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I . INTRODUCTION 

In this paper we. describe a computer program for snlving 
the Korteweg-de Vries equation by means of the pseudospectral 
method /1 ( We Fourier transform the KdV equation with respect 
to the space coordinate to obtain an infinite set of ordinary 
di f ferential equations for the time evolution of Fourier har
monics of the solut ion which is truncated and solved by any 
appropr iate numerical method . We have used t he RKF~5 Runre
Kutta fourth-fifth order subro utine wi t h variable step/2 and 
ODE, DE/STEP, INTRP predic tor - cor rec t or subrouti ne with va
riable step and order /3/ ,The non- linear term in the KdV equa
tion is calculated in the spirit of pseudospectral methods by 
Fourier synthesizing the solution in the original x - represen
tation from its discrete Fourier harmonics, performing the 
non-linear operation and returning back to the representation

/41of Fourier harmonics. The Fast Fourier algorithm FOUR67 is 
used to perform the discrete Fourier synthesis and ana l ys i s. 
Contrary to similar approaches 15 ,61 we use for the time i ntegra
tion the most precise numerical al~orithm at present available, 
acco r ding to recent rigorous tests 7/ . to e l iminate the i nflu
ence of the time discret i zation on the numerical stability and 
prec i sion of the method . 

So fa r we have tested only one soliton so l utions of t he KdV 
eQ uation . Very good oerformance characteris t ics of ou r code 
were found. The algorithm is stable numer i cally, and the form 
of the soliton is reproduced with ver y high precision even with 
relatively few harmonics used. For a moderately narrow so l i t on 
(in comparison with the spa t ia l per i od of t he solution) ei ght 
Fourier harmonics were suf fic ient, in fu l l agr eement with the 
infinite order precision pr ope r ty of spect r al methods i n gene
ral . For a solution of the KdV equation which has der i vat i ves 
of infinite order , the Fourier harmonics amplitudes decrease 
faster than any inverse powe r of t he number of ha rmoni cs and , 
correspond i ngly, a l so t he t r unca t i on error d i mi nishes i n t he 
same manner. On the other hand, the er r or of fi ni t e- di f fe r ence s 
numerical schemes i s known to decrease onl y as some i nver se 
nower of t he number of mesh poi n t s. 

In f uture we plan t o do fu r the r experiment s with mu1t i soli
ton so l ut i ons of the KdV equation and to ut ilize the pseudo
s pe ct ral method f or t he solu tion of other non-l i near evolut i on 
equations inc1 ud i ne two- and t h r ee- dimens ional e~uati ons of 
current i n t er e s t. I 



2. NUMERICAL ME THOD 

The KdV equation 

!..t!. _ 6u~ aSu = 0 
( 2 . I)+ ax 8dl ax 

i s FOlJrier t r ans forma tcd by means of the t r ans fo r mation 

2" · u x ::z 2. u e Jnx( ) n • (2 . 2) 
n =-oo 

1 2 7T . 
un '" 	 .r u(x) e - Jnx dx . (2 .3) 
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He thus obtain 

1 
2" j mx _ 6 f (2. u e 2" jmx :£ 

~ 

21TjOl u e ) .Un mo m= -o<> OJ 111 = -0<> 

( 2. 4) 
- 2" inx . (2 )3e dx - J 17 n un ~ 0 n = 0 ± I, ±2 , .. . 

Th e i nf inite s ums are now t runcat ed at some n : N so tha t 
a f in ite s e t of ordinary di f f erential equa tions i~a~btained. 
Bes ides , the continuous Fourier transform (2 .2 ), (2 .3) i s r epla
ced by its discrete ana log, the d iscrete Four ier tran s fo rm: 

21Tju_L __N 

11 (Xi) ",. ~'lX U e 2N ma x (2.5)n 

Il = - N t-


max 

2N 	 -1 _ 217j n __i__ 
max 
~ u(x , ) e 2N max (2.6)Un ,

i= 0N ma x 

In ou r code, thi s transformation i s reali zed b y the Fast Fou
rier Transform a l r,o r ithm 14. 1 wh ich works with 2 q , q = 3,4,5, ... 
harmonics and the f unc t i on is defined on a mesh with 2CJ + 1 
Doints. I n this version of the FFT algorith~ the analyzed fun c
tion U(x) is assumed r ea l so that V_ :;: V; and, consequently,n 
only Vn with n = 0,1, 2 , . . . , Nma x a re calculated. 

