объвдиненный
 ИНСТИтут
 лдерных
 исследований
 дубна

$151 / 84$
E11-83-767
N.A.Kostov, A.B.Shvachka

REDUCE-2 PROGRAM
FOR OBTAINING QUASI-PERIODIC
SOLUTIONS
OF MODIFIED NONLINEAR
SCHRODINGER EQUATION

Submitted to Symposium on Selected Topics in St:atistical Mechanics (Dubna, 1984)

1. INTRODUCTION. BASIC DEFINITIONS

In the present work a Computer Algebra System REDUCE-2 is applied to obtain finite-gap solutions of the modified nonlinear Schrödinger equation (INLSE) in terms of theta functions:
$i q_{t}=-q_{x x} \mp i\left(|q|^{2} q\right)_{x}$.
General aspects of the method of finite-gap integration (periodic analog of the inverse spectral problem) are discussed in review articles $/ 1,2 /$. The periodic problem for MNLSE was studied in $/ 3,4 /$. Our work is based on the paper ${ }^{\prime \prime}$. Next we present some basic definitions and necessary formulas. Let us consider the following system of differential equations
$i q_{t}=-q_{x x}+i\left(w q^{2}\right)_{x}, \quad i w_{t}=w_{x x}+i\left(w^{2} q\right)_{x}$.
When $w= \pm \bar{q}$ this system reduces to MNLSE.
The Zakharov-Schabat representation for the system (2) is

$\left[\partial_{\mathrm{x}}-\mathrm{U}, \quad \partial_{\mathrm{t}}-\mathrm{V}\right]=0$,
where
$\mathrm{U}=\lambda^{2}\left(\begin{array}{cc}-\mathrm{i} & 0 \\ 0 & \mathrm{i}\end{array}\right)+\lambda\left(\begin{array}{ll}0 & \mathrm{q} \\ \mathrm{w} & 0\end{array}\right)$,
$V=2 \lambda^{4}\left(\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right)+2 x^{3}\left(\begin{array}{cc}0 & q \\ w & 0\end{array}\right)+\lambda^{2}\left(\begin{array}{cc}-i w q & 0 \\ 0 & i w q\end{array}\right)+\lambda\left(\begin{array}{ccc}0 & w q^{2} \\ w^{2} q-i q_{x} \\ -i w_{x} & 0\end{array}\right)$.

Let us consider the following system of linear differential equations:
$\partial_{\mathbf{x}} \Psi=\mathbf{U} \Psi$,
$\partial_{t} \boldsymbol{\Psi}=V \boldsymbol{T}$.
Definition 1 (Baker-Akhiezer function)
Let Γ be the hyperelliptic Riemann surface
$y^{2}=\prod_{j=1}^{2 g+2}\left(z-E_{j}\right), \quad E_{2 g+2^{-}}=0$
of genus g. We denote by P^{+}and P^{-}the points on Γ of type $P=(\infty \pm), \quad D \quad$ is a nonspecial divisor.

A Baker-Akhiezer function $\Psi=\Psi(x, t, P)$ is called the solution of the system (6), (7) with the following properties:

1) $\Psi=\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{z}\end{array}\right) \psi, \lambda=\sqrt{z}$, is unique on Γ, meromoprhic on $\Gamma /\{\infty \pm\}$ and its pole divisor $\quad D=\sum_{i=1}^{g} P_{i}$ doesn t depend on x and t.
2) ψ has the following alsymptotic behaviour near P
$\psi_{1}^{+}=u_{1}^{-}(\mathrm{x}, \mathrm{t})\left\{\xi_{10}^{+}+\xi_{12}^{+} \mathrm{z}^{-1}+\xi_{14}^{+} \mathrm{z}^{-2}+\ldots\right\} \exp \left\{-\mathrm{i}\left(\mathrm{zx}+2 \mathrm{z}^{2} \mathrm{t}\right)\right\}$,
$\psi_{2}^{-}=u_{1}(x, t)\left\{1+\xi_{12}^{-} z^{-1}+\xi_{14} z^{-2}+\ldots\right\} \exp \left\{i\left(z x+2 z^{2} t\right)\right\}$,
$\psi_{2}^{+}=u_{2}(x, t)\left\{z^{1 / 2}+\xi_{21}^{+} z^{-1 / 2}+\xi_{23}^{+} z^{-3 / 2}+\ldots\right\} \exp \left\{i\left(z x+2 z^{2} t\right)\right\}$,
$\psi_{2}^{-}=u_{2}(x, t)\left\{\xi_{21}^{-} z^{-1 / 2}+\xi_{23}^{-} z^{-3 / 2}+\ldots\right\} \exp \left\{-i\left(z x+2 z^{2} t\right)\right\}$.

