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I. Introduction and Theoretical Background

In recent 10-15 years much attention has been paid to the
nonlinear two-dimensional models having soliton-like solutions
such as, for example, Korteweg—-de Vries equation, sine-Gordon
equation, nonlinear Schriddinger equation, etc. Such equations
are often completely integrable. They have the representation
in the form of commutator of the two linear operators (Lax
representation) and solved by the inverse scattering method.

It would be interesting to consider the multidimensional
equations with soliton-like solutions especially physically
important cases with two and three spatial dimension. Unfortu-
nately, the multidimensional generalizations of the inverse
scattering method of full value are nonexistent., On the other
hand equations which are integrated by the inverse scattering
method have high hidden symmetry. They are invgriant with res—
pect to the Lie-Bicklund transformation groups’ - N-soliton
solutions turn out to be invariant with respect to such groups.
Thus search and investigation of the interesting multidimen-
sional models may be carried out supposing that they are inva-
riant with respect to nontrivial Lie-Biicklund groups. The suc-—
cessful application in recent years of the Lie-Bicklund groups
to inves:%%%te the nonlinear parabolic equations (see, for
example, " ) should be also mentioned. Thus the determina-
tion of Lie-Bidcklund symmetries of differential equations is
appeared to be an important problem in the mathematical physics
and anplied mathematics.

Lie-Bdacklund group is defined as the tangent transformation
of the infinite order, that is, the coordinates,of the Lie-al-
gebra depend on unlimited number of derivatives . Lie-algebra
vector called Lie-Bicklund operator has the form:

d a_d 0
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where X’ (i = 1,..., n) - independent, u® (a = lye.., m) = de-
pendent variables, u?l“'is - jet bundle coordinates corres-

ponding to the partial derivatives of u® with respect to

1
X ,...xl Further we shall call these coordinates breafly 'de-

rivatives". Functions &; , 7%..., n$ , ... depend on variables
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usual prolongation formulas
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where D = (D1 ,...,Dl]) is the operator of total differentia-
tion j

Di=L+2u?i " -6———,7[‘857]‘1.
gx' 820 17" 's gu? :
e i i
Lie-Bdcklund operators of the form X,= £,D., where &, are

3 - 5 q
the arbitrary functions of the variables x! &

n e e u%1~dk’
first, form the ideal in the Lie-algebra of the all Lie-Bick-—
lund operators and secondly, the transformations created by
them, leave the arbitrary differential manifold invariant. By
term differential manifold one calls the system of equations
under consideration with all the differential consequences:

DB F = Do o, Bl oois 01815 8 s

The system of the equations F= 0 is called invariant with
respect to the Lie-Bicklund group, if the manifold [F]is in-
variant. There exists the theorem’!/ confirming that the diffe-
rential manifold [F]is invariant with respect to the Lie-Bick-
lund transformation group, if and only if XP) gy = 0. In other
words, it is enough to apply operator X only to the initial
equations but when transferring to the manifold the differen-
tial consequences should be considered. ]

As the Lie-Bicklund operators of the form X«=¢+D; don"t
contribute to the invariance condition, the factor—algebra of
the complete Lie-algebra with respect to ideal formed by the
operators X; may be considered without loss of the generality.
Choosing instead of the operators X of the form (1) equiva-
lent to them in the factor—algebra operators with the vanished
(' we obtain the operators of the form

Xyt 2, ..,
du® (2)

which are called "canonical operators". Transition to the ca-
nonical operators essentially simplifies the calculations, as
it is enough now to consider m functions instead of n + m,
what is especially important when the computer is used. More-
over, prolongation formulas take a simple form:

