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It is often the case in the last decade experiments on high
energy physics to take out the physical information from the
process of the experimental data handling via certain distribu-
tions of such physical quantities as particle energy, scat-
tering angles, effective masses, etc. In general, these func-
tions are not available in terms of directly measurable quanti-
ties, as, e.g., counting rates in the classical case of par-
ticle scattering. Furthermore, the efficiencies of the dif-
ferent parts of the data handling in general and those of the
separate elements of the experimental set—up themselves are quite
different. In a number of cases these problems lead to a non-
negligible difference between the estimated distributions and
the ideal ones. Summarizing the complexity of the above prob-
lems one can say that in general it seems to be the main task
in the unfolding procedure at a real experiment to solve the in-
verse problem arising in most cases in the form of integral
equations of the first kind:

f(x) = [dx"R(x/x") E(x") é(x"),

where the ideal distribution ¢(x”) is connected to the observab-
le one f(x) via the efficiency function E(x°) and the resolution
R(x/x°) both being characteristics of the given experimental
set-up.

In solving such type of integral equations one meets charac-
teristic troubles of the so-called ill-posed problems "2:3/,
It is also a general property of these problems to have special
structure of the kernel function R(x/x°)E(x’) of the integral
equation. Necessity of taking into consideration this special
structure when solving such problems has led to the investi-
gation of such linear operators (matrices) which are called in
general the sparse matrices. Moreover, the results of these
investigations seem to be usefull also for developing up-to-date
statistical approaches of solution of inverse problems arising
in the field of the quantum theory of scattering’®’/. They are
proved to have independent importance at solving several prob-
lems of numerical 1nvest1gat1ons of ill-conditioned boundary-
value problems as well’

There are number of 1nvestigations devoted to the numerical

and algorlthmlcal aspects of systems with sparse matri-
ce , however a lot of earlier results can be treated
as consequences of the following lemmas and theorems.
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In this paper we indicate a simple technique for finding
the exact numerical solution of systems of linear algebra equa-
tions. We shall describe the new methods of solving the systems
Ax'=y and matrix inversion, where A is a matrix of quasitri-
diagonal and band form. Usually the method of solution is refer-
red to as being in the class of exact methods if, in the absence
of roundoffs, it yields an exact solution after a finite number
of arithmetic and logical operations. The methods are based
on the following.
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dq, E; are identity matrices and C;=0 is matrix. Here R
is right quasitriangular matrix, F and Q are left quasi-
triangular matrices, D is quasidiagonal matrix.

Proof. As a starting point for our proof we use the idea of
the Gauss elimination method. It is like that of the theo-
remes 12/ for a mon-singular symmetric matrices.



From the assumption that all principle minors of A are dif-
ferent from zero we have the non-singular matrices l“i!i=1'

Lemma 2. TIf A is non-singular quasitridiagonal matrix (Lemms 1)
then the elements-blocks Bij of inverse matrix A”! are repre-
sented as ]
m -k 1 k 0
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Proof. It is easy to see that the formulas (6) and (7) are equi-

valent, since
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Similarly from the right part of formula (9) we obtain the
left one. From the formula (4), (5) for elements-blocks of in-
verse matrices R™!, D=1, F~1 ye have
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Thus the equation (6) of the Lemma 2 can be obtained by premul-
tiplying of matrices R~L, D=!, and F~! from (10).

Theorem |

Let A is quasitridiagonal matrix of the same type as in
Lemma 1. Then the elements-blocks B of inverse matrix A~!
are represented as

1

B, - T B, ., 1>
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Proof oi theorem | may be obtained by using results of Lemma 2

and relatiomns (8). Then we have for elements -blocks of left
triangular matrix B:
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The last element of this product is independent of k. The first
element of this product defines, according to (6), the element-
block B; . And so we obtain that
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If we use the procedure just described for the right triangular
of the matrix B, then we have

i<j m i k k
B, =X 11 ¢, [ O C,«!. 0O B 1=
1 k=j p=t+1 P* p=ge1 H kK gogi W
ﬁ C B
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From the resulting relations follows eq. (1}), which proves the
theorem 1.

Theorem 2

Let A is quasitridiagonal matrix of the same type as in
theorem | and let Ax=y is the system of linear equations, then
its exact solution is found as:

Xy = B“ 20 +51 , 1=12uqm,

-y' = 'Bl 'yi_] +y!' i’=2|3|"'tml (|2)

Yy = ¥
31_1==C1-(5j +B11'yl)' iemm-1,..,2,

6p = 0.

Proof of theorem 2 may be obtained from the resulting relations
for the elements-blocks Blj(ii) of inverse matrix A~!, For the
performance of these computations one may get a system of re-—
currence relations for determining the elements By

-1
Bom = @n »

- . E
Bl—'li—l.: wi:1+ci » BH 'Bi ] l=m,m—2,..,,2_ ( 3)
B =B -8,
T TR
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where
m

Iml. Ciu By ljay are (5).

The method (12), (13) is convenient because of its uniform
computation scheme and stability to computational error.
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