COOOWEHNA

0GbEAHHEHHOTD

, MHCTHTYTA

Y. - AAGPHbIX

L ‘ MCCABAOBANNA

%, RYGHa
E11-84-770

B.Naumann, M.Rudalics

A MICROPROGRAMMED PICK DEVICE

1984

1 Introduction

Device independent graphics systems like GKS [5], or the CORE
[3], provide an interface between an application program and a
configuration of graphical input and output devices by defining:
- a set of output primitives, which are abstractions of the
basic output capabilities of a workstation, such as line drawing
or curve generation, and

- a set of logical input device classes, which are abstractions
of. the concrete input capabilities of a workstation, like a
keyboard or a light-pen.. ’

The concept of logical input devices implies, that while an
application may not control a physical device and its behaviour
directly, it allows to simulate a physically not existing device
via software. One logical input device, the pick device, serves
for the identification of graphical entities. Usually, an
implementation will realize a logical pick device by supplying a
physical representation like a light-pen or a touch sensitive
panel, combined with some software.

A logical input device may be used for input in different
classes. One of the most popular uses of a light-pen is for
realizing an interaction, where a command is selected from a
command Tist displayed on the screen in form of a menu. In GKS
this interaction has to be performed by using a “"choice device".
A particular interaction technique which employs a command menu
may cause more than one device to be simultaneously operative in
one input class: A light-pen serves for pointing at a menu item
displayed on the screen, while a number or an identifier typed
in via keyboard selects the same item, depending on which device
the user will invoke first. Various interactions may be underway
on the same device simultaneously: a light-pen may be used at
the same time for selecting a command from a menu, picking an
item from a list of symbols, and dragging a cursor around. Each
of these interaction tasks corresponds to a different GKS input
class.

Although usually any interaction will involve input and
output of graphical data, picking is the only interaction which
_depends on graphical QFPUt which‘hasf routed to a

T AR ”';:52-‘"&‘.‘“ 1

W

7o TUAN

workstation before the interaction may start. Therefore in a
first part we will consider various aspects of graphical
interaction and describe GKS output and input facilities. In a
second part we will describe the environment in which our pick
device operates and present an algorithm which has been
implemented as a microprogram and realizes the central par@ of a
pick interaction. Finally we will comment on some alternatives
to the mainstream of device independent graphics systems and'the
possible impact of these alternatives on the design of our pick
device.

2 Interaction

We consider an interaction a process which permits a
useq/operator to use one or a group of input device(s) to
provide an application with a value. This process may be
accompanied by some sort of feedback to the user. Typically an
interaction will be performed in three phases:

In an initial phase the application has to create an
environment in which the interaction may come into existence.
This environment usually consists of the workstation where the
interaction will take place, one or a group of input deyices
which will take part in the interaction, and an appropriate
feedback and acknowledgment technique.

When a device is enabled (accessed) the user may be informed
(prompted) that the device is ready for use. During interaction
the user may receive information about the state of the
interaction with the help of a feedback. Various levels, see
also [8], range from no feedback at all (due to the fact that
the workstation is not capable of providing an appropriate
feedback or because the user/operator has temporarily suppressed
feedback), over simple device dependent echo (like a cursor or a
crosshair to indicate a location on the screen) and alteration

- of display attributes (highlighting of output primitives), to
feedback which is entirely controlled by the application.

When a device is disabled (released) the environment created
in the initial phase has to be deleted. An interaction may be
terminated by the user, when he has input a value or explicitely
refused to do so, or by the application, e.g., after a timeout
has occurred,

2

poe

An interaction requires the participation of up to four
individuat tasks which correspond to the building blocks
described in [6]:

(1) Input: The input task has te register user/operator
interactions on the device. Usually such operations will change
the internal state of the input task.

(2) Output: The output task provides feedback and acknowledgement
to the user. For simple device echo this task is closely

coupled to the input task, while for application controlled
feedback no direct connection between the input and output task
will exist.

(3) Transformation: During an interaction the type of graphical
data has to be changed, or the value obtained from an input
device has to be mapped or scaled before it may be passed to the
application. E.g., locator input may require a transformation of
impulses from a trackball to device coordinates for providing
device echo, and/or the transformation of a position in device
coordinates to a position in the coordinate system of the user,
before the location may be passed to the application program.

(4) Control of data flow: This task controls the external
{visible) state of tasks (1) to (3). While the internal state of
an input task alters whenever the user operates the
corresponding device, control assures that this action
(temporarily) does not affect other tasks: e.q., feedback is
suppressed, or transformation is postponed.

