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1. INTRODUCTION

The inverse scattering transform (IST) method, having found
numerous applications in investigations on nonlinear field theo-
ry models, turns out to be efficient for two-dimensional models.
For many-dimensional partial differential equations successful
results have been obtained with the aid of this method only for
several models. Thus, besides the analytical methods of study-
ing such models, it is of interest to investigate nonlinear
field theory equations, admitting for soliton-like solutions,
with the aid of numerical experiments’/?/,

Based on recent developments in numerical methods (fast Fou-
rier transform/3/, splitting methods’/4/, constructions of con-
servative and stable finite difference schemes for nonlinear
equations’/® ), it is possible to design numerical experiments
for the study of dynamical properties of many-dimensional soli-
tons. Simulations of interactions between soliton-like objects
within the frame of various nonlinear field theorv equations
often provides us with information concerning tlc interaction
dynamics which is not accessible using other ways.

At the same time, computer studies of qualitative properties
of soliton-like solutions may suggest the manner of their subse-
quent analytical investigation.

In this paper the results concerning dynamical properties
and stability of many-dimensional solitons are presented for
classical fields within the framework of Klein—-Gordon, Schri-
dinger and Dirac equations, respectively.

2. SIMULATION OF THE SOLITON-LIKE OBJECTS INTERACTIONS
WITHIN THE FRAME OF KLEIN-GORDON EQUATION

Consider the Klein-Gordon equation
by +Ayp btad+BF($)6=0, (1

whege A is the Laplace operator, A1u=82u/ax2 5 A2u=62u/ax2+
+ 3°u/dy® and F(¢) is a nonlinear function. Computer studizs of
interactions of one-dimensional, (x,t), and two-dimensioual,
(%,y,t), quasisolitons have been performed 8/ for nonlineari-
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ties of the following type:

{ 16127 (1+141°),
(o) =
¢ In(]3|%).

Investigations have been performed using a symmetric second
order difference scheme. The time step was At = 0.1; the spa-
tial step AX=Ay was chosen from [0.1, 0.4].

In order to eliminate the influence of boundaries of compu-
tation area upon motion of solitoms, an auxiliary condition in
the form y¢, was added to (1). That term was taken into account
merely in the neighbourhood of boundary hav1ng the width =5Z of
the dimension of the area (X,y). The optimum value of the coef-
ficient y was determined experimentally.

Let us deal in more detail with the way of choosing the
initial configuration. Using the substitution

(2)

G(x,9,0)=9(r)e'?, r=yx®4y®, (3)

we get from (1) the following boundary problem

¥+l eaP Y-t P=0, ¥ (0)=0, ¥(«)=0 (4)
and the problem leads to find a cylindrically-symmetric statio-
nary one-soliton solution. )

In order to solve the boundary problem (4) numerically the
shooting method was used. The solution with prescribed accuracy
obtained so far was then approximated using a class of Gaussian
exponents
W)= ¥ o explB(r-5)°1. (5)

i=1
By choos1ng ai> By § appropriately, it is possible to approxi-

mate Y(r) in such a way that
3

max|¥(r)- = a; exp B, (r-5; )2 1] 0,005 | w(0)|" (6)
jm=

holds true for all o,
Using the Lorentz transformation

G(X,y,t)= i agexplB (V2 (x-vt)®+ y2- 5 )% | x expl-iny(t - vx)](7)

i=1

finally a moving soliton obtains. Subsequently, with the help
of the above-mentioned difference scheme the soliton interac—
tions were studied.

2

By carrying over numerical experiments for models possessing
various types of nonlinearities, it was possible to single out
four kinds of interactions:

1) resilient and quasiresilient interactions between quasi-
solitons;

2) decay (collapse) of quasisolitons after interaction;

3) decay (collapse) through a short-living bound state (re-
sonance) ;

4) long-living bound state of two quasisolitons.

Two parameters have been changing in calculations, namely, the
velocity of the relative motion v of quasisolitons and their
charges:

Q=-i [ [¢:¢-—¢l¢»‘]dldy. (8)
(x,y)

In both cases the four kinds of interactions have been observed.
An analysis of numerical experiments suggested to formulate the
conjecture, according to which the nature of soliton interacti-
ons is determined by the dispersion dependence Q(w) and not by
the type of the model.

