

n s .

h . 9F pi ul B 8 i el
where F, iio 3y, Dy Ly =] - L, Py @(D Py
Conservation law density for the equation (1) is called the
function P(u.ul....,uk) such that

d
L PcimD. 4)
o (

The notation €ImD means that the left-hand side expression is
a gradient (i.e., whole derivative with respect to x), If
P&ImD,thenthe conservation law is called trivial.

Lie-Backlund algebra for (1) is the set of functions
H(u.ul...f..nm)such that

H,F-F,H=0. (5)

Algebra is called nontrivial if it contains the elements (sym-
metries) different from w; and F.-

The following theorems establish the connections between
the concepts introduced above. .

Theorem 1. If the equation (1) has ;h? infinite Lie-Backlund
algebra,then it is formally integrable’%.

Theorem 2. If the equation (1) has the infinite series of
nontrivial conservation laws,then it is formally integrable 77/,

Theorem 3. The formal integrability of (1) is equivalent
to its property of the conservation law infinite series of the
following type /8/

":ii{'Ri elmD, 1= 10123 . (6)
where

R_j=Res(L'), Ry=Res(U''L,), R,_=Res(L"), m=1,2,3,..47)

and Res(Z aiDl)s 8.
1 ot i

Theorem 3 allows one to solve the classification problem for

formally integrable evolution equations of the order m with

the accuracy up to the transformations of the form u(z,t)=

= ¢(v(x,t)). The problem is being solved according to the fol-

lowing scheme. - o dE

1) Derivation of all the equations for which several first con-
ditions (6) are done (primary classification).

2) Checking up the higher conditions for the equations derived.

3) Testing of the equations obtained for the proberty of non-
trivial symmetries. :

4) Derivation of the Backlund transformations which connect dif-
ferent equations of the list obtained.

4

In the next section solving algorithms for the problems 1)-4)
and their implementation in FORMINT are briefly described.

3. ALGORITHMS

3.1, Testing conditions of formal integrability

To test the formal integrability conditions (6) for the
given equation (1) is necessary primarily to express the
densities R; in terms of explicit function F(u,u,..,u,;). It
can be easily shown that :

~1/n :
R_;=(F)) » Ry=F _,/F, (8)
where F,; = ;: ,and densities R can be derived from the fol-

lowingmrecurrefnt relations on the coefficients of the series
Li= /% &D
1=—o00
am=(Fn)m/"; m=1,2,83,..;
i _ dixn) A (9),
(F)) . L
a; L g c
n n

d
n4i-1 Iai =0 +‘E{‘an+l—-i] '
i=m-1,m-2, m-3, ...,
where C, ;. jare the coefficients of pitiol g the commutator
1L K a,,i-1=0 while i>m-n+1 and the integration constants
in (9) are suggested zeros. The recurrence relations (9) may
be obtained from (3) wich is valid not only for L but also
for L". dR.
Then one has to check up that S= dtl cImD., The relevanc

algorithm based on the linear dependence of gradient

,S(u.u] ""'"k) on the highest derivative u, is given below.

dR .
1) Siz —1
dt
2) K:=ordS

2 5 L
3) if 682 40 then STOP (checking up the linearity condition)
du

k :
4) S:=8-Df aas dbU, , (reducting the order of S)
Uk
5) if 8 £ O then 30 to 2). : (10)

If S expressions contain arbitrary constants or implicit de-

pendencies on u, u; , ... then the work of algorithm (10) doesn't —

stop on step 3 but continues after putting the terms in S non-
linearly depending on uy equal to zero. The algorithms descri-
bed above are completely implemented in FORMINT.

2. Primary classification

Primary tlassification of evolution equation (1) is done
according to the scheme described in 3.1 save for the form of
F(u,uy ,e05u,) is completely or partially unknown. One can
get dlfferentlal equations on P, expressing several first den-
sities in terms of F according to (8), (9) and putting the terms
in S nonlinearly depending on u, equal to zero on the step 3
of algorithm (10). As one solves these equations he can clear
up the form of F. As a result one can obtain the list of concre-
te equations (1) for which several first conditions (6) are done.
The most tedious part of computations of this stage-derivation
of the equations on F can be carried out by the computer
through the usage of various procedures of FORMINT (see example
2, sec.5). As for solving of these equations it must be done
by hands. !

Evolution equations, derived from the several first condi-
tions (6) are then checked up using FORMINT code by the next
conditions of formal integrability: as a result the part of
the equations is thrown away. Further investigation of the
equations left includes finding their symmetries and Backlund
transformations connecting different evolution equations (see
below).

