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Introduction

Consider the integral equation formulation for the solu-
tion of the magnetostatic problems., Let B(X) is the magnetic
induction at the point X, H(X) is the magnetic field inten-
gity, M(X) - magnetization of the 1ron,/u(!§65)') is the
permeability, H°(X) is the intensity of the magnetic field
due to the currents, calculated by Bio-Savarre law., Let G
is the region, occupied by the iron. The integral equation
formulation of the magnetostatic problem in three dimensions
is [1]:

A(a) = B°(a) + %[éﬁﬂ Uy = olvx] <P

Ki dd
The field vectors H,M and B are related by the fol-

lowing equations

Hi) 7:,-/&{({2(3‘):) . )

2 (3

where /Mo is the permeability of the vacuum,
In two dimensions the equation (1) is reduced to the

following form:

A= H@ - Z ((ra@), % biE-8)dSz . @)
G
For the axisymmetrical configurations equation (1) be-
comes
@)= @) - % ((Aa), fE,a) mdwde, - )
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where the components of the vector T = (F1, Fa)T in (5) are:
Tis /m %
n -
F = .‘i [ 3z ("‘i + 1z — 2% s 5P + (25 '%a)z) _74/1/’ )

2 -
R R R O I 2
N <
c
Later on we shall assume that if we consider the intensity

H = H(B) as 8 function of B, the next inequality is valid

»H (6)
OZ_OLQ/UO 6 < i)

where o is a constant different for the various types of the
iron and does not depend on H and B. As a rule this inequa-
lity is valid. The magnetization ¥ has finite module
M| £ Mpax , @
where Mmax corresponds to completely saturated medium.
Suggesting B2 2;B1 we obtain
2
o
Mo IM(B)-M(B,)[=| T(i'/“c SE@)di]<(-) (B -Bel . (8)
By
Hence, any B1 and B2 satisfy the inequality
/‘«“e}M(&z)— M(-BJ-)’ ég IB. —8-‘—’) @
where g< 1.
The following lemma from [2] is velid:
Lemma 4

Any ﬁa and ﬁé satisfy the inequality

Mo | M(B) - F'I(-éi), £g ‘B—z’éi/') (10)
where 0%§< 1.
Consider the discretization investigated in [1] .
According to it we must divide G, into subregions Gi
N
G==&QG5 >

G, N GJ' =0, where 1 # j.

Define Ei as a centre of mass of Gi
§EEJV§

a =&
‘- o Jdvg ?
G,_

[

i=1,2,0ee,N.

Ve assume that MN(X) is a constant in each G; and
equal to ﬁi. Then the discretization of (1) is described

in the following way

. — _ N _ R
A, = A%@.) + %7& P S(M v —i——)otvijj ,  an
G
i = 4,2,¢04,KN.

In two dimensions the discretization of equation (4) is

given by the expression

H, - i@y - Z_VEQ[Z’}I Smjlv“ en;zz-d;)dsi_‘}/ ,  Gp)
J- C"’G 5:&,—, .

i=1,2,...N.
In axisymmetrical case the next approximation for iR
is used in [3]| for the discretization of the equation (3).
In each subregion M (M1,M2) is approximated by

Ml’*’ M"LL)

SIE

My = M
where r; is the r-component of a in cylindrical coordi-
nates, and Mi, Mi are constants in Gi' This approximation
is used in order to keep a continuity of M at r=0. Using
the method of collocations we obtain the following discreti-

zation of the equation (5)

- - _ e N | o~ o [P
o= i) % o émi g ﬁz(x,ahnéﬁ;(z,a))z;d?;da-/ ,(13)
. ﬂ=a“

J
i=1,25004,Ne




In this paper the problems, connected with calculation

M dz
of matrix coefficients of the discretized systems (11) - (13) [-A‘J—I = qr £(§ (#,U ( )'zld?" ] a-a ) (1.4)
and the solution of the nonlinear discéretized equations,
. . . T o = = T
are investigated. where Ulx,a)= (F(Z,n) '% y R w) -
Assuming that (7) is valid we obtain the following
1. Properties of Discretized  Operators theorem [4].
Let Theorem 1
= (Bi)BL,...)BN) , The discretized system (1.1) is solvable.

