COREMONNA
T TTHTL
RNCTHTYTA
RACPUMY
NcCASASBARNA

AYOna

E11-87-10

N.M.Nikityunk

SOME QUESTIONS
OF USING CODING THEORY
AND ANALYTICAL CALCULATION METHODS

ON COMPUTERS

1987



1. FORMULATION OF THE PROBLEM

Increasing information from multichannel detectors of nuclear partic-
les has generated a need for studying the questions of optimal coding and
of data readout and processing methods. Under real conditions a small num-
ber of particles is commonly registered in multichannel detectors. This num-
ber is small as compared to the total number of registration channels. The
problem lies in the creation of a very fast device of data compression or a
digital filter without a memory. Priority encoders usually operate using syn-
chronization pulses. When there is a large number of channels, very much
time is needed for encoding the coordinates of registered perticles.

In the last ten years studies have been carried out of the possibility
of usung coding theory and practice, particularly algebraic coding theory,
for the construction of efficient devices of data compression. To solve this
problem, analytical calculation methods on computers /127 are applied,
in perticular using the SCOONSHIP program. Below we consider the results
of studies that are of interest from the practical and theoretical points of
view.

2. METHOD OF SYNDROME CODING

This method is described in detail in papers /3'4/. The essence of the
method is the following (fig. 1). There are n sources at the transmitting
side. A small part (10-15%) of their total number can only operate simul-
taneously. The number of sources simultaneously operated is denoted by
t. If no source operates, we get a zero code word, and ones occuring when
the sources operate are considered as an error vector to the code word. This

n=2""" [ Syndiome N"FQOQQV

Souvces [ shapet Computer

Fig. 1. Block-diagram of the data transfer system using the method of synd-
rome coding.




word arrives at the input of a syndrome shaper (encoder}). The number of
transmission channels at the output of the encoder decreases to N =tlog n.
For n =63 and t = 3, N = 18. The efficiency of the method increases with
increasing n.

The use of comrecting code theory and practice helps to.answer the fol-
lowing question: ”"How is a parallel encoder constructed for t >1? ” To make
the best use of coding theory, the author has suggested a system of analo-
gies of coding theory and the theory of multichannel hodoscopic systems /57,
For example, the error vector e corresponds to an event in hodoscopic sys-
tem theory which generates pulses from the sources (a scintillator, MWPC
wires and others). A cluster of errors in the communication channel corres-
ponds to the cluster arising from the operation a group of neighbouring sour-
ces even from one particle. Therefore correcting code theory can be used
for the construction of cluster counters ’87/

Further the parameter t is the number of information symbols which
can be corrected by a given code. This parameter corresponds to a maxi-
mum number of the operated sources of a hodoscopic system. The number
of check-parity symbols, N (syndrome), is an important parameter of the
code. This value depends on code block length and on t. For the well-known
Hamming code having t = 1 and N =m, the code block lengt n = 2™-1
and N =m. For the codes having t > 1, N=mt , As noted above, in hodo-
scopic systems the value of t corresponds to the number of outputs or re-
gistration channels. Finally the code efficiency is determined by the ratio
n/N (transmission speed). As applied to our problems, this parameter is cal-
led compression coefficient C.. The most important result of studying co-
ding theory is the suggestion to use encoders as efficient digital filters in
multichannel hodoscopic systems. For example, as shown in paper/ 57 for
t = 1 an encoder of the Hamming code represents a parallel coder. A uni-
tary position code is converted to an ordinary binary code by means of this
coder. Complicate the problem and assume that t = 2 and n = 31. A paral-
lel coder (without memory elements) should be constructed with the aid
of which the coordinates of two positions can be simultaneously encoded.
This problem is successfully solved using the algebraic theory of BCH co-

des/7.8/. To draw a principal diagram of the encoder, it is necessary to
construct the matrix H™. The syndrome is calculated with the aid of this mat-
rix. Such matrices are called connection ones”®/ as coupling between the
sources and the circuit inputs of syndrome calculation can be determined
using their structure. Figure 2 presents one of syndrome calculation of the
BCH code correcting two errors. It consists of two parts. The elements of
the Galois field GF(2%) generated by irreducible polynom

5 2
X% X* )

[

i
2
3
I
H
$
7
L}
$
ke ]
H
2
£ ]
L)

LU BEIRL EE

a‘
n\
ey
y
o
o
o

q'

Fig. 2. BCH-code parity check matrix for
the correction of two mistakes.