. L T ¥
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With the use of canonical operators the invariance condition
(the determining equation) takes the following form
(422, p (4%) -2E +.oiXpy = 0 (3)
du @ - du Fl
The solutions of the determining equation, depending on the
variables U (correspond to the Kk-th derivatives) but indepen-
ding of the ku e called the k-th order solutions. If to
+

follow that, when transferring to the differential manifold
[F], derivatives of the first order were not expressed by deri-
vatives of more high order, then the first order solutions
would correspond to the contact transformations. Point trans-
formations correspond to first order solutions, linear with
respect to the derivatives, i.e., to the solutions of the form
7%(x, u) - £1(x, u)u?, where ¢', % - are usual coordinates

of the Lie-algebra of the point transformations. Note that

the point transformation group obtained from the solutions

of the Lie-Bdcklund determining equations may be wider than
the classical ones. It may occur in case, if some equations

of the system under consideration have the order less than ma-
ximum order of the system, since when transferring to the mani-
fold the differential consequences of these equations will be
used. The classical definition of the invariance does not take
into account the differential consequences.

Presently, the Lie-Bicklund algebras of the evolution equa~
tions with one spatial variable, i.e., the equations of the
form u, = F(X,u, uy, Uy,,...).%xeRlare the most studied. This
is connected with the special form of the time differentia-
tion operator inclusion into the equation. The problem comes
to the investigation of the differential algebra with one in-
dependent variable. This algebra is studied completely enough.

The main way to obtain the solutions of the determining
equations is in the following. Let the determining equation has
the form: Ly = 0, where L 1is the linear differential operator.
The operator M, satisfying the relation [L, M]=0called re-
currence operator is searched. It is clear, that if 7 g
a solution of the determining equation, then n(2)= Mn(l) is
also the solution. That is why it is possible to create the
new solutions from the known ones (e.g., point and contact)
using the recurrence operator. The effective general methods
to construct the recurrence operators do not exist. In prac-
tice, they are often searched by comparing between each other
the low order solutions obtained by direct calculation (see
for example 74/ ). When transferring to the multidimensional
problems the complexity of the calculations rapidly increases.
Probably the real possibility to deal with multidimensional
equations is to applicate the computer algebra.



The program written in the language REDUCE-2 for dete¥migf
ing the point and contact symmetries has been proposgd in
When computing the Lie-Bdcklund symmetries the effectiveness
of the computer algebra system has acquired a special impor-
tance. That is why the program proposed here is written in
PL/1 - FORMAC.

2. Description of the Program

The space coordinates Zj - (%, u,:{.“., i)are put in a lexi-

cographic order as in”®’. To represent those coordinates the PL/1

symbolic array named ZK is used. To represent the fu?ction§ n
from the formula (3) and their derivatives also put in lexico-
graphic order the symbolic PL/1 array named Z# is used: The
determining equations of the Lie-Bicklund algebra contain the
derivatives of the functions 5 with respect to the deriva-
tives of the functions u. To reduce the complexity of the ex—
pressions at ‘the output we accepted the restriction which is in
the use of only one-letter symbols for the independent and de-
pendent variables. Let us demonstrate by example the corres-
pondence between the mathematical designations and those used
in the program. Let there be independent variables, ¥,y and
dependeht ones, U, V. The vector field (2) takes the form

. * ) # 3 * P * P
X=U + V== +D,(U)—=— +D_(U) + D (V) ¢ ——
au av o F e,y Y amy ey F i)
2
Then the derivative S takes the form UXY both at input

)X : : i :
and at output, and the "derivative of the vector field coordi-
5

nate V having the mathematical designation
3 *
a Vv .
dx0Ud (V)

will take the form V#.(X,U, VXX) at output.
The program executes sequently the following operations:
1) Reading and printing of the input data.
2) Computation of the dimensions of the used spaces and the:
creation of the working array ZK for the economical re-
presentation of the row(x,ll,?.g,n.).

3) Computation of the differential consequences of the nee—
ded order and exclusion of the dependences out of them. The
following remarks should be made here. We consider the diffe-
rential consequences up to the certain fixed order k. If the
system of equations under consideration is not in involution
then it may occur that the uncalculated differential conse-
quences of the higher than k order create the relation of the

4

order <k as their algebraic consequences. The inclusion of this
new relations may lead to the symmetry group increase. The
reduction of the initial system intc involution is not carried
out in the program. Thus, if there is a suspicion that the in-
put system isn”t in involution, then in order to obtain the
maximum invariance algebra with guarantee the system must be
preliminary reduced into involution., Note, that there are some
computer programs for reducing into involution the systems of
differential equations, realizing the Cartan”s exterior forms
method’® as well as the Riquier-Janet-Thomas method “ 7.

