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i. INTRODUCTION

Experimental-data processing in physics often requires the
numerical solution of operator equations of the type

Fx =Y, : ' n

where Y €R™is the vector of gquantities measured, x €R" is
that of unknown parameters and F is the operator (nonlinear or
linear) transforming R® into R™.This operator corresponds

to the model we want to apply to the data processed. The prob-
lem formulated is usually overdetermined, i.e.,m>n (and
often m>>n). When solving numerically equations of this type
by means of gradient or Taylor-series methods the necessity
arises to deal with matrices built as

A-1Y . ‘ (2)

where J represents the (mxn) Jacobi matrix of F. Obviously, A
is positive-definite and its condition number is

condA = |All - [lA71]1, 3)
the norms being those which suit best the problem considered.
_In this paper we shall be interested most of Euclidean (spect-
“ral) norms || [l ¢: due to the special property of these, how-
ever /1/ :

Hellg = ian-H. (4)

.the conclusions remain in force for other norms, too.

For the well-known reasons it is advisable to take certaln
care of lowering condA as much as possible. We want to cons1der
the "computationally trivial" /2/ operation of scaling

A’ = DAD : (5)

as a means of improving condAand, in particular, the search of
such a scaler D’ that either leads to

cond(D’AD*) = min cond (DAD) 6)
i D »

or, at least, is coming close to it.
In section 2 a brief overview of previous results is givenj;
section 3 deals with some geometric properties of matrices J
and A and uses such preperties for-the truction of a simple
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scaling approach; then, in section 4 the results of numerical
experiments and comparative evaluations are presented which
lead to the conclusions of section 5.

: )
2. THEORY AND PRACTICE OF SCALING

Scaling has been considered in the past by many authors and

from various points of view (see, e.g.,/1"11/ ), It appears to be

generally recognized that the problem of optimum scaling is far
from a satisfactory programmable solution. In our view a prac-
ticable approach is within reach since a long time but has
been used with relative rarity and caution.

To avoid additional round-off errors D is most often built
of integer power of the base used /35/10,11/ = 1t jg known/3/
that in this case any possible benefits are due to the diffe-
rent selection of pivot elements as compared to the non-scaled
matrix manipulation. However, the actual definition of scaling

factors in these papers remains without solid theoretical founda-

tions. .
If the operator [F is a linear superposition of similar func-
tions (e.g., in processing of sectroscopic data), then it may
be shown’/11/ that ill-condition of A originates primarily from
the presence of strongly-varying amplitudes in F. Hence, a
remedy may be sought for in the form of a scaling matrix that
introduces internal (computational only) measuring units for
the amplitudes in such a way as to make them all equal (or, at
least, of the same order of magnitude). This sort of scaling
may be called "physical". Our experience shows that it is extre-
mely useful. However, it requires non-formal analysis of the
problem dealt with and,of course, it lacks generality.’
-Departing from statistical considerations Marquardt’®/ points
out that a suitable scaling matrix D may be constructed from
the main diagonal of A,

-1/2 ~1/2 —-1/2
D=diag(A11 ,Aga 9 seay Ann ) . % £7)

This transforms A into the correlation matrix of parameters

.sought for. It is this approach that we consider neglected, i.e.,

not used in practical computations as frequently as it should
be.

A thourough theoretical treatment of scaling for a variety
of absolute norms including all Holder ones is given by Bauer
whose results are not limited to symmetric matrices. In that
paper the nonsingular square matrix A is considered as a metric
in dual spaces B and BH where norms are introduced with Holder
exponents. p and q, respectively, i.e.,
yHAx = (yHA)x = yH(Ax). ' (8)
2

2/

-1
‘D1’= X 1

Then it is proved that ;
min cond(D;AD,) < w(?), 9
DyDg

where 5 is the Perron root (eigenvalue) of the positive matrix

? = |A|-|A"1|. Moreover, this minimum is reached for D) and D,
as follows . :

t/p ¢ -1/
D,-v; Pxi1 a
-1/py 1/q
Dp =Yy, "X

where Xp X Rt » Y, are diagonal matrices satisfying the eigen-

]
vector equagioné
?xle = X, e 1
eTYl? = ﬂeTYI

: g : (1)
P’ Xpe = 7Xgye

eTY2?'= neTY2
while e = col(4,i,..., i) § eT=row1,1, .., 1), and
P AT 1Al : (12)