The function is determined up to indefinite multipliers $u_{i}(x, t)$, $\mathbf{i}=1,2$.

Definition 2 (Realization of hyperelliptic Riemann surface) Let us consider the hyperelliptic curve:

$$
y^{2}=R(z)=\prod_{j=l^{-}}^{2 g+2}\left(z-E_{j}\right)
$$

The Riemann surface Γ is constructed from the two copies of the complex plane with cuts ($\left(\infty, E_{1}\right],\left[E_{2 j}, E_{2 j+1}\right],\left[E_{2 g+2}, \infty\right)$). There are two infinities on this surface $\infty+$ and $\infty-$, on the upper and on the lower sheet, respectively. On Γ we take a canonical homology basis $a_{j}, b_{j}, j=1, \ldots, g$. For a_{j} we take a closed contour which surrounds clockwise the cut $\left[\mathrm{E}_{\mathbf{2 j}}, \mathrm{E}_{\mathbf{2} \mathbf{j}+1}\right]$.
For b_{j} we take a closed contour which starts at $E_{2 j+1}$, goes on the upper sheet as far as $\mathrm{E}_{2 \mathrm{~g}+2}$, then it continues on the lower sheet and ends at $\mathrm{E}_{2 \mathrm{j}+1} \mathrm{I}^{\mathrm{g}+2}$ (Figure).

Next we introduce the Abelian differentials of the first kind
$d \omega_{j}=\sum_{j=1}^{g} \Gamma_{j}^{k} z^{g-k} \frac{d z}{R^{l / 2}(z)}$,
where the matrix of constants Γ_{j}^{k} is fixed by the normalization conditions $\int_{\mathbf{a}_{\mathbf{k}}} \mathrm{d}_{\omega_{j}}=\delta_{\mathbf{k j}}$. From these differentials we define the "period matrix" (Riemann matrix) $B=\left(B_{k j}\right)$ by $\int_{b_{k}} d_{\omega_{j}}=B_{k j}$; and the Abel map $A(P)$, by $A(P)=\left(\int_{0}^{P} d_{\omega_{i}}, \ldots, \int_{0}^{P} d_{\omega_{g}}\right), \quad P \in \Gamma$.

Let us also define Abelian differentials of the third kind on $\Gamma, \Omega_{1}, \Omega_{2}$ and Ω_{3} with zero a -periods, whose singularities are in $\infty \pm$. The explicit form of these differentials is:

$$
\Omega_{1}(P)= \pm\left(z-E_{0} / 2+R_{1} z^{-1}+R_{2} z^{-2}\right)+O\left(z^{-3}\right), \quad P \rightarrow \infty \pm
$$

$$
\begin{equation*}
\Omega_{2}(P)= \pm\left(2 z^{2 \cdot}+N_{0} / 2+F_{1} z^{-1}+F_{2} z^{-2}\right)+O\left(z^{-3}\right), P \rightarrow \infty \pm \tag{11}
\end{equation*}
$$

$$
\Omega_{3}(P)=\ln z / 2+z^{-1}+y_{1} z^{-2}+O\left(z^{-3}\right), \quad \quad P \rightarrow \infty+
$$

$$
\Omega_{3}(P)=-\ln z / 2+\ln \omega_{0}+\delta z^{-1}+\delta_{1} z^{-2}+O\left(z^{-3}\right), \quad P \rightarrow \infty-
$$