4) Creation of the working array Z# for the economical re-
presentation of the row from the vector field coordinate deri-
vatives, Computation of the vector field prolongations. Computa-
tion of the invariance condition (3). When computing this con-
dition the transition to the manifold is executed. In this
stage it may occur that some equation of the input system is
not explicitly solved with respect to any derivatives. Such,
for example, is the equation from”8/:

Ou + A sin(ou) + A sin 9% - o,
1 2 at
PE:
where 0 =—— ~ A - d"Alembert operator. In the similar cases
L

when transferring to the manifold the program used only the
equations which were solved and the following message will be
printed:

“+ TRANSITION TO MANIFOLD IS NOT COMPLETE.

Of course, in such cases the invariance algebra may turn out
to be not maximum.

After transition to the manifold the used differential con-—
sequences are printed in the form solved with respect to some
derivatives (i.e., pair derivatives and the corresponding right
parts are printed). Then the differential consequences are
deleted from the computer memory.

5) Separation of the determining equations. Unlike’®’ here
the separation of the determining equation is carried out not
only with respect to different powers of the "free'" deriva-
tives but with respect to arbitrary different independent func-
tions of such derivatives as well. The caution is necessary
here, as the program does not take into account that the func-
tions may be dependent with particular values of parameters.

If such values occur, then the particular form of the equa-
tions should be proceeded by the program separately. Below the
explanatory example will be considered. When the separation of
the determining equations is executed, zeros are deleted at
the same time, i.e.,when the one-terr determining equations
arise they substituted at once into all remaining expressions.

5



6) Exclusion of the linear dependences from the system of
determining equations by reducing to the Hermite normal form
using Gauss-Jordan method.

7) Replacing the working symbols of the arrays ZK and Z#
by output symbols and printing of the determining equations.
The determining equations are printed in the form solved with
respect to some derivatives.

3. How to Use the Program. Example

The user must input the following information:

1) The order of the determining equations in the form of
PL/1 integer constant.

2) The name of the equation or the system of equations in
the form of PL/1 character string of the length not more than
78 characters.

3) Symbols used to represent independent and dependent va-
riables in the form PL/1 character string. At first the inde-
pendent variables, then the symbol " (double quote) and fi-
nally the dependent variables are followed.

4) The equations are introduces by pairs - the left parts
of the equations in the form of PL/1 character string and the
order of the equations in the form of PL/l integer constant.
The designations of the derivatives must be in agreement with
the order specified in the symbol string of the independent
variables.

The elements of the input are read by PL/1 operators GET
LIST and, hence, must be separated by blanks or commas.

Short example
The first order determining equations of the one~dimensional
* ; du  d%u
-_— - = = 0.
linear heat equation ot Ix2
Input:
1
"HEAT EQUATION'
2 XT"U 1
'UT - UXX' 3
Output:
INPUT DATA
SYMMETRY ORDER |
HEAT EQUATION
VARIABLES XT'"U
ENQUATIONS
UT - UXX = ¢ 2
DIMENSIONS OF THE SPACES
N=2 M=1 NE=1 NZK = 8 NDPZK = 5 NMXZK = 12

6

EQUATIONS OF THE MANIFOLD

UXX
DEE(1) = UT
UXXX
DFF(2)_= UXT_
UXXT

DFF(3) = UTT

DETERMINING EQUATIONS OF THE ORDER 1
U# . (UT,UT)

U# . (UX,UT)
0(2) = -U #.(X.UT)/UT - UX U# .(U.UT)/UT

U# . (UX,UX)
0(1) = U# .(T)/UT2- U# .(X,X)/UT® -

Here N is the number of independent variables; M, the number

of dependent variables; NE, the number of equations; NZK,NDPZK,
NMXZK are the dimensions of the different subspaces of the space
Zkxs DFF(i) is the right part of the i-th equation of the dif-
ferential manifold; 0(i) is the right part of the i-th deter-
mining equation.