AB)= (FE),ME,..., FBy)

Proof
= (F¥%a9, H(@), ..., H¥(an)"

Consider the operator

3 A /\S e ”~
. = — 1(B) )
Briefly the systems (11) - (13) are described in the F'(B-) (H [AJM( ))/40'
N v
following way then F is continuous and maps R3 into R3 in three di-
A A A A N
/\_%— = H‘v+ ([Aj +[E_]) M(B)) (1.1) mensional and axisymmetrical cases, and Rw , into Ri
3 N .

two dimensions.

- . s 2 :
where [A is the block, consisting of the N“ matrices [A. . -~ A A
(4] [ lj] Consider the ball U= {B. 71;{13[!4]’“3”*”[’],”]‘Co’_k,

[Au] ...... LA&N]

A ' where Cc= SUP| ;"\“ « From the condition (7) we get: (e<vo.
[ J= . ) The operator F(ﬁ) transforms the convex U-set into itself
- [ Anvs] [ ANN] y
P U -
and [E] is the identical matrix. ‘ The U-set is compact, hence, the Schauder's principle [5]
For the equations (11) [Aij]_ Ais the matrix of 3x3 is applicable. The operator F(ﬁ) has an immovable point
dimensionality: and the theorem 1 is proved.
. _ Congider the continuous operator from the right side
[Ay]#H= «%‘;} [ S(M Va /x—L‘a'—,()deJ/__aj (1.2 5 of (1)
For the system (12) [f\i;_‘,]] is the matrix of 2;(2 dimen- . AUVU: %‘[ S(M(@ ' 'F' Jd\' ] (1.5)
sionality: The theorem from [6] takes place:
[A;]M=-T= J(H, V-enla &l)dS J[ 5 Theorem 2
a;
‘ 1l The operator A is:

And, at last, for the system (13) Ai.j is the matrix (i) bounded with ”A“G:i;

of 2x2 dimensionality (if) self-adjoint;

(iii) negative semidefinite:




(Al#@),M), <0, (1.6)

with sup (ALL,M\=0 . (1.7)
fiFig=4

The validity of this theorem for integral operators
from (4) and (5) can be shown as in {6] .
In this paper we propound the hypothesis that discreti-
Zed  operators [A] from‘(1.1) have similar properties
namely: the spectrum of [A] is real and belongs to inter-
val [-ﬂ,OJ . The numerical experiments confirm this assumption.

If the stated hypothesis is true we can prove the theorem:

Theorem 3

The system (1.1) has & unique solution.

Proof

A

Let the system (1.1) has two several solutions B1 and

e
- Bye From (1.1) it follows that:
A N ~NA A A
B~ By, = Mo ([AD+ [E]) (M(B2) -M(Ba)).
From this expression, taking into account the agsumption men-
tioned before and the result of the Lemma 1, it follows that
A A A~ A A A A A
180-Roll < o I F(BL)- M (B < g 1By -Ball.
~ N

From the condition g < 1 we obtain Bq = B2 « The
theorem is proved.

The problems, connected with the uniqueness of solution
for the other discretizations of continuous equations, are
considered in [2] .

Let us verify the condition (1.7) for the discretized
operator [AJ from (1.1) in two-dimensional problem.

