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1 • INTRODUCTION 1;-. 

Experimental-data processing in physics often requ~res the 
numerical solution of operator e·quations of the t;.ype 

.Fx .. У, ( 1) 

where У t;Rmis the vector of quantities measured, х '"R 0 is 
that of unknown parameters and .F is the operator (nonlinear or 
linear) transforming R0 into Rm. This operator corresponds 
to the mddel we want to apply to the dat? processed. The prob
lem formulated is usually overdetermined, i .. e., m> n (and 
often m »n). When solving : numerically equatiotis of this type 
Ьу means of gradient or Taylor-series methods the necessity 
arises to deal with matrices built as 

т 
А= J J • (2) 

where J represents the (m xn) Jacobi matrix of F. Obviously, А · 
is positive-definite and its condition number is 

condA = IIAII • IIA - 1 11 , (З) 

the norms being those wh1ch suit best the proЬlem considered. 
In this paper we shall ь·е interested most of Euclidean (spect- , 

· ral) norms 11·11
8

; due to the special property of these, how
ever /1/ , 

11·11 8 = infll·ll ,, ' (4) 

the conclusions remain in force for other norms, too. 
For the well-known reasons it is advisaЬle to take certain 

care of lowering condAas much as possiЬle. We want to consider 
the "computationally trivial" 121 operation of scaling 

А'= DAD (5) 

as а means of improving condAand, in particular, the search of 
such а scaler D' that either leads to 

cond (D 'А D ') .. min cond (DAD) 
D 

or, at least, is coming close to it. 

(б) 

In section 2 а brief overview of previous results is given; 
section 3 deals with some geometric properties of matrices . J 
and А and uses such ~e.rties for-·-t:Ьe eo~truction of а simple 

~: 

"' . : . . ~- "' 

,.-· 
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scaling approach; then, in section 4 the results of numerical 
experiments and co~parative evaluations are presented which 
lead to the conclusions of section 5. 

! 
2. ТНЕОRУ AND PRACTICE OF SCALING 

Scaling has been considered in the past Ьу many authors and 
from various points of view (see, e.g., / 1-11/ ). It appears to Ье 
generally recognized that the proЬlem of optimum scaling is far 
from а satisfactory programmaЬle solution. In our view а prac- · 
ticaЬle approach is within reach since а long time but has 
been used with relative rarity and caution. 

То avoid additional round-off errors D is most often built 
of integer power of the base used 13•5• 10• 11/ • It is known/3/ 
that in this case any possiЬle benefits 'are due to the diffe- . 
rent selection of pivot elements as compared to the non-scaled 
matrix manipulation. However, the actual definition of scaling 
f actors in these papers remains without solid theoretical founda
tions. 

If the operator .F is а linear superposition of similar func
tions (e.g., in processing of sectroscopic data), . then it may 
Ье shownЛl/ that ill-condit_ion of А originates ptimarily from 
the presence of strongly-varying amplitudes in .F. Hence, а 
remedy may ое sought for i n the form of а scaling matrix that 
introduces internal (computatioцal only) measuring units for 
the amplitudes in such а way as to make them all equal (or, at 
least, of the same order of magnitude). This sort of scaling 
may Ье called "physical". Our experience shows that it is extre
mely useful . However, it requires non-formal analysis of the 
proЬlem deait tvith and,of course, it· lacks generality. 

Departing from statistical considerations Мarquardt16 1 point s 
out that а suitaЬle scaling matri x D may Ье constructed from 
the main diagonal of А, 

-1 / 2 -1/2 -1 / 2 
D = diag (А 11 , А 22 , ... , А nn ) • (7) 

This transforms А into the correlation matrix of parameters 
.sought for. It is this approach that we consider neglected, i . e ., 
not used in practical computations as frequently as it should 
Ье. 