To get rid of the a)iasin~ error in calculatine th e non" li 
nea r term, one mu s t use a me sh with doub l e this numbe r o f points. 
In the synthesis operation, th e missing harmonics are then 
simply replaced by ze r os , and in the analysis ope r ation th e 
s upe rficial harmonics are drop ped. The set o f ordinary di ffe 
rential equations wh ich are actually solved by the computer can 
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t hen 	be written as follows : 
2N 	 _ 1 

max Nmax 211 jm __1_ 
U ~ _ 6 1 :£ :£ U e 2N max )(n -  m


N ma x 1"",0 m",,- N +1 

max 

(2 .7)N 21Tjm_i~ 
Smax 

x :£ 2iTjrne 2Nmu . j(2"n) Un 0 , 
m::.-N + 1 

rna. 

for the aliased c a se, and 
2rr j m __i ~_4N 	 - 1max N max 

,.. 4N1 	 ,L., U e ma xU - - 6-- :£ x 
n - 2N max j "", 0 m= - N + 1 m 

max 

(2. 8)Nmax 2iTjm_j~ 
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x :£ 2 1Tj U e 4 Nmax - j(2"n) U o n ~ 0,1.2 •. ..• 2q
non 

m=: - N + 1 max 

fo r the deal ia sed case. 

3 . PROGRAM DESC~IPTrON 

Th e whole code is writt en in fORTRAN and has r! modular struc 
ture so as to mak e easy to modify and easy to usc. In fact, 
wi th only minor chanGes 1 t he present code can be used to so lve 
o th er non-linear evolution equa ti ons as well. 

Th e MAIN progr am se rve s onl y t he purpose of allocating t he 
memo ry s pace f or all the arrays used , r ead and write the input 
data and ca l l th e ma in solution subroutine KdV. On f inishing 
the run, the contro l is returned from KdV to t he MAIN program 
a nd a new run is started by reading the corres ponding new set 
o f inGut data . Tf none is (ound~ t he program is s topped. 

Subroutine Kd V fi nit calculates some a uxi liary variabl es 
whicll a r e no t changed dur ing one calculation run , calls th e / 4/ 
initialization subroutine SETF67 for the FFT subrou tine FOUR67 
calculates the in it i a l data by means of the FUNCTION subrout i ne 
UIC, Fourie r tra nsforms them and f inally calls it eratively 
the set of s ubroutines for solving ~17 se t o f ordinary diffe
rential equat ions RKF45~ RKFS, FEllI 2. On completion of a time
step , th e time integration subrout ine returns the value of the 
monitoring variable IFLAG. According to t his value the time 
integration is continued or a n appropriate IDea!;Ure is taken 
f irst, e . g ., t he relative e rror tolerance RELERR is changed and 
then the integration is continued until the pre scribed fini
s hin g time is reach ed or untill subroutine RKF45 fi nd s it im
possible to continue. 
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In be tween, i n pres cr i bed time-intervals, the subroutine OUTP 
i s ca l led wh i ch activa t es t he system CPU- time measuring proce 
dure , ca lculates some output variab l es and calls the pr int i ng 
subroutine PRINT t o print the synthesized solution, the Fourier 
harmonics of the so l ut ion and the ir abs olute values, together 
with the cur rent value of time, the val ue of IFLAC (the monitor 
va riabl e of RKF45 ) , the number of t ime-s tep performed from the 
l ast ca l l of OUTP, CPU- t i me e l apsed from the last call of OUTP 
and t otal CPU- time elapsed from the start of the firs t run. 

The r i ght-hand sides of the set of ordinary differential 
equations ( 2 . 7), (2.8) are calcula t ed by the subroutine FCT 
u t i lizing the set of FFT subroutines FOUR67, ZERO, ~mG, REVNEG , 
TF.OLD, KFOLD. The subroutines DYNAMI, DYNAM2 serve as an inter
face between the complex type vari ables that are used in cal
culating the r i ght-hand sides and the subroutine FOUR67 which 
in fact pe r forms a r ea l disc r ete Fourier analys i s and synthesi s . 
(The analyzed or synthes i zed functio n is assumed real, just as 
t he Four i er coef f icients of the sine and cosine series). 

Within the program, t he arrays ar e communicated either by 
dummy ar guments or by labe l ed COMMON bl ocks such th~t each 
block contains only one array. In ei ther cas e , i n s ubprogr ams 
th e l ength of each a rray is s pec ified t o be unity. The r ea l 
l engt h of all the ar r ay s is t o be speci f i ed only i n the MAIN 
progr am and no changes i n the s ubroutines a re required. 

4. 	 THE USE OF THE CODE 

We a s sume that t he c9de wil l be used in t he batch p roces si n~ 
environment so that the us er " s deck wi l l contain the MAIN pr og
r aI!l and the FUNCTION s ubrou tine Ul e t ogether wi th t he nece s 
sary input da ta car ds. All ot her subrout i ne s may be stored on 
a disc o r a t ape . 

