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1. 	 IN'IRODUCTION 

The inverse scattering t rans form (1ST) method, having found 
numerous applications i n inves t i ga tions on nonl inear field theo­
ry mode l s, turns out t o be eff icient for t wo-d imensional models. 
For many- dimensional partial di ff erential equations success f ul 
resul t s have been obtained with the a id of th i s me thod only for 
sever al models. Thus, be s i des t he anal yt ical methods of study ­
ing such models, it i s of i n t eres t t o inves t igat e nonlinear 
f i e ld theory equations , admi tt ing for so l i ton- like solu t ions, 
with the aid of numerical expe r iments 1 2/ . 

Based on recen t developments in numerical me t hods (fast Fou­
rie r t rans f orm 13/, splitting method s 14/, construc t ions of con­
se rvative and stabl e fi ni te di ffe rence schemes for nonl i near 
equations /6/), it is possibl e t o des i gn numerical experiments 
for t he s tudy of dynami cal proper ti es of many-dimensionnl so l i ­
tons . Si mul a tions of interact i ons between soli t on- like ob j ects 
wi t hin t he f rame of var ious nonlinear f ield theor' equations 
of t en prov i de s us wi t h info rmation concerning t. c i nterac t ion 
dynami cs which is no t accessi bl e using ot her ways . 

At t he same t i me, compu t e r studies of qualitative properties 
of so l iton-like solutions may sugges t t he manner of their subse­
quen t analytical i nvest i gation. 

In t his paper the resu l ts c oncerning dynamica l properties 
and stabi l ity of many-dimensional so l itons are presented for 
class i cal fields within the framework of Kl e in-Gordon, Schro­
dinge r and Dirac equations, r espective l y. 

2. 	 SIMULATION OF THE SOLITON-LIKE OBJECTS INTERACTIONS 

WITHIN THE FRAME OF KLEIN-GORDON EQUATION 


Cons ider the Klein-Gordon equation 

¢ tI + I'll,2 ¢ + a ¢ + ~ F (<I» <I> = 0 , 	 ( I ) 
2whefe 6 i s the Laplace operator, 6 l u =a2 u/ ax , 1'l2u = il2u/dX2 + 

+ a u/ ay2 and F(¢) is a nonlinear function . Computer s tud i ~s of 
interactions of one-dimensional, (x , t), and two- dimensiollal, 
(-x,y,t), quasisolitons have been performed 161 for nonl ineari ­

1 



t ies of t he fo llowing t ype : 

11/> 12/ (1 + 11/>12 ). 
(2 )F ( ¢) = { 2In( I4> 1 ). 

Investigations have been performed us ing a symmetric second 
order difference scheme. The time s tep was M = 0 . 1; t he spa­
t ial s tep fj.x"" fj.y was chosen f rom [0 . 1, 0 . 4 J. 

I n order t o eliminate the i n fluence of boundarie s of compu­
t ation area upon motion of sol i t ons , an auxi liary condi t ion in 
t he form y l/> , was added t o (I ). Tha t term was t aken into accoun t 
merely i n t he neighbourhood of boundar y havi ng t he wid th -5% of 
t he d imens i on of t he a rea (x .y). The opt imum value of the cc'c f ­
fi cient y was det ermined exper imentally. 

Let us dea l in mor e detai l with the way of choosinl4 L111' 
initial confi guration. Us i ng t he subs t ituti on 

2 2¢ (X,y ,t) = 'l'(r)e lw t
, r = .,jx + y 	 (1 ) 

we 	 ge t f rom (I ) the foll owing boundary probl('lIl 

'l'rr + } 'Pr + ac,}'l'-f CIJ')'l' =O, 1[',(0) .. 0 . 11'( ... ) .. n (it) 

and the probl em leads t o find a cylindricillIY·IlY II IlItI't:t' j.: 11I .llio­
nary one- soli t on so lut i on. 

In order t o solve the boundary pnlhll'ul (II) 11111111' 1 j, t\ ty III 
shooting method was used . The so l lJ L iol1 Wil l, Pll'lil,lh,.t!lI;ll lr,lcy 
obta ined so f ar was t hen approximntl'd u si ll g II d l t >lfl "I 1 ~~ lIItis ian 
exponent s 

n 

'P( t )", ~ a j exp !f3 i (r - ol )21. ('i ) 


i = 1 

By cho osing a i ' Bj , OJ appropriately, it is post! i h I.I! I;,j (' j 'llrnxi ­
ma te 'P(r) in such a wa y that 
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max l IP ( r) - I a . ellp IBI (r - /). ) 2 il< 0.005 1 '1'(0) 1· (11)