3 Output Primitives

GKS distinguishes six types of output primitives, namely
POLYLINE (a set of connected lines), POLYMARKER (a set of
centred symbols), TEXT (a character sequence), FILL AREA (a
polygon, hotlow or filled with a pattern or hatch style),

CELL ARRAY (an array of pixels), and GDP (generalized drawing
primitive - a category which allows to address the particular
geometric capabilities of a workstation, like a curve
generator). An output primitive may be "picked" by pointing at
the transformed and clipped representation of the primitive on
the display surface of a workstation. This representation is
controlled by one or a group of attributes which determine
shape, size and appearance of the primitive. Some attributes
take an active part in a pick interaction:

The PICK IDENTIFIER establishes a basic naming convention for
output primitives. Like other primitives' attributes the
PICK IDENTIFIER is bound modally to a primitive: consecutive
output primitives passed to a workstation are assigned one and
the same PICK IDENTIFIER until the latter is explicitely altered
by the application. The PICK IDENTIFIER is a static attribute:
onte assigned, a primitive retains its PICK IDENTIFIER for its
lifetime. PICK IDENTIFIERS need not be distributed uniquely:
the same value may be used for different consecutive groups of
output primitives.

The SEGMENT NAME provides an additional naming level for ;
output primitives. Like the PICK IDENTIFIER the SEGMENT NAME is
bound modally to a primitive: when a segment is "open" all
output primitives passed to a workstation are assigned as
SEGMENT NAME the name of this segment until the segment is
"closed". The SEGMENT NAME is a dynamic attribute: a primitive
may be reassigned a new SEGMENT NAME either explicitely by
renaming the segment containing the primitive, or implicitely
via inserting the segment containing the primitive into another
segment. SEGMENT NAMES are distributed uniquely: the same
SEGMENT NAME may be used only for identifying one group of
consecutively created output primitives.

The difference between the PICK IDENTIFIER and SEGMENT NAME
assignment conventions is illustrated in Figure 1. The usage of
integers for PICK IDENTIFIERS and SEGMENT NAMES in Figure 1 does
not imply that GKS prescribes this data type to an
implementation. It is the language binding, which finally
associates a GKS data type with a data type available in the
particular language used for the implementation.

PICK_IDENTIFIER := 4 PICK IDENTIFIER := 5 .
PICK _IDENTIFIER := 2 PICK_IDENTIFIER := 2

+ + + ¥
PICK IDENTIFIER +4 --eeecec-c---- 2 =<+ 5 oo ————r 2 -
time axis ------ +t)-eemmmm e + to~=> t3-em-- > tg----- +> tg-»
SEGMENT NAME -+ 1 —~cccmmmmmmmmm e o + 2 —meememee- >
+ *

‘SEGMENT_NAME sz SEGMENT_NAME := 2

Example: An output primitive “created" in period t; has assigned

PICK_IDENTIFIER 4 and SEGMENT NAME 1, a primitive created in
period t4 has assigned PICK IDENTIFIER 5 and SEGMENT NAME 2.

Figure 1. PICK IDENTIFIER and SEGMENT NAME assignment.

Non-retained primitives, i.e., primitives which have been
created when no segment was open, are not pickable and therefore
of no further interest to us. However, a correct pick process
has toc assure that non-retained primitives are not picked. Only
retained primitives, i.e., primitives which have been “put into
a segment” before, are pickable and may be assigned segment
attributes. Segment attributes which are evaluated in a pick
interaction are:

VISIBILITY - a primitive in a visible segment is displayed and
may be picked, a primitive in an invisible segment is not
displayed and cannot be picked.

DETECTABILITY - primitives in a detectable segment may be
selected by a pick device, primitives in an undetectable segment
cannot.

SEGMENT PRIORITY - a primitive in a segment with higher priority
has to be preferred to a primitive in a segment with Tower
priority, when they both overlap and are picked in the
overlapping region.

These attributes are dynamic attributes and may be reassigned
a new value either by using an explicit function
(SET VISIBILITY, SET DETECTABILITY, SET SEGMENT PRIORITY), or
implicitely, by inserting the segment containing the primitive
into another segment. The visual effect of some of these
functions on the display image may be postponed on a workstation
by setting the deferral state appropriately. Therefore a pick
interaction has to cope with the problem, that the display image
does not reflect the actual state of an application: A segment
may have been made invisible by the application, but the visual
effect of this operation - the disappearance of the segment from
the display screen - has not been yet accomplished.

