COOGIBHHA

N 06LEAMHEHHOTO

HHCTHTYTA

!44::,,. AABPHIX

L HGCABAOBAHKA

Y AYGHa
E11-84-656

M.Rudalics, G.Voigt

PL/M BINDING FOR GKS 7.2

1984

0 Purpose and Scope of this Document

This document describes a proposal for binding the functions of
the Graphical Kernel Standard (GKS) to the PL/M programming
1anguages PL/M-80 and PL/M-86. According to annex C of the
functional description of GKS [1], a binding is defined as the
expression of the abstract functions and data types of the
standard in terms of constructs available in the host langquage.
Interfacing GKS to the PL/M programming languages may be
considered a nontrivial task for two reasons:

- PL/M-80 |2] and PL/M-86 |3] have been specifically designed by
one of the main manufactors of microprocessing components for
the primary purpose to run on its own hardware, the INTEL 8080
(8008) and 8086 series of microprocessors. PL/M-80 is
principally upward compatible to PL/M-86, i.e., a source program
written in PL/M-80 may be (with a few restrictions) recompiled
with a PL/M-86 compiler. Thus, a common GKS interface may be
developed for both languages.

- Due to the poor data type provisions and restricted and unsafe
parameter passing facilties of the PL/M languages, a one-to-one
mapping of many GKS data and parameter types to PL/M data and
parameter types is defeated. This drawback has to be
compensated by a cautious use of PL/M's indirect addressing
capabilities.

The following chapters are devoted to each of the rules (L1)
through (L5) from annex C of the standard and contain the

according GKS rule, a mechanism for its realization, and
motivations for using the mechanism.

1 GKS Functions - PL/M Procedures Correspondence
Rule (L1): "Al11 GKS functions, other than inquiry functions,
shall appear atomic to the application program.”

Mechanism: Each GKS function with the exception of some

P _ AT PV 5 gl

inquiry functions has been realized by one correspondent PL/M
procedure. The following substitutions have been made for
inquiry functions:

A1l inquiry functions which return a list or set of values,
where the number of elements of the list or the number of
members of the set may be altered by the application program,
are realized by two procedures, termed NUMBER and VALUE
respectively. The parameters of NUMBER correspond to the
parameters of the abstract function, only list elements or set
members of user defined length or size are omitted., VALUE
requires in addition to the parameters of the abstract function
an input parameter, which has to be set by the application
program to the index of the list element or set member to be
investigated. This index has to be in the range (1 .. N), where
N is the number of elements of the list or members of the set
returned by an invocation of the corresponding NUMBER procedure.
VALUE then delivers the value of the element in the list or the
member of the set according to this index.

INQUIRE SET OF SEGMENT NAMES IN USE
+ INQUIRE NUMBER OF SEGMENT NAMES IN USE
» INQUIRE VALUE OF SEGMENT NAMES IN USE

A not predefined pattern representation is inquired in a
similar way, i.e., once for each element of the array. The
inquire stroke device state function is not substituted. One
NUMBER and one VALUE function have been defined for the entire
group of functions inquiring the list of output primitives
indices. These procedures require one more parameter: the type
of the inquired bundle table., One procedure has also been
provided for inquiring the default data record of an input
device according to the available prompt/echo type. This
procedure requires the input class as additional parameter.

Motivations: The scope of an inquiring facility the
application programmer has at his disposal, may be defeated by
the restriction, that he has to make a wild guess of the length
of the list or array (or size of the set) returned by the
corresponding function. An obvious consequence would be
increased memory requirements, which in their turn may cause
considerable probiems in microprocessor based implementations.
The proposed solution is maybe not quite nice from a software
engineering point of view, as it requires the application
programmer to calculate the number of times his program has to
call VALUE to obtain an entire list, array or set. Therefore it
is suggested, that calling VALUE with an invalid index will set
the error indicator appropriately.

2

2 Derivation of PL/M Identifiers

Rule (L2): "The language binding shall specify, for each GKS
abstract function name, exactly one identifier acceptable to the
language."