i _ I II ­

bolds t r ue f o e a ll w. 
Us ing the Lorentz t ransfor mat i on 

¢(x.y. t) '" .1 a i exp ! Bl (Vy2(x - vt)2 + y2 - 8 )21 x expl-ulJy(t _ Vx) 1(7)1
1 '" 1 

fina l l y a mov ing soliton obt a ins . Subsequent l y, wi t h t he hel p 
of the above-mentioned d iffer ence scheme the soliton i n t e r ac­
t ions wer e s t ud ied . 
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By 	 carrying ove r numer ica l experiments for mode ls possessing 
various types of oonl ioear itie s , i t was pos sible t o s i ngle out 
four k inds of i nt era c t ions: 

I) r esilien t and quasiresi l ien t int eractions between qua s i ­
s olitons ; 

2) 	 decay col lapse ) of quas isolitons a f t er i nterac t ion ; 
3) 	 decay (collapse) t hrough a shor t- l iving bound s t ate (re­

sonance) ; 
4) 	 l ong-l ivi ng bound state of two quas i so li tons. 

Two paramet er s have been changing i n cal culations, namely, t he 
veloc i ty of the relat i ve motion V of quasi sol itons and t he ir 
charge.s : 

Q -	 - i f [ ¢ • I/> - ¢ I/>.] dx dy • . (8)
I I 

(X,y ) 

I n 	bo th cases the f our kinds of interact ions have been observed. 
An 	 ana l ys is of numeri ca l exper i ments s uggested to fo rmulat e the 
conjec t ure, according t o whi ch the nature of soli t on intera ct i ­
ons is determined by t he dispers i on dependence Q(w) and not by 
t he type of t he model. 

A more detailed study of th e nature of quasisoliton i nterac­
tions r e sul t ed in t he observation tha t i t depends also on the 
angular momen t um f and on t he init i a l phase di ff e renc e M . 
Numerical experiment s have shown: 

I ) There exist s a certain resonanc e domain of t he paramete 
f, 	wi thin which t he res i l ience of i n teraction sharp l y decreases; 

2) A pure l y anti symmetric angul a r configura t ion leads to a 
resi lien t in t eract i on of quas i s ol i tons. 

In the series of numerical experiments /6/ there have been 
obtained seemi ngly paradoxical resul ts. When placing unstable 
soliton-l i ke obj ect s sufficiently nearby each other (so t hat 
the kinemat ic time of their i nteraction becomes less than the 
deca y time of each obj ect), then under low enough relative mo­
t ion ve l ocities the appearance of a bound state - a two-dimen­
sional bion (quasiperiodic solut i on) is observed. A possible 
explanation for s t ability of the observed bions with the help 

/S/ •of 	 a certain adibat i c invariant may be found in ref .

3. 	 SIMULATION OF THE SOLITON-LIKE OBJECTS INTERACTIONS 

WI THIN THE FRAME OF NONLINEAR SCIlRODTNGER EQUATION 


The nonl i near Schrodinger equation arises in many problems 
of solid state physics, nonlinear op t ics and plasma physics. 
The U(o) nonlinear Scbrodinger equati on with a repulsing-type 
potential may serve as an integrable variant o( weakly oon­
ideal Bose gas having n interna l ("colour") degrees of freedom. 
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It arises also when describing many- chain anti ferromagnetic 
spin systems with weak coupling bet ween chains in the l ong-wave 
approximation 11 0/. 

A nonlinear Schrodinger equation wi t h the noncQmpact isogroup 
U(l,1) describes a system consist i ng of two interacting bose­
gases 19/. The nonlinear Schrodinger equation with cubic nonli­
nearity 

2 (9)
l'1' t +'I'u:+ a \ 11I1 '1' = O 

ha s been i nvestigated analytically using the 1ST method for 
various boundary conditions. The properties of the two-dimen­
sional solutions (x , t) in case of U(l)- symmetry may be found 
in 1111, i n case of U(l,l)-isogroup in 112/, for the case of 
U(2}-synnnetry in 11SI, respectively. In/14/, numerical experi­
ment s were used in the two-dimens i onal (x,t) case in order to 
s tudy interactions between quasisolitons for the nonl inear Schro­
dinger equation possessing cubic nonlinearity and U(O,l) - , 
U(l,l)-sYlmnetry groups , respectively. The numerical result s are 
in favour of t he conclusion that these models are f ully integ­
rable. Calculations have been performed using the semi-imp licit 
finite difference scheme of approximation order O( r + h2 

), where 
rand h designate the temporal and the spatial steps , respecti­
ve ly. 'Confi gurations of "soliton + antisoliton + vacuum" type, 
approximating the solution with exponential precision, have been 
employed as i nitial states. 