A more detailed study of the nature of quasisoliton interac-
tions resulted in the observation that it depends also on the
angular momentum £ and on the initial phase difference Af8.
Numerical experiments have shown:

I) There exists a certain resonance domain of the parameter
£, within which the resilience of interaction sharply decreases;
2) A purely antisymmetric angular configuration leads to a

resilient interaction of quasisolitons,

In the series of numerical experiments 8/ there have been
obtained seemingly paradoxical results. When placing unstable
soliton-like objects sufficiently nearby each other (so that
the kinematic time of their interaction becomes less than the
decay time of each object), then under low enough relative mo-
tion velocities the appearance of a bound state — a two-dimen—
sional bion (quasiperiodic solution) is observed. A possible
explanation for stability of the observed bions thh the help
of a certain adibatic invariant may be found in ref.’®/,

3. SIMULATION OF THE SOLITON-LIKE OBJECTS INTERACTIONS
WITHIN THE FRAME OF NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrddinger equation arises in many problems
of solid state physics, nonlinear optics and plasma physics.
The U(n) nonlinear Schridinger equation with a repulsing-type
potential may serve as an integrable variant of weakly non-
ideal Bose gas having n internal ("colour") degrees of freedom.
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It arises also when describing many-chain antiferromagnetic
spin systems with weak coupling between chains in the long-wave
approximation /107,

A nonlinear Schriédinger equation with the noncompact isogroup
U(1,1) describes a system consisting of two interacting bose-

gases / The nonlinear Schrddinger equation with cubic nonli-
nearity

2
¥, +9  +a|¥|"¥=0 (9)

has been investigated analytically using the IST method for
various boundary conditions. The properties of the two-dimen-
sional solutions (X,t) in case of U(1)-symmetry may be found
in/1Y  in case of U(1,1)-isogroup in/1%/, for the case of
U(2)ysymmetry in /1% respectively. In/1'4/, numerical experi-
ments were used in the two-dimensional (x,t) case in order to
study interactions between quasisolitons for the nonlinear Schro-—
dinger equation possessing cubic nonlinearity and U(0,1)-,
U(1,1)-symmetry groups, respectively. The numerical results are
in favour of the conclusion that these models are fully integ-
rable. Calculations have been performed using the semi-implicit
finite difference scheme of approximation order O(r+h™), where
r and h designate the temporal and the spatial steps, respecti-
vely. -Configurations of "soliton + antisoliton + vacuum" type,
approximating the solution with exponential precision, have been
employed as initial states.

The scattering of a —particles within the time-dependent Har-
tree-Fock theory was studied in/'®/, The original three-dimen-
sional problem is reduced to a two-dimensional one, the latter
being described by a Schridinger—type ¢4-a¢6 model

i, +Ad+ag+b|d| g-clp|'s=0, (10)

where a, b, ¢ are constants and ¢(X,y,t) is the one-particle
wave function. Within this model interactions of two identical
cylindrically-symmetric solitons having different energies and
principal parameters have been studied. Numerical experiments
suggest there arises a bound state at a certain value of energy
K~v2 of colliding solitons.

Interactions of cylindrically-symmetric gaussons within the
nonlinear Schrédinger equation

id>l+l%A+bln[aDl¢|2HqS=0 (11)

(a,p are constants, D is space dimensionality) have been stu-
died in 718/, Fourier transformation was used for the purpose

of numerical solution. Bound states of gaussons have not been
observed in /% for the model (11). However, only "uncharged"
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gaussons interactions (once for which o = 0 at V= 0) have been
considered there.

: At present, we are carrying over a series of numerical expe-—
riments concerning interactions of three-dimensional gaussons
(x,y,t) within the model (11). We use the splitting methods
(which yield locally one-dimensional schemes) in order to solve
the nonlinear Schridinger equation (see’1"), The proposed me-—
thod applies to Schridinger equations possessing nonlinearities
of the types

[ a|u|®u
alu|®u+blultu
expl-a||®]u
lulalC1+]a]®)
n(alul?).

fﬂﬂl)u=w

.