4 Input Devices

GKS relies on the logical input device concept. A GKS
implementation has to simulate a logical input device with the
help of the physical capabilities of a (or a group of)
workstation(s). For a more distinct discussion of the GKS input
device concept the reader is referred to {12], and [13]. Here we
will try to give a short overview of GKS input classes and
operating modes before describing some pecularities of the pick
device.

A logical input device may operate in one of six input
classes, namely LOCATOR (to provide a position in the coordinate
system of the user), STROKE (to provide a sequence of positions
in the coordinate system of the user), VALUATOR (to enter a real
number), CHOICE (to select a non-negative integer), PICK (to
provide a status, a segment name and a pick identifier), and
STRING (to provide a sequence of characters). A logical input
device may be dynamically associated with any of these classes.
The GKS input device concept allows many to many relationships
between logical input devices and input classes to exist
simultaneously: A light-pen may serve at the same time to
provide input in the classes PICK and CHOICE, while a tablet and
a light-pen may be used simultaneously for selecting an input
value in the CHOICE device class.

The attributes of a logical input device are an operating
mode, an initial value, a prompt/echo type, an echo area, an
echo switch, and an (optional) data record.

A GKS input device may operate in one of three modes: In
REQUEST mode an input value is obtained by suspending the
execution of the application program until the user enters the
value or explicitely refuses to do so. In SAMPLE mode GKS
supplies an application with the actual input value without
waiting for user confirmation. In EVENT mode an input value is
appended on user invocation to an event queue. With the help of
special functions an application may examine the entries of this
queue.

During an interaction two processes may be active in addition
to the application process: a measure process and a trigger
process.

The measure process has to provide a measure. A measure
process for a device is in existence when the device
participates in an interaction. This is the case when the device
is either in SAMPLE or EVENT mode, or the device is in REQUEST
mode and a request for this device is pending, i.e., an input
value from the device has been requested by the application. A
measure for a logical pick device consists of a STATUS, a
SEGMENT NAME and a PICK IDENTIFIER. The STATUS may be OK or
NOPICK. If the status is 0K, SEGMENT NAME and PICK IDENTIFIER
observe the following rules:

- A segment corresponding to SEGMENT NAME exists, is visible and
detectable.

- A segment corresponding to SEGMENT NAME is present on the
workstation containing the pick device.

- A pick identifier corresponding to PICK IDENTIFIER has been

6

~

assigned to at least one output primitive contained in the
segment. At least a part of this primitive is present on the
display surface of the workstation centaining the pick device
and is not completely overlapped by primitives in a segment(s)
of higher priority.

Initial values for a measure may be supplied by the
application. These values have to be checked for validity as
soon as the measure process starts. When the application
supplied values do not provide a valid measure for the device,
they have to be substituted by device dependent values.

The trigger process synchronizes the interaction. Typical
triggers are the carriage return key for string input, or a
light-pen tip switch for pick input, Tight synchronization
between application and measure process is obtained in REQUEST
mode only: Activating the trigger process - firing a trigger -
indicates that the user has finished the measure process. As
soon as the trigger fires the input value is passed to the
application program and the measure process is deleted. In
SAMPLE mode the trigger process is inactive. An input value is
provided synchronously to the application only, the device is
polled by the application. In EVENT mode a firing of the trigger
will cause a value to be written into the event queue. This may
be realized by interrupting the application program.
Conceptually, an application should not notice the firing of a
trigger for a device operating in EVENT mode. Measures from
different devices may be appended to the event queue
simultaneously when a trigger fires. In SAMPLE and EVENT mode
various measures may be obtained during one interaction, as the
measure process will exist until it is explicitely deleted by
the application.

Prompting is issued as soon as the interaction starts, to
inform the user that a device is ready for use. Echoing provides
an appropriate lexical feedback to the user about the state of
the measure process during the time of interaction. The echo
area - a rectangular area on the display screen - may be used
for displaying prompt/echo information. A special switch allows
to turn echo on and off even while interaction goes on. For pick
devices the following echo types are preset by GKS:

21; Highlight the picked primitive for a short period of time.
2) Echo the contiguous group of primitives within the segment
with the same pick identifier as the picked primitive, or all
primitives of the segment with the same pick identifier as the
picked primitive.

(3) Echo the whole segment containing the picked primitive.

