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Introduction 

Consider the integral equution formulation for the eolu­

tion of the magnetoetatic probleme. Let B(i) ie the magnetic 

induction at the point i, H(i) ie tbe magnetic field inten­

sity, M(i) - magneti zution of the iron.jA(/R(.::t.)I) ie tbe 

permeability, lis(i) is the . inteneityof the magnetic field 

due to the cur r en t s , calculated by Dio-Savarre law. Let G 

io the region, occupied by the iron. The integral equation 

f ormulation of the magnetostatic problem in three dimeneione 

i8 [1 J: 
H(ii) '" WCií) 4 Vã: [r(M(.'!) ílá~J)cJV~] (1)

'17(" J 'I.:I. -CL- . 
G 

The field vectoro H.M Bnd B are related by tbe fol-

Lowârig equatione 

- B(í)~
 
H(x ) ~} ,.)i( (Bl':i)V ' (2 )
 

6(8.) _ R(3) )FI LX) ~ 
/,0 C,) 

where ~o ie the permeability of the vacuum. 

In two dimensiono tbe equation (1) ie reduced to the 

folloVling form: 
:1.. 

Rlêi) '~ RS(êLJ - ~ \(FtL.i) V'5 enrx-ã)cLSã. . (4)
2 )1" J )

G 
For the axieymmetrical configuratione equation (1) be­

coroes 

Fi (ãJ = ~9 Lã) - ~ Se R(.Y) P(X, ã)) 19.d7:r.cL'e:;z ) . (5)
y~) . 

; &-­
lt'l>t'l'lli~ eliHb.ia RHC1UTyT j
1Uli':f1i tlX cC.'Je.l!oBamdt Ifi. 

~ 6PAS!t~OTEH:Á 
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where the components of the vector F = (P1 P2)T in (5) are:
' 

xr ' Jz. 
F't = l' [:'l~ (~~ -+ 'l.~ - '2'l,:x: 7õ: CPScp + (c x - lS(i )~r Jdlf' ) 

~ -= T[ ~ C~ + 'ti -~7~1ii mS1{J + ('t:tt -2õ.lj-hJ d. l{J . 
c 

Later on we shall assume that if we consider the intensity 

H,: H(B) as a function of B, the next inequality ie valid 

oH (6)
O L.oL. ~,10 ~ B S 1.) 

where ~ ia a constant different for the varioua types of the 

iron and does not depend on H and B. As a rule this inequa­

lity i8 valido ~e magnetization M has finite module 

1M/ b Mmá'X , (7) 

where ~ax corresponds to completely saturated medium. 

Suggesting B2 ~ B we obtuin .1 

I\D JM(~)-M~~)I = I r(!-~e ~~ L-x))cl·r.I~ [l-(>018~ - (S.L{ . (8) 

R.1. 
Rence, any B1 und B2 satisfy the inequality 

/1e / M(~) - M(B.1.)/ ~ 9 IB2. - B.L/ ) (9) 

where 9 < i.
 

The following lemma from [2] is valid:
 

Lemma 1 

Any B and B2 satisfy the inequality1 

)'10 IM(B2.) - RL8~) I ~ ~ 182- - B.tl) (10) 

where O~ 9 <:: .i . 

Consider the discretization inveotigated in [1 J . 
According to it we must divide G, into subregíons G

i 

foi 
G= U G· 

L~!. .. 

G n Gj ~ O , whez-e i ~ j. ­i 

2 

Define ã i as a c~ntre of mass of Gi 

~;xc1Vx 
0.:= , i 1,2, ••• ,N.JdV;x 

(h 
We assume that M(x) ia a constant in each Gi and 

equal to Mi • Then the discretization of (1) is described 

in the following way 

H· = fi \ li.. \ + - [t r (r::1 ti'- _-I -,) d V,X] I (11 ) szg,4
~ ) 7f' '-1. J .»Gtlx-fJ-, _-, 

J- G. a=ai 
'j 

i = 1,2, ••• ,N. 