3.3. Symmetries

Research algorithm of the symmetry H(u,u,,...,u,) of the
given order for the equation (1) is based on the following
relations/%/

SN g a3 Lm0
an‘- i 1 1D yeeny Chs / (1])
where a; are the coefficients of the series L".0ne can find
H(u, Uy reeea g } with the accuracy up to addition of the arbitra-
ry function h(u, u,) by, expressing 8; through F according to
(9), checking the compatxblllty conditions for the system (11)

day day
Jdu. du

i 2=l

=0, i4j, (12)

and in case they work by integration of (11). After that one
must substitute the result into (5), obtain equations on h and
solve them. In this important special case when
F=u, +f(u, sUpaeeeslly o) e equations (11) are valid for
i=0,1,2,...,m and H can be obtained by simple integration
of (11).

The algorithm described is completely implemented in FORMINT
except solving the equations on h(u,u,).Note that according

6

to theorem | the nontrivial symmetry property of the investiga-
ted evolution equation works as a solid argument for its formal
integrability as there is no example of the evolution equation
with nontrivial but finite Lie-Backlund algebra.

3.4. Backlund transformations

Backlund transformation from the evolution equation
V, = G(V, V[, eeiVy) (13)

to equation (1) is the transformation

vag(u,u; e,), m21 14)
for wich the relation
¢ F=G(¢,Dé,...,D") / (15)

works. Derivation algorithm for Backlund transformations is
based on the following fact. let Ri(u.ui,";,uk) .

(v, Y] .00 Vp) be conservation law densities for the equations
(1), {13) respectively and let them be in nonlinear dependence
on uy and Vp. (One can easily represent them in such a way

by adding suitable gradients). In case the transformation (14)
exists the following relations

m=k-1, (16)

#,(¢.D, e, D' 8) = R, (0,0 uue,) € TmD an

take place for all i such that £ > 1. One can find the order
of transformation (14) (or the absence of the latter) by compu-
ting several densities R;,r; with the help of FORMINT and
obtain equations on ¢ function applying algorithm (10) imple-
mented in the program to the left-hand side of (17), the lat-
ter evaluated for the simplest R,,r;

It should be mentioned (see/lo/) that the formal integra-
bility of the evolution equations derived from the finite
number of conditions (6) is proved by Backlund transformation
of these to the known formally integrable equations, e.g., KdV
equation or its higher analogues. As for the equations non-
transformable to the known before, the strict proof of their
formal integrability presents a separate problem.

4. PROGRAM DESCRIPTION

FORMINT program with the user commands together is of the
following general structure

FORMINT: PROCEDURE OPTIONS (MAIN);
FORMAC - OPTIONS;
OPTSET (EXPND; INT);
<INITIAL ASSIGNMENTS>
<F-PROCEDURE DEFINITIONS>
<user program>
END FORMINT;

The program includes thirteen function procedures of the
F PROCEDURE type actual parameters of which must be FORMAC
expressions. To call this function procedures ome uses the
statements of the form

LET(<var> =< procname > (<arg 1> , <arg 2>,...,<carg n>));
Through this command the function procedure <procname> value
is assigned to FORMAC variable< var>.A brief description of
the FORMINT function procedures is given below. The formal na-
rameters with the same meaning for different procedures will be
noted similarly. So, symbol S denotes expression S(u,uj,..,uy);
symbol ORDS denotes nonnegative integer equal to ord S(u,uy,..,y)=
K ; F is the right-hand side of the evolution equation and N,
M, K are nonnegative 1ntegers in all cases. Variables u, 5 P PR
should be represented in the program as U#,U1,U2,..,.

4.1, Procedure DX(S, ORDS) returns the value of
ord § f
Hge & 980,
i=0 aui il
€.g.,
DS(UA*U2,2)-»UB8*U3+U1*U2

! 4.2. Procedure DT(S, ORDS,F,ORDF) returns the value of
s ord § i 38
—_—= 3 (D'F)-f—,
d d= Y 8ui
€.8.,
DT(Uﬂ**2,ﬂ,U3+3*Uﬂ"‘Ul.3)-»?*UG*U3+6+UG**2*U1
4,3, Procedure DEPPART(Y,Z) returns the value equal to the

sum of the Y expression terms, the latter not depending on the
variable Z, e.g.,

DEPPART(Z*A+ SIN(Z)+ B,Z)+» Z*A 4+ SIN(Z)

4,4, Procedure TRUNC(S, ORDS, M) returns the value equal
to the sum of the S(u, Uy e,y) expression terms, the latter
not depending on u;,i>M,e.g., ’

TRUNG(UI+U2+03+U4 4,2)-U14+U2

/
8

4.5. Procedure INT(Y, Z) returns the value of [YdZ,
In case Y= 2(8 Z+b;)! , where a;,,b;,c; are the arbitra-

ry numbers or express1ons not depending on Z, the explicit
value of untegral returns. In other cases the result is unspeci-
fied function INTEG. (Y,Z) with the following differential rule
defined in the program

a
ﬁINTEG. (Y.Z)-)Y

b

Example: :
INT(EXP(X) + X** A4+ 1/(X-1), X) »