A data record may be used to supply device or implementation
dependent information. A pick data record could contain
indications about the size of the (virtual) view field of the
pick device, i.e., the area where hit detection is allowed, or
indications about the duration of echo.

Special attention has to be given, when a logical input
device operates in different classes. The interaction described

in the introduction of this paper which realizes a command menu,

may be implemented as follows when using GKS: A pointing device
like a light-pen is initialized for choice input. The name of a
segment which contains the commands in the form of text
primitives has to be supplied within the data record. When
interaction starts, the user is prompted by displaying the
segment corresponding to this name within the echo area.
Pointing at a primitive within this segment will cause the pick
identifier of the primitive to be mapped to an integer. This
integer is interpreted by the application program as number of
the selected command.

5 The Pick Device Environment

The hardware environment for our pick device is a
multi-microprocessor based intelligent graphics terminal (IGT)
[9], which may be characterized as a GKS workstation of type
OUTIN. The IGT distributes the various tasks of a graphics
pipeline (see Figure 2) among three processors:

- a monitoring processor, responsible for communication with
the host computer, dynamic memory management, and global
function distribution within the IGT,

- a transformation processor, responsible for coordinate
transformation and clipping of output primitives, and

- a display processor, which generates the display image on a
CRT and controls the input devices.

A bidirectional three-state bus connects these processors
with a common memory. The memory contains the graphical data
base [15], which combines the concepts of a workstation
dependent segment storage (WDSS), and a display list from which
the display image is refreshed. The WDSS contains the
description of retained output primitives in normalized device
coordinates and implements segment insertions with the help of
an instantiation concept. The display list consists of items
which contain the description of output primitives in device

8

Host

Device Interface =============z==z=z==3

Rind Segment
WDSS and Insert
Transformation

OQutput Primitives in User Coordinates

Evaluate Normalization Transformation

Retained Output Primitives in
Normalized Device Coordinates

Transformation
Clipping Processor

Display List

Display Processor

Figure 2.

Evaluate Remaining Geometric Attributes
(including eventual Transformations
resulting from an Insertion)

Output Primitives in Device Coordinates

Evaluate Non-geometric Attributes

Output Primitives on Display Surface

Evaluate Identification Attributes

Pick Measure

The IGT Pipeline,

coordinates, and corresponds to the WDSS but for the following
differences:

- Primitives out of segment may be contained in the display
1ist, the pick process has to ignore them.

- The hierarchy of graphical data is not preserved in the
display list, thus no pick ambiquities may arise.

cell, which is used by the memory manager for identifying the
type and size of the item. The display processor interprets the
type header as operation code for a function to be executed,
while the tail of the item is interpreted as parameters for this
function. Primitives in the display list are ordered according
to the priority of the associated segment. The choice segment
(when existent) is the first item of the display list. Other
segments are appended to the display list in falling priority.
Primitives out of segment and simple device echos are contained
in an undetectable virtual segment located at the end of the
display list, i.e., immediately before the trap command. The
trap command is necessary for synchronizing the display process
with a constant time rate after a refresh cycle has been
completed. Ordering segments according to their priority permit
the pick algorithm to ignore priority resolution at all.

A1l items contained in the data hase are headed by a type %

Segment names and pick identifiers are stored in the display
list as integers, any translation to a different data type has
to be performed on a higher level. Implicit specification
techniques like pointers or indirect references have not been
employed: Due to the concepts of deferred actions and EVENT mode
input an item may be deleted from the display list while
interaction goes on - a dangling pointer would result. Storage
in the form of a text string would have defeated the
capabilities of the more specialized components of the display
processor.

The display processor (see Figure 3) consists of:
- a universal fixed instruction set microprocessor based part
(UP), which realizes communication and synchronization with the
other processors and serves various input devices like the
keyboard or a trackball, and
- a special graphics processor (GP) based on bipolar processing
elements., The GP autonomously scans the display list to generate
output on a vector refresh tube and handles input from the
light-pen. While the GP is capable of independently reading data
from the common memory, it may write only to a dual-port memory
situated between the UP and the GP. Therefore, any information
about an interaction with the light-pen has to pass through the
dual-port memory where it can be read by the UP. The light-pen

10

System Bus §

[]

INT

Universal Micro-processor - UP

(18080)

Dual-Port Memory
(16 two-byte registers)

Figure 3.