Within this approach a uniform temporal lattice o, =lt;=jr,
J=0, 1, «auuN, 5 N, atumx/rl is employed. The multidimensi-
onal Schrddinger equation

+1([$|Ng=0

. 2 2
n¢t+(6xlxl+ ) (1)

*pEp
with the initial condition

-'
¢(x1 ,Xz,O)-¢0(Kl,X2)E¢0(X) (|2)
is replaced by a chain of one—-dimensional equations

A
51

+A,v, =0, tj+(a-l)/2<tstj+a/2' a= 1,2, {13)

% 1 ; AT etk
where Aa=a‘a‘a t5 f(|v, )+ Initial conditions of the type

vy (3,0) = g (3),
Vo (Kot 0 1/p V= Vit 10 (14)

= »
v (ot )=ve(X,t5,,)

are added. Each equation in (13) on the interval by, ., _1)/e<
St<tyyqre is approximated by a semi-implicit finite-differen—
ce scheme. The total approximation order is 0(r+tﬁ +h§).

where h,, h, are the spatial steps along the coordinate axes.

A configuration approximating the solution of (11) with expo-
nential precision is chosen as the initial configuration.
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4. TNVESTIGATION OF STABILITY OF SOLITONS
FOR THE NONLTNEAR DIRAC EQUATION

The nonlinear Dirac equation
[ =
hrJ#W—mW+2A(WW)?=O, AS>O, (15)

is employed in elementary particle physics for modelling exten—
ded quarksnngf This model uses six Dirac fields which form
two triplets W, and ¢, ,k = 1,2,3. Here, ¢y is the charge conju-
gate to ﬂk and ¢k'wk interact via 4-th order two-body forces.
The particle is interpreted as a certain soliton solution to
the field equations. By interpreting ¥, as a quark, and ¢, as
an antiquark, the theory becomes amenable to comparison with
experimental data. If the particle is the bound state of three
¥, (or of three ¢,), it corresponds to 3q (or 3q) state.

Curiously enough, the mechanism of confinement appears to
be a particular case of the triviality so that it is not rela-
ted to any quantum effects. In fact, the fields are created as
¢-numbers. This suggests the possibility that the confinement
might be a property of the field equations at the classical
level, which perhaps should be investigated before proceeding
to their quantization.

In’lg/ it is shown there exist soliton solutions (t, ¢+ -

spin direction)

G ()
L
‘P'=e \/"“' 80 .
2\ cos ¢
iF ( ginge'®)
(16)
q) _e—iﬂm! __ﬂ_ G ( 1 )
&0 2 i it
_iF ( sinfl e )
—cos @

for all Q with 0% <1, Here, F and G are radial functions of
spatial variables, satisfying the following system of equations:

F'+ 2 F+(1-0+F2.G%)G=0, G+(1+0+F2_-G2)F=0, pmmrfl17)
P

The function F and G for soliten-like solutions are found
in /8%  1n 719/ jt is pointed out that it is a difficult task
to investigate the stability of solutions within equations (15).
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Also the stability of solutions with respect to deformations in
two and three dimensions is pointed out in the quoted reference.
It is noted that the scalar fields are highly unstable.

The stability of classical spinor field within the frame of
Dirac equation with self-interaction (Pre)dis investigated
in/2Y by the variational method in each two-dimensional and
four-dimensional space—times. It is shown that three-dimensio-
nal spinor solitons generated by the scalar self-interaction
(¥¥); are unstable at all frequencies. The instability region for
three~dimensional solitons (coinciding with that one for one-
dimensional solitons) of spinor fields under the selfinterac-—
tion (@W)gis found to be

Vol . (18)

v2

The dynamics of instability for the two-dimensional (x,t)
Dirac equation with scalar selfinteraction (WW)gis studied by
numerical experiments (it has the form of energy contraction
into narrow domains). The numerical calculations are carried
over for (I5) with the help of the second order symmetric fini-
te difference scheme (i.e., of order 0O(r24h2), where r and h
have the same meaning as before).

In 724 it is proved that for (15) there exist cylindrically-
symmetric soliton—-like solutions of the form

$(p.0) = M+ IE (1 X ()4 % (o), (19)

where wl,wg are eigenfunctions of y® corresponding to the same

eigenvalue. Here

2 5
P (20)
v - a positive real number, ¢ - the azimuthal angle
around the X g—axis, n - an integer and p — distance

from the X3 -axis. Also the existence of spherically-

symmetric soliton-like solutions to (15) is established. How-
ever,the proofs are based on a method introduced in /23/ ghich
is not mathematically rigorous. Rigorous proofs are given in/24/
for the existence of soliton-like solutions for equations simi-
lar to those ones considered in 722/, The numerical experiments
described in 722/ show that the energy of cylindrically-symmet-—
ric solitons is always less than the energy of solutions in the
form of planar waves. However, it is not possible to draw out
of these experiments conclusions about stability of soliton-
like solutions.,

Consequently, it appears to be of great interest to design
numerical experiments for the purpose of studying the stability
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properties of soliton-like solutions to nonstationary nonlinear
and multidimensional Dirac equation. It is clear that any pro-
posed algorithm should be unconditionally stahle and efficient
in the sense of minimizing the overall number of arithmetic ope-
rations Q(e¢) needed to calculate the solution within a given
precision €¢>0. The latter requirement becomes extra-ordina-
rily important in multidimensional problems.