In two dimensions the discretization of equation (4) ia 

given by the expression 

Hi ~ H-9[if i) - i:: [#1 
J:
\(1·)Vã en1x-aljcLSR-J/_ _ > (12) 

J a==at 
J 

i = 1,2, ••• N. 

In axisymmetrical case the next approximation for M 

is used in [3J for the discretization of the equation (3). 

In each subregion M(M1 ,M2 ) i8 approximated by 

M1 = -
1. 

Mrz. 
~ 

)
1~ 

Mz :::= M~ , 
where ri is the r-component of ã in cylindrical coordi­

nates, and Mi Mi are constante in Gi • This approximation
"""'1' 1 z 

is used in order to keep a continuity of M at r:O. Ueing 

the method of collocations we obtain the following diecreti ­

zBtion of the equation (5) 

H: = Hg(ti,)- ~; ç! SU1~ ~ fi1 (í}i)+M~~(fiJaJ)1.id1~d9~!_,~13) 
J- Gj ;j a==«." 

i = 1,2, ••• ,N. 
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In thia paper the problema, connected with oalculat1oD 

[AijJ M== - ~ [J (R)U(.i)ãj)"l.id~d~~JJ _ _ ) (1.4)of matrix coefficients of the discretized systeme (11) - (13) 
G· a~a~ 

'Jand the solution of the nonlinear discretized equat1ons, 

are inveatigated. -u [._~) ([;I - ) 7- C1'- _)'Twhere ·"LP = "<1. (-X)lí- . L~' "dX) 0.) . 
'J 

Assuming that (7) i8 valid we obtain the following 

1. Properties of Discretized Operatora tbeorem [4J •
 
Let
 Theorem 1 

A - - - "B == (B j. )32-J ••• ) BN ) ) The discretized system (1.1) is aolvable. 

M(B)= (M(i3~)JqL~)J"') M(B(JJ): 
~ 

H~ = (Ft9[liJ.) H~L~\ ... ) H-S(ãAl))~ Consider tbe operator 

P(B}~(HS- [AJM(BJ)tolBriefly the systems (11) - (13) are described in the 
3~ 3(11following way then F ia continuoua and Inaps R into R in three di-

A A A A 
'LN 'l.N

mensional und axieymmetrical cascs; and R ,into R in 

two dimensione. 

~~ == H~+ ([AJ-t-[E.]JM(BJ) (1.1 ) 

2where tA] ia the block, consiating of the N matrices [AijJ: 
Consider the ball U-== fB: ?; lt~1/ ~ JlH~1I + 1/ [All/' Co 1> 

.A.[AuJ [A",) \ 
where c, = sup I1 Mil Pr-om the condi tion (7) we ge t : Cc <00. [A] = A 

The operator F(B) transforma tbe eonvex U-set into itself( 
\d,,~]. [A",,] ) 

PLU) c u . 
and (EJ ia the identical matrix. The U-aet ie campaet, hanee, tbe Sehuuder's principIe [5J 

A 
For the equationa (11) ia the matrix of 3x3 ia applicable. The operator F(B) haa an immovable point 

dimensionali ty: 

[Ai j ] . 

und the theorem 1 ia proved. 

Consider the continuous operator from the right aide
[ A. .JM= Vã- [ t (M V'i _1._ )d~]1 . (1.2) 
- ~J <; ']f" J > I ~ - tU - ­ of (1)(;. a. -a .. I­

J A (M):: ~ [ f (MCi) V'5·~ -: )d.Vx.] (1.5)Forthe system (12) [AijJ i6 the matrix of 2x2 dimen­ ti T'6 J ) '.'i'-lll . 
(j 

sionality: 
The theorem from [6J takea place: 

[ Ai'JM= - \}ã: [ r(M) 'Vii ~Jii-CiI)dSezJf _ _ . (1.3) Theorem 2 
J 2.1t J .... «a.r... , l4o' ,
 

, \TJ
 The operator A ie:
 
And, at laat, for the system (13) ia the matrix
Ai j (i) bounded wi th iI AIJ(7 = .1 í
 

of 2x2 dimeneionality
 (ii) self-adjoint; 

(lil) negative semidefinite: 

4 5 



I zed operator, which is defined by the expression(1.6)(A(M))vt)G ~ O ) 

[AJM=- i: 'Vti. r I~( \7.; l!ni.i-CiI)cLS,i (1.8)
i.=L 21f J l l) .... ,

with ~Up (A(M)}tt==0 .	 (1.7) ~-

IfMIIG-=:I. I where ã ia an arbitra;y point (ã:€~G-i; i==:!>cz) ..• .JN). 

