a computer.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