А thourough theoretical treatment of scaling for а variety · 
of absolute norms including all HOlder ones is gi'ven Ьу Bauer 121 

whose results are not limited to symmetric matrices. In that . 
paper the nonsingular square matrix А is considered as а me t ric 
in dual spaces · ~ and ~H,where norms are introduced with Holder 
exponents . р and q, respectively, i.e., 
уИАх = (уНА)х = уИ(Ах), 1 (8) 

2 

". 
Then i t i s pr oved t hat 

min cond (D1 AD 2 ) 'S_ "(Р), 
Dl' 1?2 

,. 
(9 ) 

'where 77 i s the Perr on r oot (e igenvalue) of the positive matrix 
Р = IA 1 • IA - 11. Moreover, thi s minimum is reached for_ D'1 and D2 
as follows 

D 1 = у ~ /р Х l1 / q } 

о = у-1 /рх 1/ q 
2 2 2 

(10) 
\ 

нhere х1, х2~ у 1' у2 a r e diagona l ma t r ices sat i s f ying the eigen
vec tor equat~ons 

Р Х 1 е = ;rX 1 е 

еТУ1 р 

Р' х2 е 

77еТУ1 

77Х 2 е 

еТу2· р, = 77еТУ2 

while е = col(1, 1, ... , 1), 

( 1 1) 

е т= row(1, 1, ... , 1) , and 

р, = IA - 1 
1 • IA 1 • ( 12) 

This means that t he optimum scaling matrices (10) are expressed 
through the right and left Perron eigenvectors of positive mat
rices Р and Р'. Note t hat these two are, in general, different, 
s ince IA 1 and IA-1 1 are not bound to have а zero commutator . 

Furthermore, for t he cases of maximum (р .. q ... "") and sum 
(р ." q = 1) norms equality holds in (9). For the maxi mum norm 
equations (10) take the form 

·D1 . = Х 1 -1 } 
(13) 

D = Х 
2 2 

As far as Euclidean (р = q = 2) norms are concerned the notion of 
checkerboard sign ~istribution is of i mportance . А matrix 'G 
i s said to have а checkerboard sign distribution i f i t can Ье 
written in the form 

·о "' Е 11'01 Е2 , 

where 

IE tl = IE21 = 1 . 
1 • 

...-' 

(1 4 ) 

( 15) 
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In Euc1idean norms (9) is an equa1ity when А has а checkerboard 
sign distribution and an unequa1ity when А has not. 

Note a1so that for Hermitean matrices АН= А 

Р'=Рт , (16) 

hence, the 1eft . (right ) eigenvector of Р is a1so а right (1eft) 
eigenvector of Р' and, accord ing1y, the optimum sca1ing is 
reached when D1 = D2 = D •. 

It shou1d · be c1ea r that these exp1icit formu1ae are not 
sui taЬle for immediate use in numerica1 ca1cu1ations for the 
reason that they express the optimum sca1ers of А via its inver
se А- 1 

• .Тhеу are precious, however, wi th the possibi1ity they 
offer of eva1uating the effectiveness of sca1ing. 

3. ТНЕ ISOPERIМETRIC SCALING 

Let us note that since for any constant с ~ О 

cond·(cA) = condA, (17) 

we may 1imi t our discussion to the case of such sca1ing matrices 
which preserve SpA, For symmetric matrices A.bui1t according to 
(2) it appears convenient to accept the convention 

Sp(DAD) SpA = n, 

i. е., 

n 
~ 

i= 1 

2 n 
d · aii = ~ aii 1 1 = 1 

= n • 

When J is a , fu11-rank matrix, А is pos itive-definite, 
n 

detA = П Л . 
i = 1 1 

and 
n 

SpA ~ л . . 
i = 1 1 

(18) 

(18а) 

(19) 

(20) 

Symmetric sca1ing is а coщ~ruency and does not 'preserve the 
eigenva1ues IЛ 1 1; however, in accordance wi 'th ( 18) the. one we 
consider 1eaves unchanged their sum SpA, Now, app1ying Cauchy' s 
unequa1ity to the set of eigenva1ues we obtain 

detA ~ (SpA/n)n = 1, (21) 

where detA = 1 if and only if а11 the eigenvalues of А equal uni
ty,- i.e., when condA=I. 

4 
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Let А Ье scale according to (7), i.e., 

А ii = 1, i = 1,2, ... , n 

and let its determinant Ье 

detA < 1 . 

If we now carry out another nontrivial scaling which obeys 
(18) we obtain 

. n 2 
det(DAD) = detA · П d . , 

i= 1 
1 

Again, Cauchy's unequa1i t y yields 

n 2 
п d i < 1 • 

i = 1 
Therefore, if А has been pre-sca1ed as in ( 22) then 

(22) 

(23) 

(24) 

(25) 

det(DAD) < detA ' (26) 
for any non-trivial . s caler D. 