The validity of this theorem for integral operators Let	 f li j1 ia the set of alI verticea ofthe triangles Gi, 
{~ 'l[PfV ia the aet of the interna1verticesand is the setfrom	 (4) nnd (5) can be shown as in [6J. k} 

Fí J 
of the boundarYverticea. One defines some function ~ L~)In thia paper we propound the hypotheaia that diacreti ­

which is continuoua on G, linear on each triangle. Gi andzed operatora (A] from (1.1) have similar properties 

conatant on the boundary of G. One may consider the follo­namely: the spectrum of [AJ is real and be10ngs to inter-

wing vector function M(x)vaI	 [-1,OJ The numericnl experimenta confirm this assumption. 

If the stated hypothesía ia true we can prove the theorem: Fi (::é) = ~l{l ei. - ~ e'l. = "lOt(e3, -«.p(X)j) (1.9)
~j ~x 

Theorem 3 
where e and e form a syatem of orthonormal vectora;1 2 

The syatem (1.1) haa a unique solution. x and y are the corresponding coordinatea of the vector X, 
and	 e3 = t. ~ x ê2J. ~ 

A
Let the syatem (1.1) haa two several solutiona B and Obviously, i(x) ia a constant ou each AccordingGk•1 

A 

. B2• From (1.1) it followa that: to [71, the following theore~ holds: 

B~- 02. = ro ([A] + [EJ) CNLB!) -ML~)). Theorem 4
 
From this expression, taking into account the a~sumption men-
 Operator [Ã] from (1.8) identically equala to zero
 
tioned before and tbe result of the Lemma 1, it fol1owa tbat
 on ~ector M(x) from (1.9): L~JM(i)~ o. 

A/'-'" A. A........ A .....
 

1\ B1. -1\ 1/ ~ ;tA e II ML~ J - "1 (~2) II s g /I Ri - ~I . 
~ A 

From	 the condition g L 1 we obtain B = • The1 B2 Let M ia the vaIue of M(x) on From (1.8) itk	 Gk• 
tbeorem ia proved. 

followa tha t N _ _
 

The problema, connected with the uniqueness of solution
 [Ã] M-==zJT[ L: J [(M>:)n(X))~enJ.I-a.I]drii ~ (1.10) 
K=! ~(1K

for the other diecretizationa of continuous equationa, are where n(i) ia the externaI normal vector for Gk•
 
conaidered in [2J
 Let Li ia the internaI aide of the trianglea [Gk1 

Let ua verify tbe condition (1.7) for the diacretized wi th the vertices Pj1' Pj 2 , which belonga to trianglea
 
operator [AJ from (1.1) in two-dimensional problem.
 Gi 1 (Pj 1 , Pj 2 , Pj 3 ) and Gi 2 (Pj 2 , Pj 1 , FS4) (fig.1) 

Let the region G ia divided into trianglea [G i 1 in Let	 li ia the externaI normal vector for on Li~Gi 1 
the following way: if 1 ~ j the triangIea G· andi Gj then	 -o ia the externaI normal vector for on Li.Gi 2 
may have a aingIe common point, or a aingle common aide, Integral on Li from (1.10) equals
 
or they do not crose each other. Let [Ã] is the diecreti ­ (1.11)z~ J(fi) (i1~ -M.:j ) ) Vx en ,x-alde~ 

LI 
6 7 



F ------ -

",From (1.12), (1.13) it follows that 

F'ig.1. Illustration for the proof B2 

t n 

of the Theorem 4. 

fj" 