Let the region G is divided into triangles [Gi'g in
the following way: if 1 A j the triangles G; and GJ

may have a single common point, or a single common side,

or they do not cross each other. Let [A] is the discreti-

=

zed operator, which is defined by the expression
~_ A N —_—
Vs 3 T A —
[A]M=«§L = é(Mi,Va nxz-al) el Sz , (1.8)

[%

where 2@ 18 an arbitrary point (5,556'{ ; L=i>‘2>--')~)-
Let 1§j] is the set of Bllverticesofthiwfriangleﬂ Gi’
{?&} is the set of the internalverticesand,{'ﬁ;} is the set
of the boundary vertices. One defines some function ¢ @i)
which is continuous on G, linear on each triangle. Gy and
constant on the boundary of G. One may consider the follo-

wing vector function M(X)

ME) = 2—‘; €y - 2—;% €. = Wh(es (D), 1.9)
where 61 and éé form a system of orthonormal vectors;
x and y are the corresponding coordinates of the vector X,
and 53 =[egxey].

Obviously, M(x) is a constant on each G+ According

“to [7], the following theorem holds:

Theorem 4
Operator [A] from (1.8)
on vector M(x) from (1.9): [Z]ﬂ(i)i 0.

identically equalg to zero

Proof
Let M, ie the value of M(X) on G. From (1.8) it
follows that N
[AJM =L &[(ﬁx,ﬁ(i))va@lﬁ‘il]df& s (1.10)

by}
Py
where n(X) is the external normal vector for Gy

Let L, is the internal side of the triangles {ck%

1
with the vertices §j1’ ?52, which belongs to triangles
Gi1(Pj1’ sz, Pj3) and Gi2<Pj2' ij, Pj4) (£ig.1)
Let T 1is the external normal vector for qu on Li!

then -8 is the external normal vector for G12 on Li‘

Integral on Ly from (1.10) equals
4 Y M. X —-a — 1.11
A (517, Fo)) % tar-aldls (1.11)
L‘ '
7




Illustration for the proof
of the Theorem %4,

Fi

Then we shall prove that (&, (ﬁia - Ei’l)) = 0,
Introduce the Cartesien coordinates connecting with

the -side L Let axis OX is directed along Ly and axis OY

i.
is directed along T. From the continuity of (p(®) on G
and the linearity on each G, it follows that W) id
described on Gi1 by the expression

QP(E)= A+ T 0z +Y- Ay, | O (1.12)
Then (X) is written on G;, thus )
Q)= QotT- 0 + Y-y, . (1.13)
From (1.12), (1.13) it follows that
WCL—M(& = [Ez x ﬁ'(aﬂi’aﬁ'z)] -
And, obviously, (n, (Mis - F".‘.Q)= 0.
It is easy t,o show from the comstancy of l/il-f—ﬁ) on the

boundary of G that the external normal vector m for the

external side L, ise orthogonal to corresponding vector iik'

The theorem 4 1is proved.

Obviously, the vector ﬁ: (ﬁ,l, I—HE,...,EN)T is the
eigenvector of the operator [A] with the eigenvalue, which
is equal to zero,

The system of vectors {gk} is constructed in the fol-
lowing way. Let . (E) is the continuous on G and linear

on each Gk funct.ion satisfying to the following conditions

\ﬂ(?: 5, - (1.14)
¥, (pn =0,

We define Elft from (1.9) by substitution of the {@K (:’i)j'

for Y(X) and supposing-that I € G, (i=4,2,...,NJ,
Then €K=(€¢,é%,...)€d)7 R (1.15)
k =1,2400e,L,
where L is the -number of the internal apexis of the grid.
We note that {\P.‘U—f)x satiafy the conditions of the
theorem 4, hence, {é\k} are the eigenvectors of the opera-~
tor [A_] with the zero eigenvalue,
The Lemma from [7} holds
Lemma 2
The system of vectors {ek} i8 linearly independent.
Proof

We admit that such number of values {cig exists:

L A A

S c¢.e =0

=1 .
Or L

Z, 6 3 (@) =o,
and 3 N —

L2 () = C.

2 oy (e)=c

Hence

L
2. Ci¥: (@) = const.
i1




O on 3G it ‘follows that
; . ¢ (%) =0.