This relation may Ье interpreted geometrically. Indeed, due 
to (2) А m~y Ье regarded as the Gram-matrix of the n independent 
columnvectors of J. Then detA has the meaning of the squared 
volume of the n-dimensional hyperparallelepiped built over t .he
se vectors, while SpA is the sum of their squared Euclidean 
lengths. The directions of these vectors are not affected Ьу 

scaling. In view of such an interpretation (26) may Ье thouglit 
of as belonging to the class of isoperimetric unequalitiesЛ2 / 
and we propose to call Marquardt's scaling (7) ISOPERIМETRIC . 

Naturally, the isoperimetric scaling is different from (10) 
and may coincide with it in the very exceptional case of Р 
being symmetric. Ву the way, it is always so when n =2 but, in 
this case the optimum scaling is easily solved analytically'. At 
n > 2 the isoperimetric scaling appears attractive for at least 
two reasons: (а) it is indeed "computationally trivial", rather 
economic (-n 2 divisions per matrix) and does not require any 
preliminary knowledge of the inverted matrix; (Ь) as· а greater 
determinant generally indicates that а matrix is far from de
generation, it may Ье expected that the condition of isoperimet
rically-scaled matrices lie in the vicinity of the theoretical 
optimum. 

4 . NUМERICAL EXPERIМENTS 

We carried out а series of numerical experiments to evaluate 
the different condition numbers of matrices scaled isoperimetri
ca11y and optima11y. А11 the computations were carried out in 
single precision (24-bit mantissae) on SM4 which is equivalent to 
PDP-11/30 at machine-instruction level. 
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4.1. The first t wo examp les may also Ье checked analytically 
and are intended to make clear the technique of comparison. 

а) Both types of . scaling coincide 

('/3 -у2/з - из) 
А = -у2 /3 4/3 о ' SpA = 3, det А = .4/27 . 

1/3 о 4/ 3 
~ 

The isoperimetric scaler D1 is Dt = diag(y 3, у3/2, у3/2) and yields 

1 -11у2 112 

A 1 =D
1

AD
1 -11/2 1 о SpA

1 
= 3, detA

1 
= 1/4. 

1/2 о 1 

An attempt to scale А 1 further accordinp, to ( 1 О) wi.th р = q = 
2 reveals that Р = \ А 1 1·\А j 1 1 is symmetric. hence the scaler 

D = I and no further improvement of condition is attainaЬle. 
i->0 (1) - -. - · (i) Here 7Т(J) = 7 + 4";3, condA ·- (23 + 5 у 21) /2, condA 1 = condA 0 ". 1Т(J) 

(both А and А-1 have а checkerboard sign distribution) . 
, Ь) Isoperimetric sc.aling differs from the optimum one (this 

is the example of / 2/ prescaled to satisfy eq. ( 18)) 

А= 

( 

1/3 

1/3 

1/ 3 1 

1/ 3 

':') 2/ 3 

The . two scalers are: 
isoperimetric 

SpA = 3, detA = 1/ 27 • 

D1 = diag(~З, уЗ/2, 1/у2) 

optimum Do = diag (3/2, уТБ/ 2у2, 1 1 у 2) 

and lead to: 

1 1/у 2 

А 1 = D1 AD 1 = ( 1!V2 1 

1/VB у3/2 

1!/6) 
у3/2 , Sp А 1 = 3, det А 1 = 1/12 

- - · 

( 

3/ 4 у 15/4у2 

А 0 = D0 AD0 = [i5/4y2 ~-
1/2у 2 у 15/4 
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1;2у2 \ 

у 1:/4 ) ~. SpA 0 = 3, det А 0 = 5/64 • 

1.· .. ,, 
' t. 

.~ 

The condition numbers are as follows : condA = (4+yls)
2
",61 . . 98, -2 . 

condA 1 "'39. 54, condA о="( Р) = (З+у 10) "' 37.97. Again, the 
root 11 is reached because of checkerboard signs in both А 
and л-1 • 

4.2. This second series deals with Hilbert matrices of order 
2 to 8. These are known to Ье particularly ill-conditioned, and 
this fact ' is not due to non-balanced columns or rows. Never
theless, it seems instructive to consider the results (see 
the ТаЬlе) which show а slight improvement in condition, thus 
illustrating the limits of scaling . 