~3 

~i 

Then we shall prove that (fi, Mi 1 ) ) = 00(Mi 2 
Introduce the Cartesian coordinates connecting w~th 

the·s1de Li· Let axis·OX ia directed along Li' and axis OY 

ia directed along ii. Forom the continuity of lf(x) on G 

and the 11nearity on each Gk it followa 

described on Gi 1 by the expreeeion 

. lfllxJ= ao+!I·a=r.. +~J"~!- . 

that lfl~) ie 

(1.12) 

Then ~l~) is written on Gi 2 

tplxJ-~ ao4-~'l1:l: + ~. ct~CJ. . 

thus 

(1.13) 

Mil- -MiE. -== [~x n·(a~4.- Cl:to.) J_ 
And, obv1ous;ty, (n, (Mil. - M,-j,)J= O. 

It is easy to ehow from the constancy of LP [ii) on the 

boundary of G that the externaI normal vector n for the 

external s1de ~ is orthogonal to corresponding vector Mi k• 

8 

The theor~m 4 is proved. 
• A. - - -T

Obv1ously, the vector M = (M1 , M2' ••• '~) is the 

eigenvector of the operator [Al with the eigenvalue, which 

is equal to zero. 

The system of vectors {-;k1 is constructed in the fol­

lowing way. Let li'K(ii) is the continuous on Q and linear 

on each Gk function satisfying to thefollowing conditions 

\f'~ (~) =: gLj » (1.14 ) 

lfl~ (;:t:> = O. 

We define e~ from (1.9) by substitution of the [I{'KLfiJj 

for tfL:l) and auppoeí.ng that :x € GL U"'i/l, ... )NJ. 
A -~ -'2,. -tJ T

Then e~ = (ek)~) ... )e:) » (1.15) 

k = 1)2, ••• ,L, 

where L ie the -number of the internaI apexis of the grid. 

We note that [4'\(.tl:)J satisfy ~he conditiona of the 

theorem 4, henc e, [:k1 are the eigenvectors of the opera­

tor [AJ with the zero eigenvalue. 

The Lemma from [7]'hOlds 

Lemma 2 

The system of vectors fek } is linearly independente 

~ 

We admi t that such number of valuea {ci~ exista:\ L A.I\.
L. c,e, -z: O. 
L""1. .

Or t:kL c. ~ (4\ (it)J = c, 
and /., ~ ­(: c.. ~ (lfi (fC)) -::: c. 

is-L d 

Hence i. 

L: c, lPi 6i) const. 
i=l 

9 



- - -

From ~«~) =o on ~G it 'followa that
 
j ~ en/-x-êilc1.ex = l?n11l-íil- f tllPt - '& /
t

,=1-
c. <Pi (x) =0. t. - ~ex:
 

where P1 ~nd P2 are thevertices ofthe s;i.de Li.

Supposing	 x = Pj~ we obtain
 

oi = 0, i =1,2, ••• ,L.
 
Analogously, the integral ! :n- enlx-ã.l cl.,~ 

1>, .XThe Lemma is proved. 
is equal up to a aign to the angle, under which one can aee 

The numerical experimenta ehow that the discretized 
the aide Li f~om the point ã. 

operator [AJ has not the other eigenvectors with the zero 
It follows that Jk is one linear combination of 

eigenvalue. The problem of existence of such vectore for ffoi. ) \f"Z. ) 'f"3 and • where tfi is the àngle,R1, R2, R3
the operator [AJ in three di.mensions ia considered in [8J under which the side L. can be seen írom the point ai'

1 

and Ri = lnIP~-ãl, wbere P1' are the vertices oftheP2, P31

2. Calculationa qf Matrix Coefficients triangle Gk•for Discretized Equations 

Obviously,	 the trianglea G may have common aidesk
 
In order to write the discretized.. system (1.1) it
 andvertices. Let P1' P2, ••• ,PN are theverticesofall tri~ 

i8 necessary to calculate the following integraIs ungles {Gk 1, and L1 , L2 , ••• ,L k are the sides of alI tri ­

J",-~ Vã j (M) Oã: &IX-ãl)cL S!;: , (2.1) angles [Gk} (we auppoae that all sides and alI vertices are 
(fI(. 

various).
where M= consto 

Then in order to write the coefficients from (1.1) it
In ~bis paper the optimized procedure of the calculation
 

ia necessary to calculate the MxN values:

of integraIs (2.1) is proposed [9J. 