This means that the optimum scaling matrices (10) are expressed
through the right and left Perron eigenvectors of positive mat-
rices ? and ?’. Note that these two are, in general, different,
since |A| and |A~!| are not bound to have a zero commutator.
Furthermore, for the cases of maximum (pmq=o) and sum
(p=q=1) norms equality holds in (9). For the maximum norm

" equations (10) take the form

\

As far as Euclidean (p=q=2) norms are concerned the notion of
checkerboard sign distribution is of importance. A matrix ‘G

is said to have a checkerboard sign distribution if it can be
written in the form

where ;
|E,| = |[Eg] =T1. - - ' (15)
‘ 1
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In Euclidean norms (9) is an equality when A has a checkerboard
sign distribution and an unequality when A has not.
Note also that for Hermitean matrices AH=A

g 2 : 16)

hence, the left (right) eigenvector of ¥ is also a right (left)
eigenvector of ¥’ and, accordingly, the optimum scaling is
reached when Dy =Dg =D.,

It should be clear that these explicit formulae are not
suitable for immediate use in numerical calculations for the
reaso? that they express the optimum scalers of A via its inver-
se A”". They are precious, however, with the possibility they
offer of evaluating the effectiveness of scaling.

3. THE ISOPERIMETRIC SCALING
Let us note that since for any constant ¢ £ 0
cond(cA) = condA, i (17)

we may limit our discussion to the case of such scaling matrices

which preserve SpA. For symmetric mafrices A.built according to

(2) it appears convenient to accept the convention

- L ¥
Sp(DAD) = SpA =n, - (18)
i.e.,

d’a,. = 3 a_. =n.
e e (18a)
WhenJ is a-full-rank matrix, A is positive~definite,
n
detA =191)‘1 G (19)
and

S 3 ‘ '

pA =i§1 )\i % : - (20)

Symmetric scaling is a congruency and does not ‘preserve the
eigenvalues A ;1; however, in accordance with (18) the one we
consider leaves unchanged their sum SpA. Now, applying Cauchy's
unequality to the set of eigenvalues we obtain

detA < (SpA/m)" =1, . 21

wher? detA =1 if and only if all the eigenvalues of A equal uni-
ty, 1i.e., when condAs=1,

1

Let A be scale according to (7), i.e.,

A, =1, i=12.,n (22)
and let its determinant be ‘
detA < 1. : (23)

If we now carry out another nontrivial scaling which obeys
(18) we obtain

5 n

det(DAD) = detA. 1 d? . (24)
i=1 G

Again, Cauchy's unequality yields : :

n

o & <. (25)
i=1 1

Therefore, if A has been pre~scaled as in (22) then

det(DAD) < detA t : (26)
for any non-trivial scaler D. |

This relation may be interpreted geometrically. Indeed, due
to (2) A may be regarded as the Gram—matrix of the n independent
columnvectors of J. Then detA has the meaning of the squared
volume of the n-dimensional hyperparallelepiped built over the-
se vectors, while SpA is the sum of their squared Euclidean
lengths. The directions of these vectors are not affected by
scaling. In view of such an interpretation (26) may be thought
of as belonging to the class of isoperimetric unequalities/12/
and we propose to call Marquardt's scaling (7) ISOPERIMETRIC.

Naturally, the isoperimetric scaling is different from (10)
and may coincide with it in the very exceptional case of
being symmetric. By the way, it is always so when n =2 but, in
this case the optimum scaling is easily solved analytically. At
n >2 the isoperimetric scaling appears attractive for at least
two reasons: (a) it is indeed "computationally trivial", rather
economic (~n? divisions per matrix) and does not require any
preliminary knowledge of the inverted matrix; (b) as a greater
determinant generally indicates that a matrix is far from de-
generation, it may be expected that the condition of isoperimet-
rically-scaled matrices lie in the vicinity of the theoretical
optimum. :

4, NUMERICAL EXPERIMENTS

We carried out a series of numerical experiments to evaluate
the different condition numbers of matrices scaled isoperimetri-
cally and optimally. All the computations were carried out in
single precision (24-bit mantissae) on SM4 which is equivalent to
PDP-11/30 at machine-instruction level. .