INTEG. (EXP(X), X)+ X**(A+1)/(A+ 1)+ LN(X=1)

4.6. Procedure INTU(S) returns the value of [Sdu where the
expression S may contain the unspecified functions G(T). (U@)
and their derivatives. Before the call of INTU it's necessary
to assign nonnegative integers to PL/I variables NF and ORDG
initially equal to zero. NF must be equal to the number of G(1)
functions (I=1,Z,...,,NF) and ORDG is the order of the highest
derivative.

Example:

LET(S=U#0 + DERIV(G(1).(U8) *G(2).(UB), UB));
NF=2; ORDG=Y;

INTU(S) » G(1).(UB) *G(2).(U0) + V/2*UP **2

4.7 Procedure SUBST(S) returns the value of expression S
in which unspecified functions G(I).(U@) are replaced by the
expressions given before. The number of replacements must be
assigned to PL/1 variable NS which is 1n1t1311y equal to zero.
The expressions which should be placed instead of G(I) functions
(1=1,2,...,NS) should be assigned to FORMAC variables SUB(I),
the symbol X going before U@ in the expression.

Example. Let S be the expression from previous example.

NS=1; LET(SUB(1)=SIN(¥ U@);

$UBST(S) + UP+SIN(UP) * G(2)“5(u¢)+c(2) (U@) *COS (UP)

. 4.8 Procedure INTX(S,ORDS,M) returns the value of [sz.where
8 = S~ TRUNC(S,ORDS,M). In the procedure algorithm (i0) is
implemented. If the structures nonlinearly depending on the.
highest derivative u, arise in the third step of the algorithm
they are substracted from the integrand and printed as

ZERO = < nonlinear structure >

One can obtain_the equations on the arbitrary parameters or
functions inside 8 or contradictionary equalities meaning that

9

S¢ ImD if one makes the right-hand side expressions equal to
zero. :

Example:
INTX(UO*U3+ A*U1**2,3 6)UB*U2- 1/2* 1 **2

ZERO = A*U1#%*2

4.9 Procedure NLPART(S,0RDS,M) returns the value of expres-
sion =8+ DQ, where S has no linear terms depending on u. ,
i>M and Q function is unambiguously determined in case of the
execution of algorithm (10), which is implemented in the proce-
dure. In a special case, when 8¢ ImD and M=0, zero value is
returned.

Example:
NLPART(U# *U4,4,8) » U2**2

4.10 Procedure CFCOM(M,N,K) returns the value of the coef-
ficien{:s of D¥ in the ‘commutator [Fs ,L¥ for the N order
evolution equation with an implicit right-hand side
F(u,uy,...,uy). The result is expressed in terms of coefficients
3; of L” series, partial derivatives F, and their gradients
which are presented in the program as

D'a; ALY, DIF -FFU,I).-
Example: !
CFCOM(1,3,1) »-A(-1,8) *FF(3,1) -2*A(8,1) *FF(2,0)

~-A(1,2) *FF(2,0)-A(1,1)*FF(1,0) + FF(I,I)*A(I,ﬂ)

~3*A(-1,1) *FF(3,0) - 3* A(6,2) *FF(3,0) - A(1,3) *FF(3,0)
4,11 Procedure CFL(F,ORDFN,IM,K) helps to cbmpute BpaBy e
(K<M)coefficients of L. >3 a, D! (M_>_'l) series uéing recur—

1=~—o00
rence relations (9) for the evolution equation with right-hand
side F. The coefficients a; computed are assigned to FORMA
variables A(I,@). The value of M is returned. :
Ex.?mple: Computation of L” series coefficients for KdV
equation
U =uj+3uu;
LET(DUM = CFL(U3 + 3 *U®6 *U1,3,3,-~1);
PRINT_OUT(A(3,8); A(2,8); A(1,8); A(8,0); A(~1,8);
A(3. 8 wl
A(2,8)=8
A(1,0)=3*U0
A(9,8)=3*Ul
A(-1,0)=U24+3/2*%U0**2

10

4.12 Procedure CONDS(F,ORDF,M1,M2,SW) helps to compute den-
sities L oeeseR 2(Ml_gM.?) determined by (7) and to check up
the conditions o¥ formal integrability (6). The densities R;
computed are assigned to FORMAC variables RES(I) and put to
print. In addition when SW=1 a suitable condition (6) is
checked up for each R; (if SW # 1 this process doesn't take
place). If any of the conditions checking doesn't work the
following relations on F are printed as

ZERO = < expression >
The value of M2 is returned. .