In 	the MAI N pr ogram, t he user must specify th e correct l ength 
o f 	 al l t he arrays . The l e ngth depends on 

J ) the number of Four i er ha rmonic s used (LFI N), 
2) the number of mesh points us ed by the FFT s ubr out ine (2 TQ). 

J) the time-integration sub r out ine used ( RKF~5 or ODE, 
DE/ STEP , INTRP). 

Thus, the formu l as fo r the a rray l eng th are as fo l lows : 
CUP /LFIN / 
CUPIC/ LFI N/ 

1 


Y/2xLFIN+2/ 

WORK/3+6 x (2 x LFIN + 2) for RKF45 

IIORK/ IOO + 21 x (2 x LFIN + 2)/ fo r ODE , DE/STEP, I NTRP 

U'ORK/5/ 

CD IN (LFIN/ 

CDOUT/LFIN/ 

F67IN/ 2 IQ+ 1 / 

F670UT/2I Q + 1/ 

INDEX/ZIQ- I + 1/ 

SI/ZIQ-I + 1/ 


The Fm~CTION subprogram s hould con t ain t he Fort ran deck f or 
ca l culating t he initia l condition as a function of x. The va 
lue of x is communicated by means of a singl e dummy ar gument . 

The input data ca rd s shou l d be in the NAMELI 5T f ormat and 
shoul d specify the va l ue of the follow i ng parameters: 
TSTART t he value of t ime at which the time-integrat i on 

subroutine s tar t s (normal l y 0.0) 
TFINAL the val ue of time a t which t he t ime integration 

subrout ine shoul d stop 
PRDEL t he t ime in t er val be t ween two ca ll s of the sub

rou tine OUTPUT 
RELERR the bound on t he r e lat ive error 
ABSERR the bound on the absolute error 
IFLAG the starting va lue of t he mon i t or vari abl e (nor

mall y I ) 
IQ 2I Q/IQ = 3/ is equa l to the number of mesh points 
LFIN t he number of Fourier harmonics used (nor mally 

2I Q-1 fo r t he a l iased case , 2I Q- 2 for the dea l iased 
ca se) 

A 	 t he par ame t er occurr ing in t he FUNCTION subpr ogram 
UI C def ining the he igh t of the sol i ton ( see s ec . 5 , 
the parameter a i n (5 . 1)) 

5 1, 52 the spectra l wi ndows , s hou ld be specifi ed as a rrays 
of LFIN l ength , normally all e l ements are uni t y . 

These cards should be i nserted be t wee n the NAMELI5T inpu t 
card & I~~UT and &END . 

The use of other time- i nt egra t i on subrou t i nes other t han 
RKF45 r equir es change s on l y i n t he KdV subr outine. 

5. 	RES ULTS 

ACUP / LFIN/ At present , we have a re l ative ly closed set of r esul ts con

CI/LFIN/ 1 cerni ng the perfo rmance of t he code corr e sponding t o t he one

C2/LFIN/ soliton i nitial condi t i on 

S I /LFIN/ 


2 2S2/ LFIN/ 	 u(x O) = -.!!.... cosh illL. . (5 .1 )
• 2 2U/2t Q/ 

" 	 • 
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Pe have tried various numbers of the Fouri e r ha rmon i cs (LFTN 
= 8 , 16) corresponding to a given so liton amplitude (fixed by 
th e va lue of a = 20). Furthe r we have pxam ined t he i nf luenc e 
of various va l ues of RELERR and ABSCRR on the g l oba l pr ecision 
of the ca l cu l ation . By i ncrea s ing th e number of nesh poin ts t o 
twice that nece ssa ry [o r a given number of harmo nics , we have 
been ab l e to complet el y e liminate th e a liasinr, error / I I whi ch 
ari ses in calculation of the qU:ld ratic non-linear term in th e 
KdV equat ion. Thi s enab l ed us t o isola t e til e effec t of aliasing 
error from other error s . In cacll of these experiments the 
sophisticated time-s t ep controlling algorithm of the subroutine 
RKF45 practically eliminated any possible source of errors du e 
to the t ime-integr ation procedure. 

The computational r esults a r e summarized i n Figs . 1 and 2 . 
In Fig .) the time evo lut ion o f the ab so lute values of th e Fou
rier harmonics is plotted for L fUI = B with 16 mes h poi nt s used 
(full a liasing included). We see that all the Fourier anplitudes 
oscillate with various fr equ encies ~bout thei r constant correct 
va l ues. In th is sense our code is absolutely stable . Th e r e la
t ive amplitude of these osc illations decreases with de cr e a s ing 
ha rmonics number and for the lO\Olest harPloni c s is practica ll !, 
negligib l e. The amp li t ude of the oscillations does not gr ow even 
fo r many passages of the soliton through the basic inte rva l(O, I ). 