Mechanism: For all words constituting abstract GKS function
and formal parameter names (inquiry functions have to pe
modified as indicated in chapter 1) perform the following steps:

(M1) The words POLYLINE and POLYMARKER are substituted by the
words LINE and MARKER respectively.

POLYLINE » LINE

(M2) The words LINETYPE and LINEWIDTH are substituted by the
strings LINE TYPE and LINE WIDTH respectively.

SET LINEWIDTH » SET LINE WIDTH

(M3) A1l pronouns, prepostitions, conjunctions and articles,
namely ALL, AND, AS, AT, BY, FOR, IN, OF, ON, OR, OUT, THE,
THIS, TO, UP, WHICH, WITH, as well as parentheses, commas, and
numbers are omitted.

REDRAW ALL SEGMENTS ON WORKSTATION > REDRAW SEGMENTS WORKSTATION

(M) If after an application of steps (Ml) to (M3) still more
than six words remain, the trailing words are omitted. (M) is
presently applied to some of the formal parameter names.

MAXIMUM DISPLAY SURFACE SIZE DEVICE COORDINATE UNITS
> MAXIMUM DISPLAY SURFACE SIZE DEVICE COORDINATE

(M5) A1l words longer than five characters are truncated on the
right to the longest word containing less than or equal five
characters which ends with a consonant.

GENERALIZED DRAWING PRIMITIVE » GENER DRAW PRIM

(M6) The remaining words are concatenated. To enhance
readability, the concatenation points are indicated by the
underline character. Note, that PL/M syntax requires the Dollar
sign (which is ignored by the compilers} instead of the
underline character.

GENER DRAW PRIM » GENER DRAW PRIM

(M7) Procedure identifiers are headed by the letter 'G’',
parameter identifiers indicating an application controlled
memory location by the letter 'P', parameter identifiers
denoting a memory location controlled by the implementation are
headed by the letter 'Q'.

GENER DRAW PRIM » G_GENER DRAW PRIM

Motivations: A PL/M identifier may be up to 31 characters in
length. For this reason, a simple concatenation of abstract GKS
function descriptors would lead to the formation of invalid PL/M
procedure identifiers. The wordlength chosen in (M5) raises
from the consideration that STRING and STROKE have to be
distinguished, while (M7) is explained in more detail in
chapter 4. Some unpleasant truncations resulting from an
application of (M5), like SWITC, PROMP, RECOR, DEVIC, et al.,
seem to be more than compensated by the fact, that procedure
names may not be confused by corrupting one letter only, or by
simply interchanging two Tetters.

3 Data Types Mapping

Rule (L3): "The language binding shall specify, for each of the
GKS data types, a correspondent data type acceptable to the host
language, except where convenient for the host language,
additional data types may be specified in terms of GKS data
types."

GKS PL/M PL/M-80 PL/M-86
Data Type Data Type Literal Literal
INTEGER WORD 'ADDRESS'
REAL REAL ‘(4) BYTE'
STRING WORD 'ADDRESS'

J CHARS ‘(1) BYTE' ‘(1) BYTE'
NAME °) WORD 'ADDRESS'
ENUMERATION BYTE
DATA RECORD STRUCTURE

1) File names and connection identifiers are treated as
STRINGs.

Fig. 1: GKS » PL/M Data Types Mapping

Mechanism: While PL/M-80 provides only two data types (BYTE
and ADDRESS), PL/M—86 has five of them (BYTE, WORD, INTEGER,
REAL, and POINTER). The mapping of GKS data types to PL/M data
types (including appropriate Titeral substitutions) is presented
in Fiqure 1.