4.1, The first two examples may also be checked analytically
and are intended to make clear the technique of comparison.
a) Both types of scaling coincide

1/8 ~273 1/3

A =l-y2/2 48 0 ) SpA=38, detA =427,
1/3 0 4/3

The isoperimetric scaler D; is Dy = diag(y/3, v3/2, \/3-/2) and yields
1 B e

A1=D1AD‘-_- -1/y/2 1 0 SpA‘=3, detAi =1/4.
T

An attempt to scale A; further according to (10) with p=gq =
= 2 reveals that ? ~IA B IA l| is symmetric, hence the scaler
oo I and no further 1mprovement of condition is attainable.
Hefe m(P) =7 +4/% condA = (23 + 5,/21)/2 condA = condA , = (%)
(both A and A™ = have a checkerboard sign dlStl’lbuthn)

.b) Isoperimetric scaling differs from the optimum one (this
is the example of 72/ prescaled to satisfy eq. (18))

U

13 1/3 1/3
A=l 113 a8 1 , SpA =3, detA =1/27,
/8 1 @

The. two scalers are:

isoperimetric D, = diag(\/-:-’,-. V372, 1/v2)
optimum D, = diag(3/2, Vv16/2v2, 1/V2)

and lead to: :
1145 e
Ay =D;AD, = 1/ 1 V32 , SpA; =3, detA; =1/12
INE B2t

3/4 y15/4y2 1/2y2
A =D AD, = 15/4y% 5/4  15/4 | ,SpAg=3, detAg=5/64.
1/2y2 v16/4 1 :

The condition numbers are as follows: condA = (4+\/—1'§)2=61.98,
condA ; ~39.54, condA g=n(9) =(3+y10)® =~ 37.97. Again, the
root # is reached because of checkerboard signs in both A
and A}

. 4.2. This second series deals with Hilbert matrices of order
2 to 8. These are known to be particularly ill-conditioned, and
this fact is not due to non-balanced columns or rows. Never-
theless, it seems instructive to consider the results (see
the Table) which show a slight improvement in condition, thus
illustrating the limits of scaling.

Since for Hilbert matrices the checkerboard sign distribution
holds throughout, optimum scaling is attainable, at least in
theory. However, the last two rows in the Table are, obviously,
unreliable. Here the initial condA exceeds the inverse machine
epsilon; hence round-off errors render the calculation of D
practically impossible.

; Table
Sealing of Hilbert matrices
Order : Condition numbers Difference

Unscaled Isoperimetric Optimm -0 ’%
(1) (0) . o
2 19 14 14 - 0
3 524 286 - 254 12
4 15512 7415 5875 26
5 4.76B+5 2. 11845 10 52B+5 38
6 1.45B+7 5.86B+6 4,04E+6 45
T 3.05B+8 2.3TE+8 1.59E+8 49
8 T.56B+8 2.18E+8 1. 19E+8 85

4.3. In the third series we generated random matrices J with
elements Jy; =8yxy with a; ¢ (0,lo00] and xj €[ -1,1], both a4
and X having uniform distributions. Then posu:lve-deflnlte
matrices were built according to (2) and their condition eva-
luated with and without scaling for orders 2 < n<40. A checker-
board sign distribution can appear here by pure chance; therefo-
re, the theory gives an upper bound for cond(DAD).The isoperi-
metric scaling ensured condition numbers of the same order of
magnitude as the optimum one. Differences were computationally

1



insignificant and lay between 1 and 40% (most often 10-15%7)

in favour of optimum scaling. The only exception was a differen-
ce of 1347 which appeared in a matrix with initial condA-.8.10%.
Evidently, this case is unreliable for the same reason as in
4,2,

4.4, The fourth series made use of actual iteration—stop
matrices generated during y-spectra processing by means of
KATOK program/11/, In this code a physical scaling is
currently used, so there was a possibility of comparison among
condition numbers which fell in the following ranges:

unscaled matrices 108 -1014

physical scaling 102 -1058

isoperimetric scaling v 102 -108

optimum scaling 100 -102
The quality of optimum scaling rarely exceeded that of the iso-
perimetric one by more than a few percent. .