The integral Jk ie reduced to the boundary integral 

J~:: ~ (M)1(X)) Ç7:;e: enl'i-õ-I cLe.oi ) (2.2) p·=enIR-ilLj , J· ' J 

>.lG.c. i = 1,2, ••• ,M,
 
Let L1 , L L are the sides of the triangle
2, 3 Gk; j = 1,2, ••• ,N,


n} are th~ ex~ern~l normal vectors for
n1, n2 , L1, L2, L}
 

correspondinglYi T 1 , í 2 , T are vectors which are equaI and k x N angles '{JhllC , under which the aide ia
3 (~	 ~m 
to 1 modulo and determine tbe positivé direction of the ro­	 seen from the point Similar procedure, which oomplete­ã k • 

und of the triangle G Ui7i)rij~o)i=.1/2.)3.). ~ ly remove the repetition in the calculation of the matrixk• 

Then .TI(. = lA (f~)lJ JV'3: &! Ix -â.1 d eX. . coefficients, was realized for the complex of programmea for 
[,-

the calculation of tbe axisymmetrical magnetic fields aa 
SO the expression \7.i. t en lfi -li I can be wri tten as 

well [3J. 
Vx t?nlx-.7il -co fi" :n:c (enl:i-iiV + 1:; ~ (en /x-5../) . (2.3) Analogous algorithm for the three-dimensional case 

ia described in [6].
The integral J A: ~Ia-al d& is equal up to a sign

~(.i. . 
/...i. 

10.	 11 



3. The Method of the Solution 
the Lar-ga value(AJ 105 ) , hence the i terative procesa <3.1)

of Diacretized Equation Systema 
convergea very alowly. Thia fact haa numerical experiment 

For the aolution of the discretized equation syatem 
confirmationa. 

(1.1) the following iterative procea8 ia propoaed in [2J : 
A.. For the recalculation of the field in the arbitrary 
n. . . A /' A ./'./'0 

k~ = HS -+ ([AJ -+ [gJ) M (13v-) <3.1) 'point it ia neceaaary to know the magnetization M(B), but 
jA~ 

Â 

not the magnetic induction B. Obviously it is enough to 
k = 0,1,2, •••• " AI know M(B) up to an arbitrary linear combination of vec-

The procesa will be atopped when the relative deviation I A -""" ..... 
• tora ek • We define M(B) in tbe following way

f· 
r-; A .A A L AR - Il 8"1-1 - B.,dl I'. , MiOlBj = f"1lB) -+ z: Ci e, (3.3)

K - 11 &KII ,
 i:1 '
 

becomes lesa tban the previoualy defined value f. 
I

where f ci 5 ia choaen from the orthogonality conditioD
 
,I\. .A '"
 

Aasuming the validity of the hypothesia about the spec- of M·(B) and ei (i = 1,2, ••• ,L).
 

trums of discretized Let ua introduce the new criterion of the iterative
operators we can prove the following
 
theorem: process finish. The proceS8 will come to its end when the
 

relative deviation

Theorem 5 

A* Ã "'. »; )

The iterative proceS8 (3.1) converges from any initial 1/ M (B\(. t- j.) - M ( B ~ 11
R: = x: ........
 

approximation to the solution of the system·(1.1) as a geo­ 1/ M *"lBJG)1/
 

metric progresaion: 
becomee leea than the previously defined value S. In thisA A .A A. 

fi (3Kd'- BK \I ~ <J-II Bl< - B~-J.II ) case the iterative proces6 is majorised by the geometric 

progression wi th the exponen t ~ = [1- ;J;-()N.)' (1 + Â (>'lCL'X) :
where g wae defined in (9). 