are presented on the right. Here a¥-
= 10000, al= 01000, 2% = 00100, a3=
= 00010 and a* = 00001 are basis
elements of the field and 2! is the
polynom root (1). The remaining 26
elements can be calculated from the
equality a°® - a® 4+ a® . As the field
is finite, 23! = a% = 1, The cubes
of the elements are given in the second
column of the matrix HT The elements
as binary codes are presented on the
right (fig. 3). The numbers of chan-
nels (sources), which logic pulses are
sent from, are designated by nume-
rals, Parity checkers and modulo-2
adders are used as microcircuits. As-
sume for definiteness that the pul-
ses are supplied from the 10th and

OO =~ ~O0~00 00
-y - O D - DO O

O OO = - - DO - =D -~ OO0OO

O, OO~ TD -~ ~— ~—OD-O0O0T~OC0O0O0™
——- D - OO~ —Q@-O -0 00T O~~~ 00

22nd sources. From the theory it fol-
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Fig. 3. Principal scheme for syndrome caleulation.
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the sources operated (X, =3" and X a®ly. Then the X,and X, coordina-

tes are the roots of the equation

X%, 0, X +o5=0,

(2)
S3+ S
where o, = 8, and 0, = —¢ 2. Then §, = a®+ a®' -aland s-a%.al
1
2 In this case ¢, = §__+_af“_)__ -a%_ One can verify that the elements

2 a
a? and a®! are the coordinates of the equation

x4+ ax - a® _ 0. (3)

The rules of calculation in the Galois field GF(2™ described in detail in” +7-8/
are not taken into account. Note that the modulo-2 sum is denoted by the
sign +. A 10-bit syndrome is obtained at the encoder output for t = 2. Ac-
cording to coding theory, the syndrome contains information on the number of
operated sources and on their coordinates. The coordinates can be easier found
not by solving eq. (3) but by means of PROM as shown in fig. 4, where X 1a.nd
X}gare the coordinates of the sources having operated in the binary code.

To fine the number of operated sources, one should solve the following
determinants: det 1 = S, and det 2 = Sl+ 83/ 9/ . In addition, let us intro-
duce two other parameters even” and “odd”. These parameters can be easi-
ly calculated if all the inputs of the encoder are connected to a parallel pa-
ritycheck circuit. If S, # O, there is at least one pulse at the inputs of the
encoder, ie,t > 1. f 8, £ 0, det 2 = 0 and there is an odd pulse, t = 1.
Further t = 2 if 8, # 0, det # 2 and there is an even pulse. Finally if det £0
and there 1s an odd pulse, t = 3. In our
case S;=aland S3=a% for t =1.Then

~ » Sl + 83 ?é 0.
IPROM \ As the elements of the Galois field
. I— }X ! represent a cyclic group, this means
81 { —— P that rather complicated algebraic ex-
] - ) pressions can be calculated with the
. aid of PROM tables. Figure 5 presents a dia-
\ T e gram used to calculate the expression
p e | 828y . More complicated expressions
> 'XZ for t > 2 can be calculated in a simi-
—— e
S1y— [
3 Fig. 4. Scheme for syndrome code transfor-
— mation to the binary code. X{ and X3 are
S binary coordinate sources. Microcircuits
A MC 10149.

Fig. 5. Scheme for calculation of the ex- .

pression Sf +8g —‘_‘IPROM . 3
lar way. Thus, the use of correcting { — T
code theory makes it possible to Sg '
construct qualitatively new, very ]

fast devices such as majority units \ =

~and parallel counters. To create L

an encoder for other n values, it —

is necessary to choose irreducible

polynoms of the corresponding degree 53 \ S

from the tables of paper’?/ and ——

to construct matrices of the HTtype ——

at given t , For example, for n =15 ~

and 63, X*+ X+ 1 and X8+ X + 1 are
irreducible polynoms.

3. SUPERIMPOSED CODES

To create parallel encoders, modulo-2 adders are mainly used. Logic
signals must be supplied to the inputs of the adders for their correct opera-
tion. However, the question arises: ”Won’ an encoder be constructed that
can operate when weak analog signals are supplied to its inputs? Such cor-
recting codes exist. They are referred to as superimposed codes’ 107 g
form syndromes of these codes, amplifiers-mixers, e.g., photomultlpllers
or electric amplifiers-mixers, can be used. However, at other equal parame-
ters the value of C, of these codes is smaller than that of conventional opti-
mal codes. We have 1+1=0, 1+0=1,0+1=1 and 0+0=0 by modu-
lo-2 adding and 1+1=1,1+0=1,0+1=1, 0+0=0 by Boolean adding,
i.e., the number of differeft combinations is smaller. Nevertheless, for small
t and large n values superimposed codes can be applicable, e.g., to scintil-
lation hodoscopes and MWPCs for the purpose of decreasing the number
of amplifiers.