Since for Hilbert matrices the checkerboard sign distribution 
holds throughout, optimum scaling is attainaЬle, at least in 
theory. However, the last two rows in the ТаЬlе are, obviously, 
unreliaЬle. Here the initialcondA exceeds the i nverse machine 
epsilon; hence round-off errors render the calculation of D0 
practically impossiЬle. 

Table 

Scaling of Hilbert matrices 

Order Cond1t1on nuabers Dirference 

Unвoaled Isoper11D.etr1c Opt1Diula r-o 
1. 

(I) (О) о 

2 19 14 14 о 

3 524 286 . 254 -12 . 
26 

7 't' 

4 15512 7415 5875 
5 4. 76:&+5 2.11:&+5 1. 52:&+5 38 
6 1. 45:&+7 5.86:&+6 4.04:&+6 45 
.7 3.05:&+8 2.378+8 1. 59:&+8 49 
в 7.56:&+8 2.18:&+8 1.19:&+8 85 

4.3. In the third series we generated random matrices J with 
elements JiJ c&tXj with а!<; (0,1ooo]and XJ <;(-1,1],both ai ' 
and xJ hav1ng uniform distributions. Then positive-definite 
matrices were built according to (2) and their condition eva
luated wi th and wi thout scaling for orders 2 :S n :S 40. А checker'
board sign distribution can appear here Ьу pure chance; therefo
re, the theory gives an upper bound for cond(DAD).The isoperi
metric scaling ensured condition numbers of the. same order of 
magnitude as the optimum one. Differences were computationally 
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insi'gnificant and lay between 1 and 40% (mos t of ten 10-15%) 
in favour of optimum scaling . The only except ion was а differen
ce of 134% which appeared in а matrix wi th ini tial cond.A.-8 .1 08 • 

Evidently, this case is unreliaЬle for the same reason as in 
4.2. 

4.4. The fourth series made use of actual iteration- stop 
matrices generated during у -spectra processing Ьу means of 
КАТОК program / 11/ , In this code а physical scaling is 
currently used, so there was а possibility of comparison among 
condition numbers which f ell i n t he following ranges : 

unscaled matrice s 106 -1014 
phys,i cal scaling 1 о2 -1 О Б 
isoperimetric scaling ' 100 - 10 2 

opt imum s ca ling 10° - 10 2 

The quali t y of optimum scaling r a re ly exceeded that of t he iso-
pe r imetr i c one Ьу more t han а few percent. . 

.4 . 5. Las t but not least, we incorporated the isoperimetric 
s ca ling i n . а computer code which modeled t he dat a processing 
of continuous ~- spectra and, i n parti ~ular, the i r high- ener gy 
edges. The shape of s uch spectra is des cribed Ьу а reliaЬle 
t heory. Th is code was based on the wel l-known FU11ILI minimiza
t i on program1 131 whi ch makes use of an iteration-step cut-of f 
t o avoid divergencies. Apa rt from introducing the scale-de scale 
procedure nothing was changed in the code as а whole. Despite 
the fact that this actually me.ant an increase in the number of 
operations Ьу n square 'roots and n(n ,+ 1) multiplications/ divi
sions per iteration, processing time decreased sharply Ьу а 
factor of 3-4 at the same quality of solution found. We explain 
this apparent paradox with the betteF condition of matrices in
volved which prevented the activation -of the cut- of f procedure 
in FUМILI and lead to the same solution in а much lower number 
of itera tions. In other words, а more adva~tageous t ra j ector y 
of the iteration process was achieved Ьу means of scaling. 

5. СОММЕNТS AND CONCLUSIONS 

It is knowrl4·14i that matrix condition i n Euclidean norms 
may Ье regarded as а quantitative measure of the ani sotropy 
introduced into Rn Ьу the mapping A.When А is built i n accordan
ce with (2) it has the structure of а Gram matrix of n i ndepen
dent vectors in R m, Therefore, condAdepends on these n vectors. 
One can ea sily imagine two limi t cases of l a rge anisotr opy : 
when the vectors are orthogonal to each other but s trongl y di f
fer in .length and when all the _lengths are equal but the space . 
arrangement i s very fa r from orthogonal. These two case s may Ье 
termed "linear" ·and "angular" respectively . In pract i ce we deal 
with matrices which l i e between but, nevertheless, the reasons 
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for their high condition number s may Ье predominantly l inear as 
in 4.3-4.5 or pr edomi nantly angular as in the case of Hilbert 
matrices . Actually, Bauer's theor y of optimum scaling i s а de
mons tra t ion of two basic facto r s : ( а) angular and linear caнses 
of high condition numbers ar~ i nter related, optimum scalers · 
being expressed via А - 1, where lengths ·and angles combine t o
gether; (Ь) the angular arrangement puts а lower limit to cond:A 
attainaЬl e Ьу scaling (see 121 Theoreмs IV-VII). 