The scattering of a -particles within the time-dependent Rar­
tree-Fock theory was studied in /161 The original thr ee-di men­
sional problem is reduced to a two-dimensional one, the l atter 
being described by a Schrodinger-type 4>4 _aq,G model 

14>t +64>+a4>+bli,b 124> _ cli,b 144>=O. ( 10) 

where a, b, c are constants and 4>(x,y,t) is the one- part icle 
wave function. Within this model interactions of two identical 
cylindrically-symmetric solitons having different energies and 
principal parameters have been studied. Numerical experiments 
suggest there arises a bound state at a certain value of energy 
K- v2 of coll i ding sol itons . 

Inter actions of cylindrically-symmetric gaussons within the 
nonlinear Scbrodinger equation 

(I I)i 4> + I..!:... 6 + b In [ aD 14> 12 1I 4> = 0 
L 2 

(a,b are constants, D is space dimensionality) have been stu­
died iu /161• Fourier transformation was used for the purpose 
of numerical solution. Bound states of gaussons have not been 
observed in 1161 for the model (II). However, only "uncharged" 
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gaussons i nteractions (once for wh i ch w = 0 at v = 0) have been 
considered there. 

At present, we are carrying over a seri es of numerical expe­
riments concerning interactions of t hree-dimensional gaus sons 
( x,y , t) withi n the mode l ( II) . We use the splitting met hods 
(which yi eld local l y one- 1imens i onal scheme s ) i n or der t o solve 
the nonlinear Schr odinger equation ( see / 17/ ). The proposed me­
thod applies to Schr odin ger equat i ons posses s i ng nonlinear it ie s 
of the t ype s 

a\iI l2 u 

al iII 2 u + bl ill4u 

(Iul)u= ~ exp[_al uI2 ]u 

I iI I2uI (1 + 1"12 ) 

In(a luI 2 ) . 

Wi thin this appr oach a uniform tempor al latt ice Wr = I ti = JT • 

j = 0, I , ... ,N
t 

; Nt "' tmax / r\ is emp l oyed . The mult i d1mens i­
onal Schrod i nger equation 

i¢t +(a 2 + a; x +f(lipl»¢ = O ( 1 1- )
xlxl 2 2 

with the i ni tial condition 

-t 
¢(X I ,x 2 ,O ) " ¢O(X I ,x 2 )=¢o(x) ( 12 ) 

i s r eplaced by a chain of one-dimensional equa tions 

1 . aVa 
-2 1 - - + Aa Va = 0 , t . <t< t , CI 1,2 , 13)

.1+(a - I )/ 2 - j+a/ 2at 

2
where A = aJ. xa + ~ f( 1vi) . Ini ti a l condit i on s of t he type a a 2 a .. .. 
v I ( x, 0) = ¢o ( X I , 

V2 (;, t ) = Vl (X. t j + l /21, 14 ) 
j +1I2 

... .. 
VI (x . t j + I ) = V 2 ( x , t j + I ) 

are added. Each equa t i on i n ( 13 ) on the int erv3 l t j +(a_ I )/2< 

< t ,$tj+aI 2 is appr oximated by a semi - i. mp lic.i t [lr ite-Jiffe r en­
ce scheme . The total appro ximat i on orde r is O ( H. h ~ + h~ ). 
where hi' h2 are the s patia l steps a l ong the coo r J inat e axes . 
A configuration app roxima t ing t he so l ut i on of ( I I) with expo­
nenti a l prec ision i s chosen a s t he ini tia l confi guration. 
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4. 	 INVESTIGATION OF STABILITY OF SOLITONS 

FOR THE NONLINEAR DIRAC EQUATION 


The nonlinear Dirac equation 

II-	 ­
iy 	dp.'P-m'P+2,\('l''P)'P=O . ,\ > 0, (15 ) 

i s employed in elementary particle physics for modellhlg exten­
ded quarksllS ,19( !hi s model uses six Dirac fields which form 
two triplets 'P k and c/>k,' k = _1.2,3. Here. ¢k is the charge conju­
gate to 'Pk and ¢k' 'l'k interact via 4-th order two-body [orces. 
The particle is interpreted as a certain soliton solution to 
the field equations. By interpre t ing 'Pk as a quark, and ¢k as 
an antiquark, the theory becomes amenable to comparison with 
experimental data. If the particle is the bound state of three 
'Pk (or of three ¢k), it corresponds to 3q (or 3q) state. 