Graphics Processor - GP
(eight 13002 slices controlled by two SN74$482 slices)

Display

Q Light-pen Interrupt
R Flip-flop (78474) S
T)

! L

from 1ight-pen high

Structure of the Display Processor (simplified).-

11

consists of a simple optical element which reacts to the passing
beam of the vector device under the viewing field of the
light-pen. Impulses from the light-pen are written into a
light-pen interrupt flip-flop which is polled by the GP. The
d-latch used for realizing this flip-flop goes high with the
first impulse from the light-pen and remains high until it is
explicitely cleared by the GP.

6 The Pick Algorithm

The pick algorithm has been designed according to two rules:

- Time critical sections, like identification of the picked
primitive and performance of echo have been implemented as
microprogram on the bit-slice processor (GP).

- Other parts of the algorithm, like interpretation and
propagation of the pick measure are implemented on the universal
microprocessor (UP).

In Figure.4a and 4b the interaction part of the pick algo-
rithm is described in the form of a state transition diagram.
Recently, state transition diagrams (or state graphs) have been
used to describe the external behaviour of interactive systems
4], [7]. Our pick algorithm describes the internal behaviour of
a pick automaton which reacts to user activation in a defined
way. Each state of the automaton is represented by a circle. A
transition between two states is represented by a directed arc.
Transitions are defined by:

- conditions which have to be satisfied for the transition to
occur {conditions are indicated by expressions enclosed within
parentheses), and _

- side-effects the automaton will perform when the transition is
made (side-effects are indicated by assignment statements
seperated by semicolons).

When a transition is made, other side-effects may occur which
have no impact on the execution of the pick algorithm. The
evaluation of a condition is based on the analysis of the
operation code of a function the automaton has to perform. Three
transitions which do not cause the automaton to change state
have not been indicated in the figures as they may occur in any
state of the automaton:

- When a new segment is encountered (op _code = SEGM) the name of

this segment has to be remembered as current segment name
(c_segm name := segm name) and the current number of the

12

i

[0 +1]
blink := OFF;
Ip_int := FALSE

[1 + 2]
op_code = TRAP) &
(1p_int = TRUE)

{3 > 2] {2 + 3] [2 > 5]

op_code = SEGM) & op-code = SEGM) & op_code = TRAP)

(1p_int = FALSE) & (visib = TRUE) &

((visib = FALSE) v (detec = TRUE) status := NOPICK;

(detec = FALSE)) . echo_time := TIME
1p-int := FALSE l\‘

=[3 + 5]
op_code = TRAP) &
(1p_int = FALSE)

{3 +5] {3 »AJ

op_code = TRAP) & op code # TRAP) & status := NOPICK;
(Tp_int = TRUE) (1p_int = TRUE) echo_time := TIME
status := PICK; status := PICK;

p_segm name := C segm name; P _SegM hame := C_Segm name;

p_pick=id := c_pick_id; p _pick_id := c pick=id;

p_prim nr := ¢ prim nr; p_prim nr := c_prim nr;

echo_time := TIME echo_time := TIME

ES +1]
op_code = TRAP) &
((echo_switch = OFF) v
(echo_time = 0))

}op_code = TRAP) &
(echo_switch = ON) &
(echo_time # 0)

Ip_int := FALSE echo_time := echo_time - 1

4

Figure 4a. Pick Algorithm - Identification,
13

[6 +5
op_code = TRAP)

echo_time

7+ SJ
op_code = TRAP)

blink := OFF;

echo_time := echo_time - 1

)

(e o type = I

:= echo_time - 1

{6 +7
op_code = PRIM) &
prim_ar = p prim nr) &

5 » 6}
op_code = SEGM) &
(p_Segm name = segm n_name) &
(status = PICK) &
(echo_switch = ON) &
(echo time # 0) &
{(echo_type = 1; j9+5
(echo_type = 2)) op_code = TRAP)

blink := OFF

(status = PICK) &
(echo_switch = ON) &
(echo_type = 3)

blink := ON

blink := ON
{8 > 6] 6 + 8]
op_code = PRIM) & op_code = PRIM) &
(c_pick_id # p pick_id) (c_pick_id = ick_id) &
(echo_type = Z)y
blink := OFF
btink := ON
{7 »10] 9 »11]
op_code # TRAP) op_code = SEGM)
blink := OFF blink := OFF
!8 +10] {8 + 5]
op_code = SEGM) op_code = TRAP)

blink := OFF blink := OFF;

;10 »5] 1 » 5]
op code = TRAP) op_code = TRAP)
echo_time := echo_time - 1 echo time := echo_time - 1

echo_time := echo_time - 1

echo_time := echo_time - 1

|
gs’gl '\
op _code = SEGM) &

p_segm name = segm name) &

Figure 4b.