4. Some Results of the Program Application

Let us demonstrate some examples of the program usage to
solve the problems of mathematical physics. In'®’ the problems
for investigation of the symmetry properties of some equations
of mathematical physics were stated. In particular, it was
proposed to find the invariance algebras of the following non-
linear wave equations.

Du+)\u+/\1du s =, (a)
ax, ax#
p
du Jdu |k
ou = Ay, — + A, (=~ = 0, b
1 3¢ 279t sE
2 du
ou+ Au <+ A (1 =Au)-—— =0, (c)
1 < 3 at
i



] du 3
au + A1u+ Ae(—a—.—) = 0, (d)

d %
9t

+ A A@Y + A A0)f < 0. (e)

Here

I 2 2
du 6“ (du) __(6u (au - (94,
JXF ax ot .

Ay A, Ag, A g» k are the arbltrary parameters.

Let us present the invariance algebras of these equations,
obtained from the first order solutions of the determining
equations, The first order symmetries for all these equations
turned out to be equivalent to the point ones.

Equations (a)

In case & # D we have the following set of the infinitesimal
generators:

3 d J
e, = — = —— e, = —— € ; e
= 9 = % gt 8T gyt AT gz
0 d d Jd J [’
8, =X e g e i 38 & =Y -l
T oy 9x i ™ " " T s dy
a ) d d J d
e, =X — + 1 — e, =y —= t — e, = Z— =t
AT Tk TN T e Wt i Y

i.e., whem A # 0, the invariance algebra of the equation (a)
is the 10-dimemsional Lie algebra of the Poincare group.

When A = 0 the invariance algebra includes 15~dimensional
conformal algebra, generator of the shift of u and infinite-
dimensional subalgebra. The following generators are added to
the Poincare algebra:

e =ti+x_a_+y_é_+5_é_

11 at d9x ay dz ’

e = (t2 +121+:yz +z2)—‘-9—— + 2xt 9 + 2yt—‘i— +2zt-9. _ 8t 0 -
Jt dx ay dz A du

8

el3=2xt_(7_ + (tg+x2_y2-z2)i.+2xya_+2xz_a__.2_x_ ._Q_’
ot X ay dz Ay du
8= 2vt._‘i.+2xy + (% -x2yy _42)i+2yz.§_ 2y _(L_
ot ax dy dz Al du
els:ZZtiwzxzi+2yz—é-»(t2~x2-y2—zz)—q— S -i}*,
at Jx dy dz Ay du
. -A
d " 4
e ==, € =3¢(X,y.2,1)e _,
o e it : du

where the function ¥ is the arbitrary solution of the equation
oy =0,

When A = 0, the equation (a) turns out to be automorphic,
that is, all its solutions may be obtained from the any one
solution with the help of group transformations. Solving the
Lie equation corresponds to the subalgebra € _

g.l_l_ = e—’\lu

i

(infinite set of the ordinary differential equations) we obtain
the linearizing substitution u =Iny /Ay transforming the equa-
tion

ou + A, Jiﬂ_ QE— =

Jx# axt
intc the equation Ot =0. Note, that such a substitution trans-
forms the arbitrary equation of the form

ou + @) + A, —— —= = 0

into the equation Oy + Ay ¢(1%#L) =
1
Equation (b)

We shall assume, that k #1 as the case k=1 is equivalent
to the case Ag = 0. We shall not consider also the cases k = 0
and A, = 0, as leading to the linear equations.

Case K42, A 40

The symmetry generators are:

o A B et o
1 9t 2 9x 3 gy 4. gz



d e d ) d 0
e = y— X — _ € =X—-Z—, e _=y—/— -2 s
¥ " S B, dz ax 7 9z dy
e = (x,y,2) <L,
du

where ¢ is the arbitrary solution of the equation A¢ = 0.
Generators €,,..., €, correspond to the shifts of t , x, y,
z , genmerators e, - e, - to the three-dimensional rotations and
e . generates the symmetry consisting in possibility of adding
the arbitrary harmonic function of the variables X, y, z

s
o W.