Curiously enough, t he mechanism of conf i nement appears Lo 
be a particular case of the triviality so that it is not rela­
ted to any quantum effects. Tn fact, the fields are created as 
c-numbers. This suggests the possibility that the confinement 
might be a property of the field equations at the classical 
level, which perhaps should be investigated hefore proceeding 
to their quantization . 

I t 91. . hI' 1 . l' (I n lt 15 s own t lere eX1st so lton SO uLl ons ' •• 
spin directit)n) 

1 

JG ( 0 ) 

-lUrnl I m 


'1', e " 2); ( COS (J i¢ 
iF 	 ( 8in fJ e 

( 16 ) 

G 	 ( 1 )
'I' 	 =- e-4nmt v; ( 

o 

))._ iF 8in fI e -\ r:/J 

- COS 0 

0 2for all 0 wi th <: 1. Here. Ii' ~nd G are radial functions of 
spatial variables, satisfying the following system of equations: 

F' + ~ F + ( 1 - 0 + F 2 - G2 ) G = 0, G' + ( 1 + n + F2 - 0 2 ) F ~ 0, p _ mr II 7 ) 

p 


The function F and 0 for sol itc]1-like solutions are found 
in leO/. In 1191 it is pointed out that it is a diffic.ult task 
to investigate the stabi lity of solutions within equations (15). 
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Als o the stabi lity of solutions with respect t o deforma t i ons in 
two and three dimensions is pointed out in t he quoted ref erence. 
It i s noted that the scalar fields are highly uns table. 

The stab i lity of c l a ssical spinor f ield within the f rame of 
Dirac equat i on with self-interaction (iiIrlJl)2is investigated 
in 1211 by the variational method in each two-di mens i onal and 
four-dimensional space-times. It is shown that three-dimensio­
nal sfinor solitons generated by the scalar sel f -interaction 
CW'iI)4 are unstable at all frequencie s . The instability region for 
three-dimensional solitons (coinciding with that oue for one­
dimensional solitons) of sp i nor f ields under the selfinterac­
tion (ipll')~ is found to be 

1W1<_1_. 	 (18) 

../2'
The dynamics of instabili t y for the two-dimensional (x,t) 

Dirac equation with scalar selfinteraction (iji'l')~ is studied by 
numerical experiments (it has the form of energy contraction 
into narrow domains). The numerical calculations are carried 
over for (15) with the help of the second order symmetric fini­
te difference scheme (i.e., of order 0(,2+ h2 ), where rand b 
have the same meaning as before). 

I n 1241 it is proved that for (15) there exi st cylindrically­
symmet r i c soli t on-like solutions of t he f orm 

e iVlnt + inq,if> (P. t) = ( i ~ 'iI 1 ( P) + 'ile (p» , 	 (19 ) 
p 

....·here 'II 1 .1J'2 are e igen func t ions of yO correspon ding to th samE' 

eigenvalue. Here 
2 . 

.t-=--I~I)'IXi' (20) 

v - a positive real numb er. ¢ the azimuthal angle 
around the x 3 -axi s, n - an int eger and p - distance 
from the %9 -axis. Al so t he existence of spherically­
symme t ric so l iton-like solutions to (15) is established. How­
ever,the proofs are based on a method introduced in 123/, which 
is not mathematically rigorous. Rigorous proofs are given in/241 
for the existence of soliton-like solut i ons for equations simi­
lar to those ones considered in le21. The numerical experiments 
described in le21 show that the energy of cylindrical l y-symmet­
ric solitons is always less than the energy of solutions in the 
form of planar waves. However, it is not possible to draw out 
o[ these experiments conclusions about stability of soliton­
like solutions. 

Consequently, it appears to be of great interest to design 
numerical experiments fOT the purpose of studying the stability 
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properties of soliton- like solutions t o nonstationar y nonlinear 
and multidimensional Di rac equation. I t is clear that any pro­
po sed algor ithm should be unc onditionally s tabl e and efficient 
i n the sense of minimi z ing the overall number of arithmet i c ope­
rat i ons Q«() needed to calculate the solution within a given 
pr eCl.Sl on (> O. The l at ter r equi rement become s extra-ordina­
r i l y impor tant in mul tidimensional pr oblems . 