Supposing x = Fj’ we obtain

u

From ;. (T)

¢; =0, 1=12,.00,L
The Lemma is proved.
The numerical experiments show that the discretized

operator [A] has not the other eigenvectors with the zero

eigenvalue, The problem of existence of such vectors for

i/
the operator [A} in three dimensions is considered in [8] . jl
1

2. Calculations of Matrix Coefficients
for Discretized Equations
In order to write the discretized.. system (1.1) it
is necessary to calculate the following integrals
J= v;j(ﬁ)vaenﬁ—al)d &, (2.1)

_ G
where M = const,

In this paper the optimized procedure of the calculation
of integrals (2.1) is proposed I9J .
The integral Jk is reduced to the boundary integral
T= (@) vtoE-aldlz (2.2)
AGe
Let Ly, I, Iy

1, 52. 55 are the external normal vectors for L,, Ly, Lz

are the sides of the triangle G, ;

correspondingly; %1, %2, ’?3 are vectors which are equal v
to 1 module and determine the positive direction of the ro-
und of the triangle G,. ((ﬁz,f,')=0,‘;=41'2»3)- \
Then J, = tzi (M,n) 5‘73 01T -8l dbs -
L

So the expression Vj énix -2l can be written as
Vg bojx-a]= N %’Ti_(?nli—a’)—*f T %(;_[ (En1Z-81), (2.3)
The integral j fe:énli—_&ld& is equal up to a sign
& .
by

10,

§ 2 tuz-midts = [ R -7l - if,-af |
by 58.:?.‘

where ii'l and 'P_2 are theverticesof the side L,

Analogously, the integral I{éﬂ} bn1z-al d lz
is equal up to a sign to the angle, under which one can see
the side L, from the point &. ‘

It follows that J, is one linear combination of
s, P, P and Ry, Ry, HB’ where (f; 1is the angle,
under which the side Li can be seen from the point '51,
and Ry = lnlf’]:_-é[, where P, 52, 55 are the vertices ofthe
triangle Gk.

Obviously, the triangles 'Gk may have common sides
andverticeg. Let -Ij,i, —1;2,...,511 are theverticegofall tri-
angles {Gk:(; , and L,',I,z,...,I.k are the sides of all tri-
angles {Gk} (we suppose that all sides and all vertices are
various).

Then in order to write the coefficients from (1.1) it

is necessary to calculate the MxN values:

R.j = IR -ajl )

1=1,2,40.,M

3} = 1,2,.00,N,
and k x N angles ©¥m« , under which the side I:lm is .
seen from the point Ek. Similar procedure, which complete~
ly remove the repetition in the calculation of the matri
coefficients, was realized for the complex of programmes for

the calculation of the axisymmetrical magnetic fields as
well [3] .

Analogous algorithm for the three~dimensional case

is described in [6}.

11




3. The Method of the Solution
of Discretized Equation Systems
For the solution of the discretized equation system

(1.1) the following iterative process is proposed in [2J :
Pas

Bess o sy ([aT+ B1)F (Bl | (3.1)

MMe
k = 0,1,2,... .
The process will be stopped when the relative deviation
A AN
R - ”er.l" le
¥ I Bl
becomes less than the previously defined value £.

Assuming the validity of the hypothesis about the spec—

trums of discretized operators we can prove the following

theorem:

Theorem 5

The iterative process (3.1) converges from any initial
approximation to the solution of the system-(1.1) as a geo-
metric progression:

A P A PaS
'IGK*."— Bk_ ” < g—”@k‘— Bu—_{“ 5

where g was defined in (9).
Proof

From (3.1) it follows that
4 A A ) . N A A
) /_AT, (Bm.f —gz)’= ([A.]+[EJ)(M(BK_)_ M(_BK-L))) (3.2)
or
A P A A A A ~ A
[Bices= Bl £ pho IM(BL)~ M(Be- Il £ 1B~ Bicull.
The Theorem 5 1is proved.