14

Pick Algorithm - Echo Performance.

primitive within the segment has to be initialized

(c_prim nr := 0).

- When a pick identifier is encountered (op_code = PICK ID) the
corresponding pick identifier has to be remembered

(c_pick_id := pick_id).

- When an output primitive is encountered (op_code = PRIM) the
current number of the primitive within the segment is augmented -
(c_prim nr := c prim nr + 1).

Before interaction may start, initial values which have been
provided by an application have to be checked for validity. Here
we will only outline how this is achieved. If the initial status
is PICK, the pick algorithm has to proceed the entire display
list, whereby it has to check (a) if a segment according to the
initial segment name is included in the display list and is
detectable, and (b) if this segment contains at least one
primitive corresponding to the initial pick identifier. When the
check fails, the initial status is set to NOPICK.

State 1 is the state of the pick automaton after interaction
has started or after a measure has been obtained. Whenever
state_1 is entered, the llght -pen interrupt flip-flop is cleared
(1p_int := FALSE) and echo is turned off (blink := FALSE).
State 1 is left when a light-pen interrupt is encountered at the
end of a refresh cycle (Ip_int = TRUE) & (op _code = TRAP).

In state 2 the next visible and detectable segment (which due
to reasons explained in the previous section is always the
segment with the relative highest priority which has not been
investigated yet) is searched. When a visibTe and detectable
segment is found (op code = SEGM) & (visib = TRUE) &

(detec = TRUE), the Tight-pen interrupt flip-flop is cleared and
state 2 is left.

In state 3 has to be investigated whether an interrupt from
the light-pen has occurred during the output of the last
primitive. When this is the case (Ip_int = TRUE) the name of the
segment the primitive belongs to, the current pick identifier
and the current number of the primitive in the segment are
remembered. These operations are performed before evaluation of
the parameters of a new function will alter the current values.
The status of the measure is set to PICK. When no interrupt has
been registrated the next segment is inspected. When this
segment is invisible or undetectable the automaton will return
to state 2. When in state 2 or state 3 the end of the refresh
cycle is reached the automaton has failed to find a picked
primitive, the status of the measure is set to NOPICK. This may

15

occur when the user has pointed at a non-retained primitive, a
primitive in an undetectable segment, or at a device echo.

In state 4 the end of the current refresh cycle is expected
without further activities. . i

_ Before entering state 5 echo time has been initialized to an
}mplementatlon dependent value (echo time := TIME). When echoing
is on (echo switch = ON) the echo process is started. When the
status_of the measure is NOPICK a dummy echo is performed until
echo time has elapsed (echo_time = 0). When the segment
containing the picked primitive is encountered

(op_code =_SEGM) & (p_segm name = segm name), echoing is
pe?formed in dependence from the echo type. For echo type 3
blinking is immediately turned on and remains on until output of
the segment has terminated.

In state 6 the picked primitive (for echo type 1) or all
primitives of the segment with the same pick identifier (for
echo type 2) are searched.

- For echo type 1 the current number of the primitive within the
segment has to be compared to the number of the picked primitive
(op_code = PRIM) & (c_prim nr = p_prim nr). When the test
succeeds blinking is turned on. =

-'For_echo-type 2 the current pick identifier is compared to the
?1ck identifier of the picked primitive

op code = PRIM) & (c_pick_id = p pick_id). When the
blinking is turned on. e e
when @he trap function is encountered in state 6, the automaton
immediately returns to state 5. 7

In‘sta§e] the echo function for echo type 1 is terminated,
blinking is turned off. When the end of the refresh cycle is
reached, the automaton returns to state 5. :

In state 8 the echo function for echo type 2 is either
§uspended when the pick identifier changes (in this case state 6
is reentered) or terminated when a new segment or the end of the

refresh cycle are encountered {(in this case the a
back to state 5). e

In state 9 the echo function for echo t i i

i ype 3 is terminated.
When the end of the refresh cycle is reached, the automaton
returns to state 5.