Let us descr i be one of e ffici ent method s ( t he "method of to­
t a l appr oximation") , appl i ed to the nonl i near Dirac equat i on 
( I S) in fou r -dimensional space- time . To t hi s end rewri t e ( IS) 
i n t he form 

.( a a a a )
1 Y. --+ Y - +y -+ y - - lJI - m'P+ 2(-P 1JI) 1JI .. 0, (2 I ) 

o at I ax ! 2 aX2 3 axs 

where (X l ' X2 ' xs) be l ongs to a certain spa t i al domain G and 
O < t st ' : By multiplyi ng (2 1) by - i yo f orm the lef t we ob­o
tain 

_a_ 1JI + L 'II + imy 'P - ig 2 (iV lJI )r, 1p = 0 , (22 )at o . 0 

where 

a a aL = y y - - + Y. Y --- + y y ---, (23)
o I aXl 0 2 aX 0 S ax

2 s 
We add the initial condition 

'P ( O, x ) =lJIo( x ) . (24) 

Let us construct a locally one-dimensional f inite dif ference 
scheme for (22 ). \~e use the tempora l lattice wr =ltj=jr , 
J = 0 , I , . .. , No , No = to ! r I. In place of (22 ) we Introduce 
the fo llm,,,ing chain of one-dimensional systems 

! ~a~ + L alla+imYOlla - g2( Ua U) Yol1a =0, 
(25 ) 

t j+ ( a _ I)/S< tst j+ a / S' 

a ­where L =yoy'~- , a= 1, 2, 3 . The va l ue of the product( U U)
a a a Xa a 

in ( 2S) i s taken f rom the pr eced ing t emporal f i bre. Fi nally, the 
· ni tial conditions a r e writ ten in the f or m 

1JI 1 ( 0, x) = 'Po (1 ) , 

.. .. 
1J1 2 (t j + lI s ' x) = '1' 1 (tj+1 / 3' X). 

( 26) 
-+ -+'S (t j +2/S ' x) = '1'2 (t j +2/ S ' X), .. .. 

'¥1 (t j +1 ' x) = '¥S (t j +1 ' X) , 

Each o f the equations (2 5) with index a (whi ch ac t ual ly repr e­
sen t s a sys tem of four equations since Wi s a 4-component spi­
nor) is approximated by a finit e difference scheme 

U J+a/S j +(a - 1)/S-u 
O -J+a/3 i -j+a 13

------+v y aU + my u ­
T 0 a 0 

j- i Yo {iiu)ii +a/3=0, 
(27) 

where 

o o 

o ; 1-(V 
a 2 l[ 

a 

+V 
l[ 
a n1 

o 
o 

o 
1 

o u 
(28) 

Vl[ U It "" 
U 

k+ 1 - Uk 
h 

ViUk .. 
Uk - U k _ 1 

h 

-U J+a/S 1 ( j +a/3 ]+(a-l)/3)
""- u +u2 . 

Le t 's introduce scalar product for t he proof of absolute stabi­
lity of one-dimensional finite difference scheme 

Nl -1 N2 -1 NS -1 

(u,v) = }; }; }; u+ v hth2hS' II u ll =v'(u , u) ,(29) 
11 = 1 'e= ! IS= 1 , 1 12 1S 'I 12 18 

where 

+ (. • u· u·)U - Ut ' u2 , S' 4 'u ~ (~~} 

hi' h 2 , h3 are the steps in directions of lt1 , x2 and xa-axes, 
respec t ively. Let us multiply scalary the equation (27) by 
uJ+a/3 both f rom the right and from the left. By summing up 
the resul t ing equalities and by taking into accoun t the fact 
that the matrices y and Da commute we get 

1- illuJ-ta/3112_l l ilJ+(a-l)/3 Ir21+u+y Ya(Oa+O!)iiJ+a/S ",0 , (30) 
r 0 

where the operator O! is the adjoint one to 0a' According to 126/, 8 
9 



D~ = - Da ' -Consequently , 

II u J+a /3 11 = II u .i+ (a - l ) /S II . (3 1 ) 

Let 	 us take the sum of equations (31) f or a = 1,2 , 3. Then we ge t 

II uJ+ 
1 II =1 1ul 11 =··· =11 uO ll =11 '1'0 II 	 32 ) 

and 	 t his jus t means t be stabi li ty re l a t ive to t he i n i tial con­
di tions 125,261 and t he norm (30). The lat t e r equat ions show t ha t 
the 	proposed fi ni te di fference s cheme is conservative with r e s ­
pect to the conservat i on l ow 

1=> J 'P+'Pd 3x 	 (33) 

which i s bu t the i ntegral f orm of t he continui ty equat i on f or 
the 	Dir ac equati on . 

For tbe sake of simplicity suppose t be so l uti ons we seek f or 
have to sat i s f y given periodic boundar y condi t ions. In this way 
we 	 get a syst em of t hree-point equations which i s sol vable us i ng 
alt ernati ng-di rect method /2&1 . The proposed algori thm is ef fe c ­
t i ve in the sense de scribed above. 
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