Case k # 2, A1= 0

Generator
e t...a_.ﬂ‘ x._a_q‘y_a_.+z_g..+l(_:_.2_u_a..’
& A 9x Ay dz k-1 du

which corresponds to the scale transformation, is added to
the generators €, — €,, €_.

Case kK=2

Generators €,-~ €, remain as in previous cases. Generator
of the scale transformation takes the form

8 i ==
At ax Ay A7z 2A, Au
The function ¢ from the operator e = ¢(x.y,z)2r- must satis-—
u

gy
fy the equation Ad -+ (¢ A ) /(2A,) = 0.

Equation (c)

This equation is the multidimensional generalization of the
Van der Pol equation. Let”s assume that Ay # 0 as otherwise
it is the Klein-Gordon equatior. The invariance algebra is 10-
dimensional and includes:

the skifts of ¢t , 2 4, ¥y, 2:

el,-_.i_ @ :_a_‘ esz_@__ e = d
gt £ 9x ay . B
three—~dimensional rotations:
eszxi_y_‘_'z__ e__—..\;._.(?_-_z_é_‘ e ;~y_a__zi.
: ay ox 8 dz dx% 7 dz Ay
10

the scale transformation:

e =t.‘i_+x-a——fy-—‘-9-—+z—a— rl'(u,t)i,

8 at ax Ay 9z du
and two additional transformations of u:

d d
8, =g(u,t)—, e, = h(u, t) =,
. du 10 du

where the functions f, g and h are defined by the equations:

AN, t) = 081 +G8 + cmh,

* * - * 2

u,., f.\lu-,\luuu +ut)\2(1—u A3)+2,\1ucs=0,
* * C 2

i, ~ AgAguu +—Ef-h2(1— u”A ) = 0.

Here € c C,y are the constants, corresponding to the ge-
8 » 9 » 710 ) P g g

nerators eg, eg, e, The last two equations come to the rela-
tion
* 2| * * . 2 *
W + A20.~ Asu )u‘t - Alut - A1A2A3u u o+
AfAg

+ C

2
S (I -Agu )u =0,

which is the ordinary differential equation with the constant
coefficients. Thus the problem comes to the solution of the
algebraic equation of the third power:

3 2 e 2 i &
pY +p Azu Aau )+p)\1 u A1A2A3 0.

The final expressions are compound. For example, even in case
A; = 0 the solution is expressed by the probability integrals.

Equation (d)

The case A, = 0 leads to Klein-Gordon equation, the case
A, =0 is reduced to the considered particular case of the equa-
tion (b). Thus, we shall assume that A, # 0 and A, # O.

The symmetry group generators are the following

9 3 3 J
E0 e, 85 =iy Cgi= === € vy
URF TR ST LT Rl
3 3 3 3 3 9
B = o Bl e et el e e e s i G0
g e A=l z PR R T o5
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e _=d(x,y,2)-2,
Ju

where ¢ is the arbitrary solution of the Helmholtz equation
Ag=ad.

Equation (e)

While investigating this equation, the situation mentioned
in item 5) of the program work description is occurred. This
situation requires attention, that is why let us consider it
in more detail.

The invariance condition has a form

2 * ‘ k=3 ;
Dy(D) + Abk(k -~ (k= 2)u (yu)y 4

(k=D D+ D+ D)0« k(k - 1% Aug +

i 1 bl 2

k-1 2 L 2% ke 2 2 *
tku (D + Dy + Dy)u b+ Ak (Au) (D, Dy +D,)u =0,

The underlined terms (after transferring to the manifold) con-
tain variables u,, , U,y , U,, in the power O, 1, 2 and the
last term contains this variables in the power k-1 and higher.
Hence, the cases k = 1,2,3 must be executed by the program se-
parately.

Let us consider the general case, i.e., let us assume that
k #1,2,3. The solution of the determining equations leads to
the necessity to distinguish the following cases.