In state 10 and state 11 the end of the current ref
_ _ |] resh cycle
is awaited. After that the automaton returns to state 5. ;

16

The algorithm is essentially self-contained but for the
propagation of the measure. The measure is complete when state 5
is reached. The identification of a graphical item requires no
more than two refresh cycles: one cycle in which the first
impulse from the light-pen is recognized, and one cycle in which
the display list is scanned to find the picked primitive. When
state 5 is entered the UP is interrupted and may read the
measure from the dual-port memory. Any further interpretation of
the measure (including mapping to choice integers) is performed
by the UP. The actual implementation of the algorithm has been
accomplished with the help of a universal meta-microassembler
and some hardwired logic for testing purposes.

7 Alternatives

Two aspects of device independent graphics systems have
become a bone of contention:
- The logical input device concept does not permit an
application to address or change device properties on a lower
level. Thus interaction techniques are ruled out, which depend
on the presence and/or behaviour of a particular device.
- An application is inhibited to bypass logical input devices,
as device independent graphics systems assume full power over
all graphical resources.

Problems encountered when an interaction technique depends on
the presence of a specific device are discussed in [2]. The
logical pick device concept has attracted some criticism due to
the fact, that in some applications a two-level identification
of graphical entities is not sufficient. Typed picking (also
considered a remedy for the resolution of picking ambiguities)
has been proposed instead [10], [11]. The designers of user
interface management systems and “screen handlers" have to cope
with another problem: Who assumes the responsibility for
graphical interactions, the application, the graphics system, or
the interface manager ? Subjects concerned in this context are
event queue management, provision ofacknowledgement,graphica\
rubout, et al.

Our display processor is suited for the implementation of a
user interface management system with internal control [14].
Effects on the pick algorithm should be within reasonable
boundaries. Typed picking would occupy some additional registers
in the dual-port memory for storing types of picked entities,

17

the pick algorithm should become only slightly more complicated.
The introduction of picking hierarchies would require to alter
the present structure of the display list with minor
consequences for the pick algorithm. Keeping away particular
interaction techniques ar styles from the microprogram level,
should assist in the adaptation of the pick algorithm to future
expansions,

References:

(Reference [1] is not cited in the text)

[1] Graphical Input Interaction Technique (GIIT), Workshop
Summary. Computer Graphics 17, 1 (Jan. 1983).

[2] Ruxton, W. Lexical and Pragmatic Considerations of Input
Strucutures. 1In: [1], pp. 31-37.

[3] Status Report of the Graphics Standards Planning Committee.
Computer Graphics 13, 3 (Aug. 1979).

[4] Dwyer, B. A User-Friendly Algorithm. Comm.ACM 24, 9
(Sept. 1981), 556-561.

[5] Draft International Standard ISO/DIS 7%2, Information
Processing Graphical Kernel System (GKS), Functional
Description, Version 7.2, NI-5.9/1—83, Nov. 1982.

[6] Green, M. A Catalogue of Graphical Interaction Techniques.
In: [1], pp. 46-52.

[7] Jacob, R.J.K. Using Formal Specifications in the Design of
a Human-Computer Interface. Comm.ACM 26, 4 (April 1983),
259-264. .

[8] Kasik, D. Software Tools and Techniques. In: [1],
pp. 20-24.

[9] Leich, H., Levchanovsky, F.V., and Prikhodko, V.I.
A Multi-Microprocessor Rased Intelligent Graphics Terminal.
Microprocessors and Microprogramming 12 (1983), 175-180.

18

[10] Dlsen, D.R., and Dempsey, E.P. SYNGRAPH: A Graphical User

Interface Generator. Proc. of SIGGRAPH.'83, Computer
Graphics 17, 3 (July 1983), 43-50.

{11] Olsen, ND.R. Automatic Generation of Interactive Systems.
In: [1], pp. 53-57.

[12] Rosenthal, D.S.H., Michener, J.C., Pfaff, G., Kessener, R.,
and Sabin, M. The Detailed Semantics of Graph1§s Input
NDevices. Proc. of SIGGRAPH '82, Computer Graphics 16, 3
(July 1982), 33-38.

iliti To Use
13] Rosenthal, D.S.H. The GKS Input Facilities and How
L13] Them. Computer Graphics Forum 2, 2/3 (Aug. 1983), 97-103.

[14] Rosenthal, D., and Yen, A. User Interface Models Summary.
In: {1], pp. 16-20.
[15] Rudalics, M. An Intelligent Graphics Terminal's

Intermediate Data Base. Proc. of Eurographics ‘83,
North-Holland Pub., (1983), 383-392.