Definition 3 (Theta function)
The multidimensional theta function of argument v is
$\theta(v \mid B)=\sum_{k \in \mathbb{Z}} \exp \mid \pi i<B k, k>+2 \pi i<k, v>1$,
where B is the g-dimensional symmetric complex matrix, <,> denotes the scalar product $\langle k, v\rangle=\sum_{i=1}^{g} \mathbf{k}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}},\langle B k, k\rangle=\sum_{i, j=1}^{g} B_{i j} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{j}}$ and the sum is over the lattice Z^{s}, i.e., the set of g-dimensional vectors with integer (real) components $\mathbf{k}_{\mathrm{i}}\left(\mathbf{k}_{\mathrm{i}}=0, \pm 1, \pm 2, \ldots\right.$,
i $=1,2, \ldots$, g), $\quad \sum_{\mathbf{k} \subset Z_{G}}=\sum_{\mathbf{k}_{1=-\infty}}^{+\infty}, \ldots, \sum_{\sum_{\mathbf{k}}=-\infty}^{+\infty}$. The series (12) will
 If matrix B is the Riemann matrix we define g-dimensional theta function associated with the Riemann surface.

Using Definition 2 we have the following explicit expressions of $\Psi=\left(\Psi_{1}, \Psi_{2}\right)$ in theta functions
$\Psi_{1}=\frac{\theta(\mathrm{A}(\mathrm{P})-\mathrm{g}(\mathrm{x}, \mathrm{t})) \theta(\mathrm{g}(0,0)+\mathrm{r})}{\theta(\mathrm{A}(\mathrm{P})-\mathrm{g}(0,0)) \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r})} \exp \left\{\mathrm{i} \Omega_{1}(\mathrm{P}) \mathrm{x}+\mathrm{i} \Omega_{2}(\mathrm{P}) \mathrm{t}-\frac{\mathrm{ixE} \mathbf{0}_{0}}{2}+\frac{\mathrm{itN}_{0}}{2}, 1,13\right)$
$\Psi_{2}=\frac{\theta(\mathrm{A}(\mathrm{P})-\mathrm{g}(\mathrm{x}, \mathrm{t})-\mathrm{r}) \theta(\mathrm{g}(0,0)-\mathrm{r})}{\theta(\mathrm{A}(\mathrm{P})-\mathrm{g}(0,0)) \theta(\mathrm{g}(\mathrm{x}, \mathrm{t}))} \exp \left\{\mathrm{i} \Omega_{1}(\mathrm{P}) \mathrm{x}+\mathrm{i} \Omega_{2}(\mathrm{P}) \mathrm{t}+\Omega_{3}(\mathrm{P})+\frac{\mathrm{ixE} \mathrm{E}_{0}}{2}-\frac{\mathrm{it} \mathrm{N}_{0}}{2}\right\}$, where
$g_{j}(x, t)=-2 i \Gamma_{j}^{1} x-4 i\left(\Gamma_{j}^{2}+\frac{1}{2} \Gamma_{j}^{1} \sum_{i=1}^{g} E_{i}\right) t+g_{j}(0,0), \quad j=1, \ldots, g$,

$\mathrm{g}_{\mathrm{i}}(\mathrm{x}, \mathrm{t})$ and $\mathrm{g}_{\mathrm{i}}(0,0)$ are g -dimensional vectors. We take the last integral along the left-hand side of the cut of the upper sheet.