Motivations: With the exception of the pixel inquiry
functions GKS knows nothing like a negative integer. For this
reason PL/M-86 integers have been sacrificed to maintain
compatibility with PL/M-80; GKS integers are mapped to PL/M
words. An implementation may restrict the range of valid values
for word variables to the range (1 .. 65534) and use 65535 as
the "invalid" value for the pixel inquiry functions (65535
corresponds to -1 in PL/M's unsigned integer arithmetic). The
real data type of PL/M-86 is implementation dependent, four
bytes for PL/M-8O is the convention used by the 8080 floating
point library [4]. Strings are mapped to a word variable
indicating the length of the string and to a byte array which
contains the character sequence. Names are generally mapped to
words, with one exception: File names and connection identifiers
are mapped to a word variable indicating the length of the
identifier and a byte array containing the identifier as
character string. This allows a more flexible adaption to the
host operating system. Enumeration data types are mapped to
byte values, compound data types are mapped according to the
mapping of their constituents, data records are mapped to PL/M
structures, ordered pairs are splitted into their components.

4 Parameter Types Mapping

Rule (L4): "The language binding shall specify, for each GKS
abstract function, how the corresponding lanquage function is to
be invoked, and the means whereby each of the abstract input
parameters is transmitted to the language function and each of
the abstract output parameters is received from the language
function."

Mechanism: PL/M languages provide only one parameter transfer
mechanism, namely call-by-value. Thus, an indirect referencing
mechanism for returning values to the application program has to
be used. This is achieved by a combination of PL/M's pointer
facility and based variables, see Figure 2.

Only input parameters of type byte and word are passed
directly via the parameter list, all other input parameters are

S

GKS Input PL/M Input PL/M Output

Parameter Parameter Parameter
INTEGER WORD P_WORD

REAL P_REAL P_REAL
STRING WORD P_WORD

P_CHARS P_CHARS

NAME ') WORD P_WORD
ENUMERATION BYTE P_BYTE

DATA RECORD P_STRUCTURE Q_STRUCTURE

1) File names and connection identifiers are treated as
STRINGs.,

Figure 2: GKS > PL/M Parameter Types Mapping

passed with the help of the pointer facility - this is indicated
by a 'P' before the PL/M type. While the value of an output
parameter of simple type - indicated by a 'P' too - is written
directly to a location under control of the application program,
certain output data types or output data records are passed via
an area which is administrated by the implementation: The GKS
procedure returns the location of a compound data type or data
record with the help of a quoted pointer - indicated by a 'Q'
before the type - and the application program may use an array
or a structure based at the location referenced by this pointer
for retrieving the inquired value. This template mechanism has
to be used for data records and strings, lists, arrays, and sets
of predefined length or size. The procedure realizing the open
GKS function returns an error file identifier, which has to be
used by an eventual application dependent error handling
procedure.

Motivations: The concept of quoted pointers relieves the
application programmer from the probiem of allocating a maybe
unpredictable amount of space for storing the inquired values of
data records, strings, lists, arrays, or sets of implementation
or workstation dependent length or size. Lists, arrays and sets
of application dependent size are inquired as indicated in
chapter 1.

6

5 Reserved Words

Rule (L5): "The language binding shall specify a set of
jdentifiers, acceptable to the language, which may be used by an
implementation for internal communication."

Mechanism: An implementation has to restrict its public
identifiers to be used for internal communication to the group
of identifiers beginning with the string 'GKS'.

Motivation: The mechanism follows the recommendation of the
standard.

Editorial Remarks: The scope of this publication did not permit
a reproduction of the complete PL/M binding. Reference |5]
contains the declarations for all PL/M procedures realizing the
functions of the standard as used by an application program with
the help of the compiler's include directive. Additionally, [5]
contains a list of all literal declarations used for the mapping
of enumeration data types. All procedure declarations as well
as the literal declarations have been checked by the PL/M-80 and
PL/M-86 compilers. In a final editing step all Dollar signs
have been substituted by the underline character as explained in
chapter 2.

References:

|1] Draft International Standard I1SO/DIS 7%2, Information
Processing Graphical Kernel System (GKS), Functional
Description, Version 7.2, NI-5.9/1-83, Nov. 1982.

[2] Pg/M-80 Programming Manual, INTEL Doc. 98-268, 1976.

[3] PL/M-86 Programming Manual, INTEL Doc. 98466, 1978.

