


During the last years the method of the computerized tomo-
graphy was applied for the solution of many problems. In order
to cope the specific features on condition of a large variety
of such problems, it is advisable to develope different methods
for their mathematical treatment. Following this line we offer
here a specific procedure for the numerical solution of the
equations of the computerized tomography based on the A.Cor-
mak”s formulae ’1/, These formulae, although seldom used, in some
cases may have advantages, at least because of their transpa-
rency.

We shall have always in view a medium with a central symmet-
ry. The method which we offer is such that the generalization
for the nonsymmetric case can be carried out automatically.

Our method can be applied for the solution of various prob-
lems. But to be more specific we shall expose it in connection
with problems arising when studying the structure of the Earth
and other celestial bodies by neutrons /2,

When the Earth is subjected to neutrino beam irradiation
in one or more directions, we can estimate its density profile
provided we know the degree of attenuation. Until now this
problem could be solved in two ways:

1) the elimination method;

2) the neutrino tomography method.

The elimination method has been proposed in’/3*% respecti-
vely in 1973 and 1974; and its modifications, in /%8 in 1983.
The underlying idea is as follows: If we have several rivalling
models for the density distribution obtained on the basis of
seismic and other geophysical data for each one of these mo-
dels, one can calculate which would be the attenuation of the
neutrino beam if the Earth had a density distribution corres-
ponding to these models. The thus calculated attenuations are
then compared with the experimentally measured attenuations.

If there is a discrepancy between the calculated and the mea-
sured values, then the corresponding model has to be eliminated.
In’% and /% the comparison must be made for a great number of
directions and the probability of a misinterpretation becomes
smaller but, on the other hand, the measurement time is longer.
In the paper of Volkova and Zatsepin it was proposed to do the
measurement only in one direction, but the probability of a mis-
interpretation is higher. In (6) the measurement has to be made
in a small number of points. Thus the probability of a misin-
terpretation becomes smaller, while the measurement time beco-
mes shorter. ciner 5. o

i SF ey
£ = .m Y 1

Sl ErE ;
IR TIFSE 4 1 Y V-HO'

PR

PR




The second method is the neutrino tomography method %/, In’/%/
some problems of neutrino detection and the optimal energy of
neutrino experiments for investigation of stars have been con-
sidered. The idea of this method is to use the methods of com-
puterized tomography worked out for the purpose of X-ray diag-
nostic in medicine for an exploration of the Earth”s density
profile with neutrino experiments. This means that the atte-
nuation of neutrino beams which pass through the Earth in dif-
ferent directions have to be measured. Having this information
with the formulas from the computerized tomography, the density
distribution can be calculated in a model-indepenqﬁpggyay. The
investigation of different aspects of this method "™ showed
that if neutrino beams are produced from TeV accelerators and
detected with sufficiently large detectors, for example, DUMAND,
from the opposite side of the Earth the experiment for the re-
construction of the density profile will last years or decades.

In this work we shall show that with TeV proton-beam accele-
rators, a number of celestial bodies can also be explored: for
example, the planets of the Solar system, the Sun itself and
some other stars. The exposure time should be roughly the same
as for the Earth. This is achieved by amending the method desc-
ribed in/1%/ and applying it to other celestial bodies. This
method concerns the numerical solution of a specific equation
of the computerized tomography. Although only a short time has
passed since 7%/ appeared, now the perspective for the explora-
ticn of (clesiial budies by means oI computer tomography methods
have become more realistic. We can say that there are intensive
investigations under way of different methods for neutrino ex-
ploration of the Earth, Meanwhile, a proposal has been put for-
ward to accelerate elementary particles with the help of laser
beams”’11'12/ The compactness of such devices will probably make
possible to launch them with satellites in orbit around planets
and the Sun. If the present rate of advance remains the same,
future systems for a generation of powerful multi-TeV beams
might be expected. Thus the size of neutrino detectors will de-
crease sufficiently to enable their transportation on satel-
lites.

On the other hand, there is a great advance in the space
technology in last years. These considerations bring us to the
conclusion that it is possible to build in future satellite
systems for neutrino exploration of planets, natural satellites
and the Sun.

When the experiment is carried out on Earth, the neutrino
source and the detector are situated on its surface. The detec-
tor measures the attenuation of neutrino beams which pass
through the Earth®s interior. This attenuation is proportional
to the dimensionless parameter I, which is connected with the
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density distribution as follows:

1 2rGQ(r) dr
It) = f
t 2. t2

Here 'G(f) is the density distribution, r is the distance
from the Earth’s centre and t is the distance between the beam
and the center of the Earth. All parameters in this equation
are dimensionless. The unit for length is the Earth”s radius;
and the unit for density, the mean density of the Earth.