2. DESCRIPTION OF THE PROGRAMME

Module 1

We define the matrices U, V and the series (9) at the beginning of the programme. Next we write the equations $\partial_{\mathbf{x}} \Psi-U \Psi=0$, $\partial_{\mathbf{1}} \Psi-V \Psi=0$ near the point at infinity $\infty \pm$ and obtain the relations between the terms of the series (9). These relations are coefficients at different orders of the local parameter z. We illustrate some of calculations with the following expressions
$2 * \mathrm{I} * \mathrm{~K} 14 \mathrm{P}(\mathrm{X}, \mathrm{T}) * \mathrm{U} 1(\mathrm{X}, \mathrm{T})-\mathrm{Q} * \mathrm{~K} 23 \mathrm{P}(\mathrm{X}, \mathrm{T}) * \mathrm{U} 2(\mathrm{X}, \mathrm{T})$
$+\mathrm{DF}(\mathrm{K} 12 \mathrm{P}(\mathrm{X}, \mathrm{T}), \mathrm{X}) * \mathrm{U} 1(\mathrm{X}, \mathrm{T})+\mathrm{DF}(\mathrm{U} 1(\mathrm{X}, \mathrm{T}), \mathrm{X}) * \mathrm{~K} 12 \mathrm{P}(\mathrm{X}, \mathrm{T})$,
i.e.,
$2 \mathrm{i} \xi_{14}^{+} \mathrm{u}_{1}-\mathrm{q} \xi_{23}^{+} \mathrm{u}_{2}+\partial_{\mathrm{x}} \xi_{12}^{+} \mathrm{u}_{1}+\partial_{\mathrm{x}} \mathrm{u}_{1} \xi_{12}^{+}=0$,
$2 * \mathrm{I} * \mathrm{~K} 12 \mathrm{P}(\mathrm{X}, \mathrm{T}) * \mathrm{U} 1 \mathrm{X}, \mathrm{T})-\mathrm{Q} * \mathrm{~K} 21 \mathrm{P}(\mathrm{X}, \mathrm{T}) * \mathrm{U} 2(\mathrm{X}, \mathrm{T})$
$+\mathrm{DF}(\mathrm{K} 1 \emptyset \mathrm{P}(\mathrm{X}, \mathrm{T}), \mathrm{X}) * \mathrm{U} 1(\mathrm{X}, \mathrm{T})+\mathrm{DF}(\mathrm{U} 1(\mathrm{X}, \mathrm{T}), \mathrm{X}) * \mathrm{~K} 1 \emptyset \mathrm{P}(\mathrm{X}, \mathrm{T})$,
i.e., $2 \mathrm{i} \xi_{12}^{+} \mathrm{u}_{1}-\mathrm{q} \xi_{21}^{+} \mathrm{u}_{2}+\partial_{\mathrm{x}} \xi_{10}^{+} \mathrm{u}_{1}+\partial_{\mathrm{s}} \mathrm{u}_{1} \xi_{10}^{+}=0,2 * 1 * \mathrm{~K} 1 \phi \mathrm{P}(\mathrm{X}, \mathrm{T}) * U 1(\mathrm{X}, \mathrm{T})-Q * U 2(\mathrm{X}, \mathrm{T})$, i.e., $2 \mathrm{i} \xi_{10}^{+} \mathrm{u}_{1}-\mathrm{qu}_{2}=0$.

Module 2

In this module we obtain expressions for the terms of the series (9) near the points at infinity $\infty \pm$, taking into account the asymptotics $/ 4 /:$
$\ln \theta(A(P)-g(x, t))=\ln \theta(g(x, t)-r)+\frac{i}{2} \frac{\partial}{\partial z} \ln \theta(g,(x, t)-r) z^{-1} \frac{1}{8}\left(-\frac{\partial^{2}}{\partial x^{2}}+i \frac{\partial}{\partial t}\right) \ln \theta(g(x, t)-r) z^{-2}+$ P $\rightarrow \infty+$
$+\mathrm{O}\left(\mathrm{z}^{-3}\right)$,
$\ln \theta(\mathrm{A}(\mathrm{P})-\mathrm{g}(\mathrm{x}, \mathrm{t}))=\ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r})-\frac{\mathrm{i}}{2} \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r}) \mathrm{z}^{-1}-\frac{1}{8}\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i} \frac{\partial}{\partial t}\right) \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r}) \mathrm{z}^{-2}+$
$+\mathrm{O}\left(\mathrm{z}^{-3}\right)$.
After the transition $g(x, t) \rightarrow g(x, t)+r$ we obtain asymptotic expressions for $\ln \theta(A(P)-g(x, t)-r) \quad$ near the points at infinity $\infty \pm$. The programme compares the logarithm of Ψ which follows from (9) and the analogical expression, which is derived from (13), (14) after substituting the asymptotics of the Abels differentials (11). We obtain the following result:

$$
\begin{equation*}
\xi_{10}^{+}=\frac{\theta(g(0,0)+r) \theta(g(x, t)-r)}{\theta(g(0,0)-r) \theta(g(x, t)+r)} \exp \left(-i E_{0} x+i N_{0} t\right), \tag{16}
\end{equation*}
$$

$\xi_{12}^{+}=\xi_{10}^{+}\left(\frac{i}{2} \frac{\partial}{\partial x} \ln \theta(g(x, t)-r)-\frac{i}{2}: \frac{\partial}{\partial x} \ln \theta(g(0,0)-r)+i x R_{1}+i F_{1} t\right)$,
$\xi_{14}^{+}=\xi_{10}^{+}\left[\frac{1}{8}\left(-\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})-\mathrm{r})-\frac{1}{8}\left(-\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i}_{-} \frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(0,0)-\mathrm{r})+\mathrm{iR}_{2} \mathrm{x}+\mathrm{iF}_{2} \mathrm{t}+\right.$
$\left.+1 / 2 \xi^{+2}\right]$,

$$
\left.+1 / 2 \xi_{12}^{+2}\right]
$$

$\xi_{12}^{-}=-\frac{i}{2} \frac{\partial}{\partial x} \ln \theta(\mathrm{~g}(\mathrm{x}, \mathrm{t})+\mathrm{r})+\frac{\mathrm{i}}{2} \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(0,0)+\mathrm{r})-\mathrm{i} \mathrm{R}_{1} \mathrm{x}-\mathrm{i} \mathrm{F}_{1} \mathrm{t}$,
$\xi_{14}^{-}=-\frac{1}{8}\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r})+\frac{1}{8}\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(0,0)+\mathrm{r})-\mathrm{iR}_{2} \mathrm{x}-\mathrm{iF} \mathrm{F}_{2} \mathrm{t}+\frac{1}{2} \xi_{12}^{-2}(20)$
$\xi_{21}^{+}=\frac{i}{2}: \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t}))-\frac{\mathrm{i}}{2} \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(0,0)-\mathrm{r})+\mathrm{ixR}{ }_{1}+\mathrm{iF} \mathrm{F}_{1} \mathrm{t}+\gamma$,
$\xi_{23}^{+}=\frac{1}{8}\left(-\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i} \frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t}))-\frac{1}{8}\left(-\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{i}-\frac{\partial}{\partial \mathrm{t}}\right) \ln \theta(\mathrm{g}(0,0)-\mathrm{r})+\mathrm{iR}_{2} \mathrm{x}+\mathrm{iF}_{2} \mathrm{t}+\gamma_{1}+\frac{1}{2} \xi_{21}^{+2}$,
$\xi_{21}^{-}=\omega_{0} \frac{\theta(\mathrm{~g}(\mathrm{x}, \mathrm{t})+2 \mathrm{r}) \theta(\mathrm{g}(0,0)-\mathrm{r})}{\theta(\mathrm{g}(\mathrm{x}, \mathrm{t}) \theta(\mathrm{g}(0,0)+\mathrm{r})} \exp \left(\mathrm{iE}_{0} \mathrm{x}-\mathrm{iN} \mathrm{N}_{0}^{\mathrm{t}}\right)$,
$\xi_{23}^{-}=\xi_{21}^{-}\left(-\frac{i}{2} \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+2 \mathrm{r})+\frac{\mathrm{i}}{2} \frac{\partial}{\partial \mathrm{x}} \ln \theta(\mathrm{g}(0,0)+\mathrm{r})-\mathrm{iR} \mathrm{R}_{1} \mathrm{x}-\mathrm{i} F_{1} \mathrm{t}+\delta\right)$.