- i,
In fact g 1is majorised by the value 4 - M ma
where Mman 18 the maximal value of the permeability.

When the level of the magnetic field is low y /Jmmm achieves

12

e

+

the large value(“J105), hence the iterative process (3.1)
converges very slowly. This fact has numerical expnrimeﬁt

confirmations.,

For the recalculation of the field in the arbitrary

A A
point it is necessary to know the magnetization M(B), but

A
not the magnetic induction B, Obvieusly it is enough to
N A
know M(B) up to an arbitrary linear combination of vec-

Pel
tors ©,. We define M(B) in the following way
ALoA A A LA
M (_B)'—- M LB) 4 Zjlcte‘, N (3.5)
=
where {ci} is chosen from the orthogonality condition

AN ~
of M*(B) and ®; (i =1,2,...,L).

Let us introduce the new criterion of the iterative

\

process finish. The process will come to its end when the
relative deviation
A N I~ N
R¥ = MY (B - M (B
v N
I @

becomes less than the previously defined value & . In this
case the iterative process is majorised by the geometric

1 .
progression with the exponent J = Li"}z;;m)' (1+ X ma):

I (Bs) — M (Bl <y 1) - @I,
where A max 18 the largest eigenvalue of the discretized
operator [AJ, which is not equal to zero ( A .y < O).

For the realization of this iterative procéss it is
necessary to construct the fast projection procedure of the
arbitrary vector 'ﬁ to the subspace of images of the ope-
;ator [A].‘ In other words it is necessary to solve fastly
the following system of linear equations

(&?ﬁa—é;%(%,&)=@ (3.4)

i=21,2,...,L,

13




The matrix from (3.4) is the Gramm matrix of the line-
arly independent vectors {é&} ;s it is positively defined,
symmetrical and very sparce.For the solution of this system
we use the IncompleteCholesky Decomposition with the Method
of the Conjugated Gradients {ﬁOJ. The initial approximation
for the system (3.4) in the Method of the Conjugated Gra-
dients.is trangferred from the previous step of the iterative

process (3.1).V

A M c
Pig.2. Dividing of a triangle into the four homothetic-

triangles.

14
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Calculations on the sequence of grids are used for
the decreasing the time'of run , which is necessary to solve
the system of nonlinear equations [11]. .
Primarily the problem (1.1) is solved on the rough grid

by using the iterative process (3.1). Then each triangle

G, is divided into four homothetic triangles (£ig.2).

k
We solve the problem (1.,1) for this grid, in addition the
initial approximation in (3.1) for the fine grid is trens-
ferred from the solved problem (1.1) for the rough grid.
This procedure essentially decreases the summary expenditure
of the +time of run because the greatest number of itera-
tions is made on more cheap (from the calculating expense

point of view)rough grid. The solution of the problem (1.1)

on the fine grid begins with the good initial approximatioﬂ.

4. Wumerical Experiments

This method was used for creating of the complex of

programmes for the calculation of the magnetostatic fields.
In order to calculate matrix coefficients of the system of
discretized equations (1.1) onroughand fine grids we use
the following fact (in two dimensions): matrix coefficients
on the rough grid are expressed by matrix coefficients of the
discretized system on the fine one. Let S 1is the triangle
from the rough grid (fig.2). Then, obviously, the following
identity holds

Ve ((M, 7 eniz-al)dSz =

3
where .M = const.

iLVE g(ﬂ)va 1Z-a)dSz |
(=
¢
The centres of mass of triangles from the fine grid
contain the centres of mass from the roughones

For the testing. of the calculation accuracy we calcu-

lated the problem, which has an analytic solution: the infi-

-




nite cylinder with,M = const in the diametr%ca; homogenious
magnetic field. The result, when the circle quarter was

>dividéd into 240 elements, was in the good agreegent with the
theoretical calculation (the relative deviation is about 10-4)

. The formation of the matrix, the solution of the nonlinear
system and the recalculation of the field at 20 poin{s

required 118 seconds of CDC-6500 CP time.

calculaTtlon
T
T
|
° ~§ _J % 3 T \\ { 3} J ﬁ
b
' ]
THeory z
T i
MT
’_
e _é _J EREU . K\\ } :{ j §

Fig.3%. Magnetic field of the paramagnetic ball on the

external homogenious field.
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Fig.4. Cross-section of the Synhrophasotron of JINR.