A A A.A .Ajt,A. .1'..* 

~ IIM*(BK+~J - M*U~k.JII sd JlrHl3J -M CeK-l.) \I ." 
From (3.1) it follows that wbere Â met.x ia tbe largea;!; eigenvalue of the diacretized 

f;" (B:~J -B - ([AJ:t- LEJ) (M(B~) - Ml B k -1.)J/ operator [A], which ia not equal to zero ( Â~ ~ O).
K )' (3.2) . } For the realization of this iterative process it ia 

or 
Ã A Ã/'-. ....... "" ".... A 4 necesaary to conatruct the faet projection procedure of the 

rIB I<- +.1. - 81e:ll ~fo I/MLB,,)- M[6\:_.l) 11 { ~ 11 Bk-BK-.!I\ . I /\ . 
arbitrary vector M to the subapace of images of the ope-

The Theorem 5 ia proved. 
;ator [AJ. In other worda it ia neceaaary to solve faetly1 

. -I the following syatem of linear equatioDsIn fact g . ie majorised by the value i - j-ifl1arx· 
A A l> .A Ã 

(3.4)wbere J'A~ is the maximal value of the permeability. ( M) eI. ) + Ri Cj (ej: ) eiJ == o 
When the leveI of the magnetic field ia low, jAmNX achieves i =1,2, ••• ,L. 

12 13 



The matrix fram (3.4) is the Gramm matrix af the line­

arly independent vectore f~i1 ; it ie pasitively defined, 

symmetrical and very sparce.For the solution of this system 

we use the IncompleteCholesky Decomposition with the Metbod 

of the Conjugated Gradients (10J. The initial approximation 

for the system (3.4) in the Method of the Conjugated Gra­

dients is transferred from the previous step of the iterative 

process (3.1). 

B 

A '	 -rY 

M 

Fig.2.	 Dividing of a triangle into the four homothetic' 

triangles. 

Calculations on the sequence of grids are used for 

the decreasing the time'of run , which ia necessary to solve 

the system 01' nonlinear equations [11J. 

Primarily the problem (1.1) is solved on the rougb grid 

by uaing the iterative proces8 (3.1). Then each triangle 

G ie divided into four homothetic triangles (fig.2).k 
We solve the problem (1.1) for this grid, in addition the 

initial approximation in (3.1) for the fine grid is trans­

f· 
~ ferred from the solved problem (1.1) for the rougb grid. 

Thi8 procedure essentially decreases the summary expenditure 

of the time of run because the greateet nnmbéz- of i tera­

tions is made on more cheap (from the calculating expense 

point of view)rough grid. The solution of the problem (1.1) 

On the ~ine grid begins with the good initial appraximatio~. 

4. Numerical Experimenta 

i 

This method was uBed for creating of the complex of 

programmes for the calculation 01' the magnetostatic fields. 

In order to calculate matrix coefficients of the system of 

discretized equationa (1.1) on rough and fine grids we use 

tbe following fact (in two dimensions): matrix coefficients 

on the rough grid are expressed by matrix coefficients af the 

diacretiz~d aystem on the fine one. Let S ia the triangle 

from the rough grid (fig.2). Tben, obviously, the following 

identity holds 

'Vã. r (M Qti enli-Cll)d~ii -::: i: Vii r(Mvii 6l IX-Zíl)cl3.x..J )	 I' ::L J ) ,
3 g. 

where .M == c ons t , L 

The centres of maas 01' triangles from the fine grid 

contain the centres 01' maae from tbe rough one ,. 

For the testing. 01' tbe calculation accuracy we calcu­

lated the problem, which has an analltic solution: the infi ­

1514 



nite cylinder wi th)A = eonst in the diametri,cal. homogenious 

magnetic field. The resulv, when the eirele quarter WaB 

divided into 240 elements, was in the good agreement with the 

theoretical ealculation (the relative deviation ia about 10-4) 

The formation of the matrix, the aolution of the nonlinear 

system and the reealeulation of the field at 20 points 

required	 118 seeonds of cnC-6500 CP time. 

calculaTlon 
I i i i I i i I I I I-,-,--rr,--n j I I I j I I i I I T---rTT----­

o 
L 

v­
I 

Tueory z 

\~)~lli((wlo 
L -5 -lj '1 5

I/lPJl\\~Y' 

Fig.3.	 Magnetic field of the paramagnetic ball an the 

externaI hamogenious field. 
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! 

t . 