In this module we derive two basic identities:
$\xi_{10}^{+} \xi_{21}^{-}=\gamma+\mathrm{E}_{0} / 2+\frac{\mathrm{i}}{2}-\frac{\partial}{\partial \mathbf{x}} \ln \frac{\theta(\mathrm{g}(\mathrm{x}, \mathrm{t}))}{\theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r})}$,
$2 \xi_{10 \times}^{+} \xi_{21}^{-}-2 \partial_{x} \xi_{10}^{+} \xi_{21}^{-}-4 i\left(\xi_{10}^{+}\right)^{2}\left(\xi_{21}^{-}\right)^{2}=8 i_{1}-i N_{0}+\frac{\partial}{\partial t} \ln \frac{\theta(\mathrm{~g}(\mathrm{x}, \mathrm{t})+\mathrm{r})}{\theta(\mathrm{g}(\mathrm{x}, \mathrm{t}))}$.
Relations (25), (26) can be verified by applying the relations obtained in module 1 :
$\xi_{10}^{+} \xi_{21}^{-}=\frac{1}{2} \frac{\partial_{\mathrm{x}} \xi_{10}^{+}}{\xi_{10}^{+}}-\frac{\xi_{12}^{+}}{\xi_{10}^{+}}+\xi_{21}^{+}$,
$\mathrm{i}\left(2 \xi_{10}^{+} \partial_{\mathrm{x}} \xi_{21}^{-}-2 \partial_{\mathrm{x}} \xi_{10}^{+} \xi_{21}^{-}-4 i\left(\xi_{10}^{+}\right)^{2}\left(\xi_{21}^{--}\right)^{2}\right)=$
$-\mathrm{i} \frac{\partial_{1} \xi_{10}^{+}}{\xi_{10}^{+}}+4 \frac{\xi_{14}^{+}}{\xi_{10}^{+}}-4 \xi_{23}^{+}+4 \xi_{21}^{-} \xi_{12}^{+}-2 \mathrm{i} \frac{\partial_{x} \xi_{10}^{+}}{\xi_{10}^{+}} \xi_{21}^{+}$,
$\xi_{23}^{+}-\frac{\xi_{14}^{+}}{\xi_{10}^{+}}-\xi_{21}^{-} \xi_{12}^{+}+\frac{i}{2}-\frac{\partial_{x} \xi_{12}^{+}}{\xi_{10}^{+}}=0$,
$\partial_{x} \xi_{21}^{+}-2 i \xi_{10}^{+} \xi_{21}^{-} \xi_{21}^{+}+2 \mathrm{i} \xi_{21}^{-} \xi_{12}^{+}=0$.
The relation (25) is the direct result of substituting (16),
(17), (21) into (27). Applying the procedure described in $/ 4 /$ and taking into account (27)-(30) we obtain (26).