The results of our numerical experiments show that the reason 
of ill - condition in physical proЬlems of the class formulated 
is often predominantly linear. That is why the isoperimetric 
scaling turns rather close to the theoretical optimum. Th i s 
accounts for the drastic reduction of condition numbers repor t ed 
in 4.4 as well as for the improved convergence in 4 . 5 . On the 
contrary , when matrices treated are Hilbert-like ("pr edominantly 
angular" ), scaling performs poorl y . In such cases othe r mathema
tical means should ре put into action (orthogonalizat i on, r e
gularization, etc. ). 

~~е are convinced that the measuri ng units in physics a r e 
usually selected on the basis of non-comput ational cri t er ia .. 
Therefore , it is advisaЬle to use isoperimetric scaling whene
ver а necessity occurs to manipulate numerically mat r ices of 
the type considered- so much so tha t we plan · t o wri t e а special 
routine fo r mat r ix inve r sion with buil t- in scale-descal e procedu
re . 

The author acknowledges the assistance of V.Brudanin i n t he 
computat ions described in 4 .5. 
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В Об~единенном институте ядерных исследований начал 

выходить сборник "Краткие сообщения ОИЯИ". В нем 
будУТ помещаться статьи, содержащие оригинальные научные, 

научно-технические, методические И прикладные результаты, 
требующие срочной публикации. Будучи частью 11Сообщений 
ОИЯИ'', статьи, воwедwие в сборник, имеют, как и другие 

издания ОИЯИ, статус официальных публикаций. 

Сборник 11Краткие сообщения ОИЯИ11 будет вwходить 
регулярно. 

The Joint Institute for Nuclear Research begins puЫi
shing а collection of papers entitled J!NR Rapid Communi
cationв which is а section of the JINR Communications 
and is intended for the accelerated puЫication of impor
tant results on the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 
Experimental techniques and methods. 
Accelerators. 
Cryogenics. 
Computing mathematics and methods. 
SoTid state physics. Liquids. 
Theory of condenced matter. 
Applied researches. 
Being а part of the JINR Coщmunications, the articles 

of new collection like all other puЬlications of 
the Joint Institute for Nuclear Research have the status 
of official puЫications. · 

JINR Rapid Communicationв wi 11 Ье i ssued regul arly • 
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COMMUNICATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS,AND 
PROCEEDINGS OF ТНЕ CONFERENCES PUBLISHED ВУ ТНЕ JOINT INSTITUTE 
FOR NUCLEAR RESEARCH HAVE ТНЕ STATUS OF OFFICIAL PUBLICATIONS. 

"' 

JINR Communication and Preprint references shou1d cohtain: 

- namei and in i tia1s of authors, 
- abbreviated name of the lnstitute (JINR) and puЫication 

index, 
- 1ocation of puЫisher (Dubna), 
- year of puЫication 
- page number (if necessary). , 

For examp1e: 

1. Pervuвhin V.N. et al.. JINR~P2-84-649~ 
DuЬna~ 1984. 

References to concrete artic1es, inc1uded into the Pro-
ceed i ngs, shou1d contain 

"'.. 

- names and initia1s of authors, 
- t i t 1 е of Proceed i ngs, i nt roduced Ьу word "1 n," 
- abbreviated name of the lnstitute (JINR) and puЫication 

index, 
- 1ocation of puЫisher (Dubna), 

year of puЫication, 
- page nulnber. 

For examp1e: 

Kol.pa.kov I.F. In, XI Int er>n. Sympoвiwn 
оп Nucl.ear El.ectronicв~ JINR~D13-84-Б3~ 
DuЪna~ 1984~ р.26. 

Savin I.A.~ Smirnov G.I. In: JINR Rapid 
Communicationв~ N2-84~DиЬпа~1984~р.З. 
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