I 
• 

I 
~ " 
I Sirnilarly t in the axisymmetrieal case we ealculated 

the field of the paramagnetie ball in the externaI homogeniaus 

magnetic field. It required 60 seeands af cnc-6500 CP timei 

the relative deviatian is abaut 5-10-3 , it ia mainly deter­

mined by the errar af the appraximatian af the eirele by the 

palygon (fig.3). 

17 

Fig.4. Crass-aeetian af the Synhrophasot~an af J1NR. 



I: 

In two dimena10na we 6etimatod the cancellation of the
X(IV) 

calculat1ng time by using the optimized algorithm, which 

i6 descr~bed in part 2. Tho oalculation of the matrix23 010­

coefficient, when the reg10n of the iron was devided into 
.A A2.10-2 

s=II MIC... 4 -
M I<. II 224 elementa (in addition, 3 reflectiona took place) required 

-IA"u 
134 seconda	 of CDC-6500 CP time, if we used the optimi~diO-'2 

/'-,.. A-lI 

IlMIC"'ol -MieI!	 algorithm; and 409 seconda - if the nonoptimized one was 

5.10-3 
11 'A: 11	 i used. 

f 

I
 We calculated the magnetostatic field of JINR Synhropha­


l	 sotron (fig.L~) in the two-dimenoional approximation. In fig.5 

and the table one can see comparative characteristics of the 

2·fO-3 

iterative process (3.1) and the modernized proceS6, which:~olo 20 40 50 &0 "0 'N 

was proposed in part 3. This comparison shows that the ap­
Fig.5. Relative deviations of the iterativa process (3.1).
 

plication of the modernized algorithm e8sentiall~ decreases
 

the calculating expenditure of the solution in the case of 

large permeability • 
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Hccnezioaamre HHTerpllJIbllblX ypaBHeHH~ 

MarHHTOCTaTHKH 

I1cCJIe,lJ,yeTcH HH"erpllJ1bHLUt nOCTaHOBI<a ypaBHeHHH MarHHTO­
CTaTHKH. Ilorcas axu I1CI{OTOpble caoãcr-aa ,lJ,HCl<peTH30BaHHoro 
orrepa-ropa . Ilp ennoxexa ort1'HMH3HpOnaHHaFI nponezrypa BblqHCJIe­
HHH K03cPcPH~HeHToB MaTpHu.. lla ocnone nonyxemrsrx CBOHCTB 
,D,liCKpeTH30BaHHoro ortcpa ropn MOAH<PHI~HpoBaH HTepa~HOHHbI:H 

rrpoue c c peurenua CHCTCMbI HeJIHHe'tiHblx ypaBHeHHH. llpHBegeHbI 
pe3YJIbTaTW qHCJIeHHWX pac~eTOB. 

Pa60Ta BWnOJIHeHa B fla6opaTopHH BWqHCJIHTeJIbHOH TeXHHKH 
li aBTOMaTli3a~HH O~H. 

Ilpenpaar 06'be,nHHeHHOrO HHCTHTYTa anepasrx HCCJIe,noBaHHH • .uy6Ha 1987 

Akishin P.G., Zhidkov E.F., Kravtsov V.D. EII-87-101 
Investigation of the Integral Magnetic Field 
Equations 

The magnetostatic problem is investigated in terms of 
the integral equations. Some properties of the discreti ­
zed operator are proved. The optimized procedure for cal­
culating of the matrix coefficients is proposed. -Making 
use of the properties of the discretized operators we mo­
dify the iterative process for thc solution of nonlinear 
equations, which we use before. The results of the nume­
rica1 experimenta are discussed. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 
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