Case A\; #0. Ay=0, k=1/5

The invariance algebra is 12-dimensional and includes the
following generators:

wETEl ST . e A
at 2 9x L TS
es—x_é__v_a__ e -—.;g‘a z..‘i_ __I,r..’i_,../..ﬁ._
ay ax 6 dz ax 7 dz Ay
eS=x._6_+yi..+za 4 3 d

vg_. + 2xy—(z- + 2KZ—!2— - fﬂ(u—i— =
dx ayv

0z du
12

o 9 :
8 =2xy-d 4 (y¥-x®< Byl 2yz 2 - Syu-2-
10 X dy dz Au
3 2 2 2. g ~ J

B 2%y 4 2yz—ﬁ— AN e i S AR
11 ax ay oz du
4 et d E—U d

e =

12 di 2 du

The generators ey -e, ,correspond to the conformal transforma-
tions.

Case 1\1"'0. /\2 -0, k= -2

The invariance algebra is 10-dimensional: e, —e, are as
in previous case,

ey = oy dl oy xd By = LT 2.,
di gx ay dz at 2 du

PR 8 el

10 at du

Case AI; 0, Ag=U0, k-3, 1L/6

-
The invariance algebra is 9-dimensional: e, -eg are as in
previous case,

1-k . J d

—_— U

e = - -
9 2 dt du

Case Alf 0, A2¢ 0

The invariance alpebra is 7-dimensional and includes e, -e
of the previous case.

Case A1= 0,A2¢ 0

The invariance algebra 1s infinite-dimensional. It contains
the generators e, -, from the previous case, scale transfor-

mation generator

3 cyde pd g mmd
8 At ax ay 0z du
and infinite~dimensional subalgebra

e, =lo(x,y. 2)+ty(x,y,z) -2,
Jdu

13



¢ and ¢ are an arbitrary solutions of the equations REFERENCES
A¢d = A¢ = 0. ) : : ?
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When kK = 2,3 four additional cases arise: "Nauka'", M., 1983, p.286 (in Russian).
2, Steeb W.H., Strampp W. Physica, 1982, All4, p.95-99.
3. Dorodnitsyn V.A., Svirshchevskij S.R. Inst. of Applied
. Math. Acad. of Sciences USSR, Prepr., 1983, No.l10l1, 28 p
The invariance algebra is 8-dimensional and includes .=, (in Russian).
from the previous cases and 4. Sheftel M.B. Theor.Math.Phys., 1983, vol.56, No.3,
9 3 p-368-386 (in Russian).
By = tg?- = 2u5—-. 5. Eliseev V.P., Fedorova R.N., Kornyak V.V. JINR, 11-84-238,
» Dubna, 1984, p.10 (in Russian).
6. Arais E.A., Shapeev V.P. DAN SSSR, 1974, vol.214, No.4,
Case A, #0, A,=0, k=3 p-296 (in Russian).

Case )\1#0. Ag # 0, k=2

i ; : o . 7. Ganja V.G. et al. DAN SSSR, 1981, vol.26, No.5, p.1044-1046.
Pt Aperiance sigelirs de S-fiwensinnal, The gemsyiter 8. Fuschchich V.I. In: Theoretically-Algebraical Investiga-
W e y—Q—<+z—Q— tio?s in Mathemat%cal Physics. Inst. of Mathem. Acad. of
8 at X ay dz Sci. of UkSSR, Kiev, 1981, p.6-28.

is added to the generators e, - e,

Case )\1—0. /\2¢’0.k:2

Additional generators are:

a d d d d

€ =t—"— 4+ X = 4 y——+2-L 4 202
8 at ax dy dz du
e = tiL—~ 2u-Q—.
" at du
: d
e =lo(x,y,2)+td(x,y, 21—,
du
A¢d =AY = 0.
Case A1= 0, A2¢ 0, k=23
Additional generators are:
ezti+xi+y._a_+z.i+2ui_
8 gt ax dy az Ju
e:ti_u_a_,
9 at du

eo=lo(x.y,2) + tu(x,y, 2)} 4=, Ad=Ay-0.
du Received by Publishing Department
The case K = 1 leads to well-known linear wave equation. on March 5, 1985,
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