I n Fi g.2 t he same v.]ri;lh ll ·~; n I l ' p lOllPCI for 32 me s h pojnt s 
(no a l i a sing ). This p i <: lurp n' p r ('~ l'n l s Ih c pLl rc effect of trun"":.. 
cat i on of th e infi ni l~ s~ l of o rd i nary d i ffe r entia l C(l ua t ions . 
In compar i son with Fi g . l we see Lh., L the .,mp l itudes of osc illa
tions dimlnished substant iall y and arc in (act signi ficant on ly 
fo r the highest two. Thus i L i s scen t hat th e truncation e rrors 
are probably of much less impo rtance as compared with the a lia
s i ng e r rors. 

I n compari son with RKF45, the performance of the ODE , DE/STEP , 
I NTRP time-integration s ubrou tines was poo r e r. "'ith t he same 
RELERR, ABSERR requiremen t s, more int egra tion steps were needed , 
so t hat there was no overall effic i ency gain , a lthough l ess 
righ t - hand sides computations per t ime - s t ep were performed. Be 
sides , very s low time- growth or harMonic of amp li t ud es wa s de
te c t ed (numerica l ins t ab ility ). 
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B 0 6DeAHHeHHOM HHCT~TYTe RAepH~X HccneAoBaHHH Ha4an 
BblXOAHTb C60PHHK "}{pa mKUe coo6U4eHUR OlfRH". B HeM 
6YAYT nOMe~aTbCR CTa TbH, cOAep*a~He opHrHHanbHye HaY4Hye. 
HaY4HO- TeXHH4eCKHe. MeTOAH4eCKHe H npHKnaAHWe pe3ynbTaT~, 

Tpe6YIOl1lHe CP04HoH ny6nHKB4HH. 6YAY4H 4aCTbIO "Coo6w.eHHH 
OltR W1. CTaTbH, BoweAWHe B C60PHHK. HMe()T, KaK H APyrHe 
H3Aa HHR O~~H , CTa TYC ~H4HanbH~X ny6n HKa4 HH. 

C60 PHH K I1Kp aTKHe C006uteHHR OHfl W' 6 YAeT B~XOAHT b 
perynflpHO. 

The Joint Institute fo r Nuclear Research begins publ i 
shing a collection of papers en t itl ed JI NR Rapi d Communi
cations whic h is a sect ion of the J INR Communicat ions 
and is i ntended for t he accelerated publi cat ion of impor 
ta nt res ults on t he following subjects: 

H:1XaHbKOB B. r . , A . !,., . "J .UIBiltlK3 C('JVI •HH.'K III 1-81,-869 
l..{HcneHHoe pemellHe ypaBII~1I 1 1lI KOP"C'llcl'a-Ac BPWlo1 
t-1eTOAOt-1 OblcTporo npeOOpa'301HI IIHH CJ)YPbC 

OmfCbrBaeT CR npo r paMMa tvm pelllCIfHH y p aulIl'IIIHI Kop'I'cllcra
Ae BpH3a MeTOAoM AHcKpeTHoro npco6pa:lOua llHR fllYPh(' . B paGoTe 
npeACTaBneHbl HeKoTopble pe3ynbT3TbJ .1HanH3.1 OIUIJGOK, CO$l3a1l1lbJX 

co llCTpo6ocKonHlIeCKHMII ~eKToM. 

Pa50Ta BbJnonHeHa B na6o p aTopHH BblllHCJlHTCJlbllOii 1'CXIIH.KH 
H aBTOMaTH9a~HH OHHH. 
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Bei ng a part of the JINR Communica tions , t he articles 
of new col lec t ion l i ke all other pub l icati ons of 
the Jo i nt Ins t itute for Nucl ea r Research have the sta tus 
of offi ci al publ icat ions . 

JINR Rapid Communications will be i ssued reg ul arly. 
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Makhankov V.C., Shvachka A.B., Sedl acek Z. EII-84-869 
Numerica l So l ution of the Korteweg- de Vries Eq uation 
by Pseudospec tral Method 

A compute r program for solving the Korteweg-de Vries equa 
t ion based on discrete Four i er transforma t ion is described and 
some resul t s concerning t he analysis of aliasing errors are 
present ed. 

The investigat i on has been performed at the Labora tory 
of Computing Techniques and Au t omation , JINR. 
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