Let us describe one of efficient methods (the "method of to-—
tal approximation'), applied to the nonlinear Dirac equation
(15) in four-dimensional space-time. To this end rewrite (15)
in the form

: ¢ d J J 2w

i + + + W-m¥P+ g~ (¥Y¥)¥=0 21)
%o th ox, Y ax, Yy o, ) ,

where (xl-xz'xa) belongs to a certain spatial domain G and

0<t5t0.j By multiplying (21) by -iy, form the left we ob-

tain

-5‘%_'1!+Lq'+imy0 ¥-ig®(FW)y, ¥=0, 22)
where

Le=n ¥ aaxl i aaxg s 7 -5;2‘;. (23)
We add the initial condition

Y(0,%) =¥, (X)." (24)
Let us construct a locally one-dimensional finite difference
scheme for (22). We use the temporal lattice w, ={t, =jr p

i=0, 1, ..., Ng, Ng=ty/7}. 1In place of (22) we introduce

the following chain of one-dimensional systems

1 9 g

§—~5~:L+Laua+1my0ua—gz(uau)youa=0. b
25

<t<t

tj+(a-—1)/.‘3 j+a/3"’

where L =y, ya—(';—i—, a= 1, 2, 3. The value of the product (l—fa U)
a

in (25) is taken from the preceding temporal fibre. Finally, the
initial conditions are written in the form

'Pl (0-£)= ‘pn (}) '

- >
Wo (b iirra 3= (4178 %)

p . (26)
Yo (Y4070 X) =¥, (5103 %),

W (6500 0) =P (t 4. %),
8

Each of the equations (25) with index ¢ (which actually repre-
sents a system of four equations since ¥ is a 4-component spi-
nor) is approximated by a finite difference scheme

u1+a/8_uj+(a-l)/3

-|+a/8 . -j+a/8
% L% A D,u +imy u - it
_iyo(ﬁu)ﬁj+a/3=0,
where
AawilE: &9
IR RN 1 TR ¢
D. =i (V +¥_)
x X, R 1 0
AT 1 I |
(28)
u -1 u, -1
k+17 "k k k-1
quk“ ‘h—“_ ' V‘;llk =-—h--——-— -

~% -1y
gitass 1 1+a/3 1+@-1V/8,

Let's introduce scalar product for the proof of absolute stabi-
lity of one~dimensional finite difference scheme

Ny=1 Ny-1 Ng-1
(u,v)= X b T s v h:hh,, |[|ul] =v(u,u) ,(29)
=1 fg=1 ig=1 dqlply lylply 1ES
where
Hy
u= [ " ut = (u¥, uf, ur, u?)
u . ; g 2' g 4 ’
3
Uy

hl, hg, h, are the steps in directions of X; , X; and Xg-axes,
respectively. Let us multiply scalary the equation (27) by
1i+a/8 poth from the right and from the left. By summing up
the resulting equalities and by taking into account the fact
that the matrices y and D, commute we get

ot -1)/38 /
1 gt uive-s £

‘2§+u+y0ya(oa+r):)ﬁ =0, (30)

where the operator DZ is the adjoint one to D,. According to/gaf
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D;=..Da,-Consequent1y,

j+a/3 j+@a=-1)/3
u u

Il =1l Il . (31)
Let us take the sum of equations (31) for a = 1,2,3. Then we get
I = g == "1 =112 1 (32)

and this just means the stability relative to the initial con-
ditions 72526/ and the norm (30). The latter equations show that
the proposed finite difference scheme is conservative with res-—
pect to the conservation low

I=[¥tyasx (33)

which is but the integral form of the continuity equation for
the Dirac equation.

For the sake of simplicity suppose the solutions we seek for
have to satisfy given periodic boundary conditions. In this way
we get a system of three-point equations which is solvable using
alternating-direct method /2%/, The proposed algorithm is effec-
tive in the sense described above.
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