Figure 6a presents a matrix H., An encoder for the scintillation hodo-
scope 710/ can be constructed with the aid of this matrix. In this hodoscope
H = 2y/n photomultipliers are required, and it is possible to register a signal
or a triple cluster from one particle. Figure 6b shows a more economical
matrix for the construction of an encoder having n =15 and N = 6. As is
shown in paper” 07 the efficiency of coding significantly increases with n .
For n = 28 the number of combinations, C,, is 8¢7/2 = 28. From this it
follows that an encoder having 28 inputs and 8 outputs can be construc-
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4. CALCULATION OF DIGITAL FUNCTIONS

The theory of Calois field CF(2™) is a natural continuation of the theory
of Boolean field. Representation of the Boolean functions as Galois field
elements has a number of advantages. In particular, one can describe digital
functions (DF) as a polynom in which coefficients and variables are the Ga-
lois field elements. For example, for a large number of variables (m > 3) ana-
lytical programming systems and present-day computers can be used to cal-
culate digital logic devices with given properties.

The point is that any DF f(X,, X ..., X, ;) of m arguments can
be presented as a polynom?’ 137 ;

m
HXLX .o X )= BO+ ADOX+ A@X  A@) X% ... a@™ DX ® !

and the coefficients A(k) are calculated from the expression:

2™
Ak) - = 1 a*[B©) + B(a,)]

i-=
with B( a;) are substitution elements taken from a truth table of inputs and
outputs;and B(0), the function at a zero point. A computer practically pre-
sents this result in a minimized mode.

Using the calculations obtained in paper “ 14/, a new method of construc-

tion of universal, dynamically programmed modules has been suggested. The
use of a set of similar modules opens up possibilities for fast programming,

6

using a program written on a microcomputer, of the operation of trig-
ger systems without varying mechanical connections.

In conclusion the author expresses his gratitude to V.P.Shirikov and
R.I.Gaidamaka for useful cooperation, A.V. Selikov for his help in program-
ming PROM and D.V.Shirkov for his attention and support of this work.
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Huxumiox H.M.

HexoTophle BOMpocChl MpUMeHEeHUA TeOpUH KOAHPOBAHHUA
M aHATUTHYECKHX METOIOB pacuera Ha 9BM

E11-87-10

IIpuBozATCA OCHOBHEBIE Pe3yJIbTaThl PaboT MO NPHMEHEHHIO Teo-
PHM M MpPaKTHKH KOAOB, MCIPaBJIAIIINX OWMOKH, IJIA CO3AaHMUA
OLICTPONEACTBYIOILMX YCTPOHMCTB 0T6Opa (PUIMYECKHX COOBITHIA,
3aperHCcTPUPOBAHHBIX B MHOTIOKAHAJILHBLIX HEeTEeKTopax ANepHLIX yYa-
crul. Ha oCHOBe UCIIONB30BaHWA 3TOM TEOPUM U AHANUTHYECKHUX
BhluHCIIeHMH Ha 9BM co3pmaHbl NPHHIMIMAIBHO HOBBIE YCTpPOMCTBa
KOMOMHaIlMOHHOIO THIA, HanpuUMep, MNapaUlejibHbIE XEKOAEpbl.
Ob6cyxnaloTcs TakXke BOIIPOCHI CO3JNAHHMA HOBOTO ajirOpHTMa A
pacuera rniepeKinodYaTe/IbHbIX (QYHKIMI ¢ noMolsio 9BM u npobnems!
MOCTPOeHHA YHUBEpPCAIbHBIX AHHAMHYECKH IepenporpaMMHpPYEMBIX
JIOTHYEeCKHUX MOAYMEeH.

Pabora Brmmonnena B JlaGopaTopus BhicOknx sHeprmit OHUAUN.

Coobuienine O6beIHHEHHOr0 HHCTHTYTa AlePHBIX HecenoBaHuUi. [ly6Ha 1987

Nikityuk N.M.
Some Questions of Using Coding Theory
and Analytical Calculation Methods on Computers

Main results of papers devoted to the application of theory and
practice correcting codes are presented. These results are used to
create very fast units for the selection of events registered in multi-
channal detectors of nuclear particles. Using this theory and analy-
tical computing calculations, practically new combination devices,
for example, parallel encoders, have been developed. Questions con-
cerning the creation of a new algoritm for the calculation of digital
functions by computers and problems of devising universal, dynami-
cally reprogrammable logic modules are discussed.

The investigation has been performed at the Laboratory of High
Energies, JINR.
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