Similarly , in the axisymmetrical case we calculated
the field of the paramagnetic ball in the external homogenious
mggnetic field. It required 60 seconds of CDC~6500 CP time;
the relative deviation is about 5.10"3, it is mainly deter-
mined by the error of the approximation of the circle by the

polygqn (fig.3).

17




sare

10 20 30 40 5¢ 60 %0 N

Fig.5. Relative deviations of the iterative process (3.1).

Table

Time expenditure for iterative processes

Number of ! CP time for itera- CP time for moder-
iterations tive process (3.1) nized iterative
" process
——————————————— P e e e e e e e e e e
5 53.041 53.384
——————————————— L i
10 105,304 108.040
——————————————— A e e e ————
15 157505 162.280
_______________ VU SO U
20 209.725 ! 217 . 401
_____________________________________ U

18-
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.

In two dimensions we estimated the cancellation of the
calculating time by using the optimized algorithm, which
is described in part 2, The calculation of the matrix
coefficient, when the region of the iron was devided into
224 elements (in addition, 3 reflections took place) required
124 seconds of CDC-6500 CP time, if we used the optimized
algorithm; and 409 seconds - if the nonoptimized one was
used,

We calculated the magnetostatic field of JINR Synhropha-
sotron (fig.#) in the two-dimenBional approximation. In fig.5
and the table one can see comparative characteristics of the
iterative process (3.1) and the modernized process, which
was proposed in part 3. This comparison shows that the ap-
plication of the modernized algorithm essentially decreases

the calculating expenditure of the solution in tlhe case of

large permeability .
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Axymue II.T., Xupkxos E.JI1., Kpaeuos B.[. E11-87-101
HcernemoBaHHe HHTErpanblbiX ypaBHeHHR
MarHuTOCTAaTHKH

UccriegyveTcAa HMHTErpanbHas NMOCTAHOBKA ypaBHEHHiH MarHuToO-—
craTuku. [JokasaHel HCKOTOpule CBOMCTBA OHCKPETH3OBAHHOI'O
onepaTtopa. llpepnoxeHa onTUMM3UPODAHHAA Ipollegypa BhpUHCIIE-
Hus kKosbbHuHeHTOB MaTpHy. lla OCHOBe MNOJIYYEHHBIX CBOMCTB
OUCKDETH30BAaHHOI'O omneparopa MOOHGHIIMPOBAH HTEpPAlHOHHBIH
nponecc pemeHHWa CHCTEMb HeNWHeWHbIX ypaBHeHu#. IIpuBeneHbl
pesyIIbTAaTh YHCJIEHHBX pPacyeToB.

Pa6ora BhmosiHeHa B JlaBopaTOpHU BBIUHCIHTEJIBHON TeXHHUKU
H asToMatusanuu OUIHU.

IpenpriT O6beAUHEHHOTO MHCTUTYTA ANEPHBIX UccilenoBaHHii. Jy6ua 1987

Akishin P.G., Zhidkov E.P., Kravtsov V.D. E11-87-101
Investigation of the Integral Magnetic Field
Equations

The magnetostatic problem is investigated in terms of
the integral equations. Some properties of the discreti-
zed operator are proved. The optimized procedure for cal-
culating of the matrix coefficients is proposed. Making
use of the properties of the discretized operators we mo-
dify the iterative process for the solution of nonlinear
equations, which we use before. The results of the nume-
rical experiments are discussed.
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