[4] 808078085 Floating Point Arithmetic Library User's Manual,
INTEL Doc. 98-452, 1977,

[5] Rudalics, M., and Voigt, G. PL/M Binding for GKS 7.2:
Reference List. Dubna, 1984.

Received by Publishing Department
on September 27,1984.

—

B 06bveanHEeHHOM MHCTUTYTE AAEpHbBIX MCCnegoBaHMW Hauvan
suixoanTb cbopHuk "Hpamrxue coobuyenus OHAKY. B Hem
6yayT noMeuwaTtbCA CTaTbW, COAEPKAWUE OPUTMUHAMbHBIE HAayuYHblE,
HayuHO-TexHUUecKue, MeTOAMUYECKME U NpuKNagHsie pedynbTaThl,
Tpebyoume cpouHor nybnukauymmn. Byayum uacTeio ''Coobueruit
oUAaAK'', craten, Bowepumne 8 cBOPHUK, UMENT, KAK U ApyTue
nagavua OUAU, ctatyc oduumanbHex nybnukauni .

C6opHuk ''Kpatkme coobuerHna OUAU"' BygeT BHIXOAMTHL
perynapHo.

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant resulits on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators.,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.

JINR Rapid Communications will be issued regularly.

Pymanuu M., ®orT TI. E11-84-656
PL/M - uutepdeiic paa GKS 7.2

Cranpgapt Graphical Kernal System {GKS) onpemensier AsShKoBO—
He3aBHCHMOe fAApo rpadHyecKod cuHcTembl. [INA HHTErpauwd B NporpaMm-
MHBIH 53blk, GKS BBOOHMTCA B S3BIKOBO3aBHCHMBIH CJIOH B COOTBETCTBH
C YacTHbBIMH npaBuilaMH 3TOoro aseika. GKS-uHuTepdelic aAsmkKa HBHHGT‘H[
Cs1 OOKYMEHTOM, OTNHChBawmuM Kak GKS—dyHKIHH MOTYT G6bITH JOCTYIIHH
nporpaMMaM, HaNHCaHHHIM Ha crnelubHYIecKOM SAS3bKE.

B naHHOH paboTe mpennaraercs HHrepdeiic GKS K fA3bkaM mpo—
rpaMMupoBanus PL/M-80 u PL/M-86. B GQYHKUMOHANBHOM OIHCAHWUHU
GKS uMeeTcd maATh NpaBHIl, KOTODbE MOJDKHB GBITH COGIIONEeHbl HPH
cThikoBKe GKS ¢ A3pikoM mporpamMMHpoBaHus. Kaxmas rmaeBa 3Toi paGo-—
Thl NOCBANEHA OAHOMY H3 3THUX MPaBHI H CONEPXHUT ONHCAHWE IpaBuia,
MEXaHM3M AJif ero peanu3alil ¥ MOTHBHDPOBKM BhHBOpa 3TOrc Mexa-
HH3Ma.

PaGora BeinosiHeHa B Jla6OopaTOPHH BHMHCIHTEIIBHOH TeXHHUKH
M aBToMaTHKH OWUSH.

CoobmenHe OGbenHHEHHOro HHCTHTYTA ANEePHWX HccllegqoBaHHA. [ly6Ha 1984

Rudalics M., Voigt G. E11-84-656
PL/M Binding for GKS 7.2.

The Graphical Kernel System (GKS) defines a language inde-
pendent nucleus of a graphical system. For integration into
a programming language, GKS has to be embedded in a language
dependent layer obeying the particular conventions of that lan-
guage. A GKS language binding is a document, describing how GKS
functions may be accessed by programs written in a specific
language.

In this paper a binding of GKS to the PL/M programming lan-
guages PL/M-80 and PL/M-86 is proposed. The functional descrip-
tion of GKS lists five rules, which have to be observed when
binding GKS to a language. Each chapter of this paper is devo-
ted to one of these rules and contains a description of the ru-
le, a mechanism for its realization, and motivations for choo-
sing the mechanism. -

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