Received by Publishing Department
on December 12, 1984,

19

-

B 06veauMHEHHOM WHCTUTYTE AQEPHBX MCCNEAOBaHMIM Hauan
BuxoauTh cbopHuk "Hpamxue coobuyenus OHAH", B Hem
OyAyT nomewaTbCA CTaTbM, COAEpKalMe OPUTMHANbLHBE HayuHue,
HayUYHO-TexHUUYeCKue, MeToaMUECKME M NPUKNagHWe pe3ynbTaTh,
Tpebyoumne cpouHon nybnukauuu,. Byayuu uacTsew ''CoobweHus
OUAKU"', cTaTbu, Bowegwue B COOPHMK, UMEOT, KaK U ApPyrue
n3panua OMAU, cratyc odpuumanbHeXx nybnukauymi,

C6opHuk '"Kpatkue coobueHnn OUAW'' 6GyneT BHXOAUTL
perynspHo.,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators.

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter,

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly,

e

fs 0 IQ‘:

gy

EEETL L R AT I KR T

Haymanu B,, Pymamuu M, E11-84-770

IIlporpamMMHOe obecreueHHe CBETOBOr'0 KapaHmama

HepaBHue ycunua B CTaHAApTHSaUuM rpadHYecKoro nporpaMMHOro
ofecneueHHs NPHBIEKIIH BCe YCHNHMBawmeecs BHHUMAHHE CO CTOPOHHI
paspaboTuHKOB rpadHuyecKHX NpHGOPOB, 3Ta TeHIEHUHA Jyulie BCEro
WILTIOCTPHPYETCA pas3paboTkoi pabouux cTaHuu#t ¢ BcTpoeHHsMH CORE
u GKS dyHKHHMOHANbHBMHM BOSMOXHOCTAMH, CTaHpmaprT GKS Takxe oxasan
BIIMSIHHEe Ha paspaboTKy HHTEIUIeKTYallbHOr'o rpadHyeckoro TepMHHAanNa
/MI'T/ B OWAH, Ompepmenenne u peanusamus pick device kax cpep-
cTBa BBOJa, KOTOpoOe HUcHofibsyeTca nnfa Bbofopa rpabHyeckux ofnex—
TOB HAa 3KpaHe OUCIUIes KOHKpeTHo nnsa HUI'T, saBisercsa mpeaMeToM
DaHHOH cTartbu,., OnpepesneHue GasUpyeTcA Ha oOlleHKe COOTHOMEHHA
koHnenuuit "aGcrpaxTHeil'" BuBOO M ''normueckwuit’ BBOom. HmeHTHbMKa-
muA rpabuueckoro o6bekra H obecnevyeHHe 0GpPaTHOH CBASH K HCHOJB-
3oBaTemo npepcTaBusiercs B dopMe guarpaMMum COCTOSHMI TIepexona.
llonxon, sawmovalomuiicd B NMPHMEHeHHMH TeXHUKH dopMalibHOro omnpene—
JleHHsA, OKAasaJiCA BeChMa MNOAXOOSAMMM NPH DeajilisalHH aJITrOPHTMOB B
MHKDQKOLE . :

PabGoTa BrmoJsiHeHa B Jla6opaTOpHM BBIMHCIIHTEIBHOH TeXHHKH
u aBToMaTtusanuu OHAU. ‘
' CoobmeHHe OGbenMHEHHOrO MHCTHTYTa AflePHMX HccllenoBauuil. [ly6mua 1984

Naumann B., Rudalics M. E11-84-770

A Microprogrammed Pick Device |

Recent efforts in the standardization of graphics software
have received increasing attention from the designers of gra-
phics devices.This trend is best exemplified by the development
of workstations with inbuilt CORE and GKS functionalities. GKS
has also influenced the design of an intelligent graphics termi-
nal (IGT) at the Joint Institute for Nuclear Research.Specifica-
tion and implementation of a pick device — an input tool which
is used to select graphical entities on a display surface - for
the IGT are subject of this paper. Specification has been based
on an evaluation of the interrelated concepts of "abstract"
output and "logical" input. The indentification of a graphical
item and the provision of feedback to the user are presented in
form of a state transition diagram. The approach to use a for-
al specification technique has proven to be of great assistan—
ce in the actual implementation of algorithms in microcode.

The investigation has been. performed at the Laboratory

of Computing Techniques and Aytomation, JINR.
Commugicati%n of thquofnt lnst?tute for Ruclear Research. Dubna 1984