4.5. Last but not least, we incorporated the isoperimetric
scaling in a computer cdde which modeled the data processing
of continuous PB-spectra and, in particular, their high-energy
edges. The shape of such spectra is described by a reliable
theory. This code was based on the well-known FUMILI minimiza-
tion program/!3/ which makes use of an iteration-step cut-off
to avoid divergencies. Apart from introducing the scale-descale
procedure nothing was changed in the code as a whole. Despite
the fact that this actually meant an increase in the number of
operations by B square roots and n(n+1) multiplications/ divi-
sions per iteration, processing time decreased sharply by a
factor of 3-4 at the same quality of solution found. We explain
this apparent paradox with the better eondition of matrices in-
volved which prevented the activation-of the cut-off procedure
in FUMILI and lead to the same solution in a much lower number
of iterations. In other words, a more advantageous trajectory
of the iteration process was achieved by means of scaling.

5. COMMENTS AND CONCLUSIONS

It is knowr’%!%/ that matrix condition in Euclidean norms
may be regarded as a quantitative measure of the anisotropy
introduced into R" by the mapping A.When A is built in accordan—
ce with (2) it has the structure of a Gram matrix of n indepen—
dent vectors in R™.Therefore ,condAdepends on these n vectors.
One can easily imagine two limit cases of large anisotropy:
when the vectors are orthogonal to each other but strongly dif-
fer in 1ength and when all the lengths are equal but the space
arrangement 1s very far from orthogonal These two cases may be
termed "linear" and "angular" respectively. In practice we deal
with matrices which lie between but, nevertheless, the reasons

8

~

for their high condition numbers may be predominantly linear as
in 4.3-4.5 or predominantly angular as in the case of Hilbert
matrices. Actually, Bauer's theory of optimum scaling is a de-
monstration of two basic factors: (a) angular and linear causes
of high condition numbers are interrelated, optimum scalers
being expressed via A~ 1 where lengths -and angles combine to-
gether; (b) the angular arrangement puts a lower limit to condA
attainable by scaling (see’®/ Theorems IV-VII).

The results of our numerical experiments show that the reason
of ill-condition in physical problems of the class formulated

‘ is often predominantly linear. That is why the isoperimetric

scaling turns rather close to the theoretical optimum. This
accounts for the drastic reduction of condition numbers reported
in 4.4 as well as for the improved convergence in 4.5. On the
contrary, when matrices treated are Hilbert-like ("predominantly
angular"), scaling performs poorly. In such cases other mathema-—
tical means should be put into action (orthogonallzatlon, re-
gularization, etc.).

We are convinced that the measuring units in phys1cs are
usually selected on the basis of non—computat10na1 criteria.

. Therefore, it is advisable to use isoperimetric scaling whene-

ver a necessity occurs to manipulate numerically matrices of

the type considered - so much so that we plan to write a special
routine for matrix inversion with built-in scale-descale procedu-
re.

The author acknowledges the assistance of V.Brudanin in the
computations described in 4.5.
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B 06veAuHEHHOM MHCTUTYTE AAEPHHX MCCnefoBaHWKW Hauvan
BuxoautTh cGophuk "Hpamxue coobyenus OHAH", B Hem
OyayT noMewaTbCA CTaTbW, COAEepNauMe OPUIrMHANbLHBIE HayuHue,
HayUHO-TexHUUecKkue, MeToguuecKkue M NpUKNagHHe pesynbTaTe,
Tpebyoume cpouHon nyGnuxauuu. Byayum uvactbo ‘'CoobuieHuni
OMAK", ctaTtbu, Bowepuwme B cOOpPHMK, MMEOT, KaK U apyrue
uananmAa OUAN, ctatyc oduunanbHuX nNyGnukaymi.

C6opHuk ''KpaTkue cooﬁmeuun OUAU" GypeT BBIXOAUTH
perynfapHo. ,
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The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Raptd Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators. {
Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.
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