In neutrino astrophysics the detector and the source of
neutrino are situated on a joint circular orbit so that the
neutrino beam remains all the time at constant distance t from
the centre of the celestial body. When source and detector are
circling around, the chord defined by the part of the beam,
which transpierce the body, is circling too. In this way the
averaged value of I(t) for a certain t is measured. But as
celestial bodies can be regarded with good approximation to be
spherically symmetrical, the measured value will be approxima-
tely the same as if the source and the detector were situated
on the surface of the celestial body. Changing appropriately
the mutual disposition of source and detector on the orbit we
are changing t and thus the obtaining of values of I(t) for dif-
ferent values of t becomes feasible. With the same experimental
complex one can explore also the cases with deviation from cent-
ral symmetry. This can be done simply by changing the organi-
zation of the recording of experimental data.

For the central symmetric case, which will be studied tho-
roughly later on, the mathematical problem is: having the va-
lues 101).102).u. to reconstruct the density profile of the
celestial body solving the integral equation (1)*. The problem
of solving this equation is an ill-posed one and could be trea-
ted with some methods developed to cope with such problems. From
our point of view it is convenient to use the inversion formula

. (n

1
A == = [ D

” | 4 t\/tz_,z
We use this formula because of the possibility it gives to
study more easily the three sources of incorrectness. The first .

(2)

*Note added in proof: Equation (1) is an Abel equation which
could be regarded also as a special case of the equations of
computerized tomography but in what follows we shall study it
simply as Abel equation. But in the more general case mentioned
above, when there is no central symmetry, the mathematical
problem is more complex. For its solution one could use methods
of computerized tomography.
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one is thé numerical differentiation of a function, which is
known only in discrete points with certain errors. The second
one is connected with the stochastic treatment of the problem.
The third source of errors is a boundary effect in a sense. So,
when the neutrino beam approaches the Earth”s surface the pro-
jected mass density tends to zero and therefore the useful in-
formation together with the quotient signal/noise tends to zero.

Further on we proceed with the estimation of the duration
and accuracy of such experiments. This will be made on the basis
of the so-called Roche-model’!3%or the density distribution in
celestial bodies.

In what follows we describe the numerical procedure used to
solve eq.(1).

We first divide the interval [0, 1] into N equally large sub-
intervals. In every subinterval we approximate I(t) from (2)
with a second order polynom, integrate explicitly and sum over
all subintervals. For the integral in the brackets in formula
(2) we obtain:

" N-1

Je=) = % S,m), k=0,1,..,N, where (3)
N m= k

Sk, m) = Ak, m) Im__1+ u(k, m)Im+v(k,m)Im+1. (4)

Here I, stands for I(t=%§)and A, pu, and v are explicitly

known coefficients, which are obtained after the integration in
each subinterval. Having T(—.l.{.\ in all pn{nfe Ana can find 'C(I];)
using the standard discrete approximation of the first deri-
vative:

cky o o k-1, _ k +1
CeR) = 3 & -DIESS) - 6+ DIEEH) (5)

Now having only a few Iy and knowing their values with cer-
tain errors, which are assumed to have their origin in the sta-
tistical character of every physical measurement, one can cal-

culate the corresponding values of(léﬁ). We want to investigate
also how the error with which (}d%) is calculated depends on the
error in the input data and on the number of points in which

the function I(t) is supposed to be known. To do this we have
made some computer experiments and have calculated the expected
resulting error as a function of the input error and the number

of points in two mutually independent ways. The discrepancy bet-
ween the values thus obtained was small enough to reassure us

in the correctness of our result. Next we explain how the re-—
construction error €¢p depends on the input error and the num-
ber of subintervals in which the interval {0,1] has been divided.
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The number of subintervals is important because it equals the
number of measurements which have to be carried out.