4.13 Procedure SYMMTR (F,ORDF,M) returns the value of M
order symmetry for the evolution with right-hand ‘side F if
such symmetry exists and zero otherwise. The symmetry can be
computed explicitly or in terms of unspecified function
H.(UB,U1). In the latter case the equations on H are printed as

ZERO = < expression >
If the evolution equation has no M order symmetry, the message
is printed

NO SYMMETRY OF ORDER M

Examples of using procedures CONDS & SYMMTR are given in
the next section.

5. HOW TO USE FORMINT, EXAMPLES !

5.1. Checking up the Conditions of Formally Integrability
for Equation u,=u.+uu,

LET(DUM = CONDS(U5 + U8 *U1,5,1,9));
RES(1) =8 . ‘
RES(2) = @

RES(3) =3/5*U#6

RES(4) =9

RES(5) =9

RES(6) =8

RES(7) = 21/58 *U@ **2

RES(8) =8
RES(9)=9/25*Ul**2

ZERO =9/25 *U1 **3

Contradictionary equality —-2?-5— u:;‘ =

condition (6) for i = 9 means that the evolution equation is

O resulting from checking up

11

not formally integrable despite of the hypothesis of
the work/%/.

5.2. Primary Classification of Evelution Equations
A IO o

— T ——

The program to obtain the ordinary differential equation of

~1/3
F; using the condition -£— R ;=DQ ,,where R_; =(F;) is

given below.
LET(R = DERIV(F.(U8,U1,U02,U8),U3) **(-1/3);
R=DT(R,3,F.(UB,U1,0U2,03),3);

R = INTX(R,F,8)):
Result:

()3 ; (3
ZERO = (-26/27 F¥). (up,u1,U2,03)/F¥." " (ue,u1,u2,us)
(4% C(4Y :
+5/6 FU) (us,ut,u2,u3) F4. (Us, UL, U2, U3)
4
/P Y3 (ug,u1,u2,03) - ve F'*) (us,ul,u2,U3)

/R 13 (yg v1,u2,03) sl

We get an ordinary differential equation on F; making the above
expression equal to zero:

2 3 :
9F3333(F3) ~45F;F ,F, . +40(F,,)" =0.

3733 333
This equation has the following general solution’!V
D -3/
Fy =(pul + my +1)"%2 !
where p,d,r are the functions of u,u, ,u,. :

5.3. Computing of the 5th Order Symmetry for Calogero;
Degasperis-Fokas Equation ' .12/ " :

u, =u, —%—u? +(ae" s be ™")y,

LET(F=U3-U1**3/8 + G(1).(UB)*U1;

SUB(1)=A*#E** HUB + B*=E ** (- yUB));

NF.=1; NS=1; .

PRINT_OUT(H(5)= SYMMTR(F,3,5));

H(5)=U5+5/3ABUL+16/3AU2UL1#EY®
12

+53AU3#EY .58 AU #EYP _10/3BU2UIRE""?
+5/3BUSHE"" s /8 BUI 4 E~VY _5/suB UL’
+56 & 1#E2Y L5s B2 U1 #E2YP s U w1

+3/128 U13

ACKNOWLEDGEMENT
We are grateful to Profs. N.N.Govorun, E.P.Zhidkov and

V.G.Makhankov for useful discussions, interest to this work
and support. :

TEST RUN OUTPUT

EQUATION DU/DT = F ;
F-U5+ 0ABUI#EY 15 AUs#E2" L 150102462 5B US
#E-U . 5usve-5usur’ —su1u2? + 54 U1#EU? L 587 Ut

~2U¢g

4B + Ut

COMPUTING CONSERVATION LAW DENSITY RES(5)
CHECKING CORRESPONDING INTEGRABILITY CONDITION

RES(5)=-25 ABU12 #EU% , 5 A B? _5/3 AUL* #E2Y9 | 38 A U22
#E2Y 53Ut #EUP L 15BU22 #E-U9 1 5A2 BHESUI

56 A2 U12 #E4U? , 5/3 A3 4 ESUP 29 B2 y1? #E-2V? . 5/3 B
#E-3U9 _ 25 U012 u2?_ 503 _5/3 U1® + 2573 U2 A
COMPUTING SEVENTH-ORDER SYMMETRY H
H=U7+28ABU3#EU9+7'0ABU1U2#EU”+14ABU13 #E® 178
UsU3H#E2U? 56 Aus U1 #E2UP (35 AUAULHEZUY L7 AUsHE?
US 112 aw1u224E2Y? c28AB2 Ul+42aU U2#E2Y? L7

vsu2#E-U_7Busut? 4E- Y _cBusut#E- U7 BUSHE

13.