Also in module 1 we obtain relations, which are used to determine the normalization functions $u_{1}(x, t), u_{2}(x, t)$:
$\frac{\partial}{\partial \mathrm{x}} \ln \mathrm{u}_{1}=-\frac{\partial}{\partial \mathrm{x}} \operatorname{lnu}_{2}=2 \mathrm{i} \xi_{10}^{+} \xi_{21}^{-}$,
$\frac{\partial}{\partial t} \ln _{1}=-\frac{\partial}{\partial \mathrm{t}} \ln _{2}=2 \xi_{10}^{+} \partial_{\mathrm{x}} \xi_{21}^{-}-2 \partial_{\mathrm{x}} \xi_{10}^{+} \xi_{21}^{-}-4 \mathrm{i}\left(\xi_{10}^{+}\right)^{2}\left(\xi_{21}^{-}\right)^{2}$.
After the integration of (31), (32) we have the following result:
$\left.\left.u_{1}(x, t)=u_{2}^{-1}(x, t)=\frac{\theta(g(x, t)+r)}{\theta(g(x, t))} \operatorname{expliE}_{0}-2 i \gamma\right) x-\left(i N_{0}-8 i \gamma_{1}\right) t\right\}$.
In module 1 we obtain the following basic expressions:
$w=-2 i \frac{u_{2}}{u_{1}} \xi_{21}^{-}$,
$\mathrm{q}=2 \mathrm{i} \frac{\mathrm{u}_{1}}{\mathrm{u}_{2}} \xi_{10}^{+}$,
$w q=4 \xi_{10}^{+} \bar{\xi}_{21}$.
Making use of (25), (33)-(36) and the explicit form of coefficients $\xi_{10}^{+}, \xi_{21}^{-}$in terms of theta functions we finally arrive at the exact solution of system (2)/4/:
$\mathrm{w}=-2 \mathrm{i} \omega_{0} \frac{\theta(\mathrm{~g}(\mathrm{x}, \mathrm{t})) \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+2 \mathrm{r}) \theta(\mathrm{g}(0,0)-\mathrm{r})}{\theta^{2}(\mathrm{~g}(\mathrm{x}, \mathrm{t})+\mathrm{r}) \theta(\mathrm{g}(0,0)+\mathrm{r})} \exp \left\{-\mathrm{i}\left(\mathrm{E}_{0}-4 \gamma\right) \mathrm{x}+\mathrm{i}\left(\mathrm{N}_{0}-16 \gamma_{1}\right) \mathrm{t}\right\}$,
$\mathrm{q}=2 \mathrm{i} \frac{\theta(\mathrm{g}(\mathrm{x}, \mathrm{t})+\mathrm{r}) \theta(\mathrm{g}(\mathrm{x}, \mathrm{t})-\mathrm{r}) \theta(\mathrm{g}(0,0)+\mathrm{r})}{\theta^{2}(\mathrm{~g}(\mathrm{x}, \mathrm{t})) \theta(\mathrm{g}(0,0)-\mathrm{r})} \exp \left\{\mathrm{i}\left(\mathrm{E}_{0}-4 \gamma\right) \mathrm{x}-\mathrm{i}\left(\mathrm{N}_{0}-16 \gamma_{1}\right) \mathrm{t}\right\}$.
The result of calculations is also one interesting basic relation between the theta functions:

ACKNOWLEDGEMENTS

One of the authors (N.A.Kostov) is grateful to V.Tsanov, E.Horosov, P.Georgiev for numerous useful discussions.

REFERENCES

1. Dubrovin B.A., Matveev V.P., Novikov S.P. Uspekhi Mat.Nauk, 1976, 31, No.1, p. 53 (in Russian).
2. Dubrovin B.A. Uspekhi Mat.Nauk, 1981, 36, No.2, p. 12 (in Russian).
3. Prikarpatsky A.K. Theor.Mat.Phys., 1981, 47, No.3, p. 323 (in Russian).
4. Its A.R., Matveev V.B. Zapiski nauchnych seminarov LOMI 2, Leningrad, 1980, 101, p. 64 (in Russian).
5. Kaup D.J., Newell A.C. J.Math.Phys., 1978, 19, No.4, p. 798.

Received by Publishing Department
on November 10, 1983.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US s, including the packing and registered postage

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Mnsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and rechniques of analytical comput on Systems and rechniques of Analytical ComputPhysics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.
D4-80-572 N.N.Rolesnikov et al. "The Energies and Half-Lives for the a and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,11-81-622 Proceedings of the International Meeting on Problems of Mathematical simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativiatic Nuclear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Proceedings of the Symposium un the Problems of Collective Methods of Acce-
leration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

Orders for the above-mentioned books can be sent at the address Publishing nepartment JINR .