We distinguish between various kinds of errors. ep can be
regarded as consisting of two kinds of errors = €p, and epp.
egp - the deterministic error is due to the approximation of
integrals and derivatives with their discrete analogues, while
egp - the probabilistic error is due to the probabilistic cha-
racter of the input data. Besides the reconstruction error,
which characterizes the accuracy of the whole solution,
we also use the reconstruction errors cg) for the reconstruction
error in different points k =0,1,..,N. Analogously are defined
the errors (Sg and eé%ﬁ We calculate ¢ by the formula

e =V Ngz (e ®12/(N-~4) and respectively e -\/N§2[¢(“>]2/(N-4)
R- YV 2, 'R RD Vyzg RD ‘

The reason for the omission of points on both ends of the
interval is that there the errors are too great and have to be
treated by other methods. ep , €, and ‘Sg are deterministic
numbers. But the input errors in the different points k=01,...,N,
which will be denoted by c(k)-n , 7., being centered random num-

. . . k | S . .
bers with dispersion 1, so that c?J is the standard deviation
of the random numbercgk)-nk. We choose c?), k=01,.. equal
to each other and denote them by ¢7. One can find the determi-
nistic error calculating (3), (4), and (5) and using the exact
values of I(t), i.e., putting ¢ =0. Proceeding in this way and
changing N from 5 to 60, we have obtained curve 1 on Fig.l.
The curve €égp falls with increasing the number N until N
becomes greater than 40 when computer errors, due to working
with limited accuracy, begin to play a role,

One can find the probabilistic error as follows: Let I(t) =0,
Then clearly ‘G(r) should also be identically equal to zero.
Now, one puts instead of zero on the place of I(t) in formula
(2) random numbers ffk)'ﬂk, k =0,1,...,N. Then one calculates
the resulting values of 'Q(r). After calculating the resulting
errors in different points k= 0,1,..,,N one obtains random
numbers which are denoted by e We define the total proba-

s RPT k"
bilistic error by the number:

N-2 K .
€Rp = v kzz [cgu), ]2/(N"4)"1(1kl’) depends on A, g, v and ‘I»'

The calculated values of ¢gp are shown on Fig.l. On the same
figure the curve €g 1is also shown. It depends on egp and egyp

as follows eg=Vegp+efp .

The second way to calculate the probabilistic error consists
in putting in (3), (4), (5) instead of I(k) the disturbed data
Ik) + e;ny , k=1,2,..,,N. The resulting solution is given in the
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form of random numbers in N-4 points, which we denote 'G(k) 7.
We run the whole procedure M times, calculate the root mean
square of each Qgn, and denote the last by H(k, m). Now the
total error cR(M) is calculated as follows:

N-2
g =V kzgﬂz(k. M)/(N=4), lmep M) = eg .

M3

M was chosen 20, 30 and 40. egp(40) is shown on Fig.2. The curve
for €; = 17 with sufficient accuracy coincides with ezp on Fig.l.
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We now proceed with the application of the above-described
algorythm to study the possibilities for exploration of the
structure of celestial bodies by neutrino.

It is well known that the so-called Roche-model represents
the simplest two-parameter model for the density distribution
of the Earth, which satisfies simple and basic physical requi-
rements - it satisfies the Laplace equation for the hydrostatic

equilibrium state of the Earth and the requirement %=0 at

t = 0’3 In this model the density distribution is represented
by a second order polynom

ae) =a + Br s 6)
The two parameters a and B can be determined by replac.ing
(6) in the formulas for the total mass m of a planet and its

momentum of inertia 1, for example, which are known'for the pla-
nets of the Solar system from astronomical observations.
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Proceeding in this way and using the known data for m and i,
one can easily check that the planets of the Solar system can
be roughly classified in three groups.

The first group consists of Merkurius only. Its density dis-
tribution is constant.

For the third group of planets the Roche formula gives rela-
tively small negative values for the density for a small region
near the surface. It means that in this case it is advisable
to put approximately a equal ~8=2,5. So that QG(1) =0.In this
group come planets like Jupiter, Saturn and Uranus.

The second group is intermediate between the first and the
third, It consists of Mars, Venus and the Earth. Here we choose
a and B to be those determined for the Earth on the basis of
the standard model for the Earth”s density distribution.

The stars can be considered as members of the third group.

As the problem is ill-posed, one has to choose N =Ny,
where N ., is that point of the curve eg N), where it attains its
minimum (Fig.3)*-

The curves showing the dependence of N
cient Cm=-€-l—

R

opt and of the coeffi-
on e, are shown on Fig.4 and Fig.5* respec-
tively.

From the figures one can see that for the second group the
reconstruction error € is about two times greater than e

+ §irst qroup.
2-3econd group.
3-third group.
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*The results from the calculations with N= 5 and 6 must
be regarded as rough estimates.







