
M.Rudalics

COOGUlBHMR
OGhBAMHBHHOrO

MHCTMTYT8
RABPHbiX

MCCIBAOB8HMI

AYGHa

Ell-83-588

DESIGN AND IMPLEMENTATION

OF A WORKSTATION DEPENDENT

SEGMENT STORAGE MANAGER

1983

-i3

I. INTRODUCTION AND PREVIOUS WORK~

The workstation dependent segment storage (WDSS) concept is
explained in (GKS 82). The workstation dependent segment storage
manager (WDSSH) coordinates the allocation of freshly created
segments with the recycling of deleted ones in the memory of an
intelligent graphics terminal (IGT) (Lei 83).

In addition to the proper WDSS the WDSSM has to manage the
display list which is composed of representations, i.e. those
items which are generated for putting segments on the screen.
A concise description of all objects handled by the WDSSM may
be found in (Rud 83).

Special attention in the design of the WDSSM has been given
to the management of the display list, as this (or parts of it)
is thrown away with every regeneration of the display image.
Regenerations may occur selectively, (i.e. for one segment at
a time, e.g. when applying a new segment transformation), or
globally (i.e. for all segments stored at the WDSS, e.g. when
updating the current workstation transformation). Beforemost
t-ho 1 ":l~t-o'Y' 1 n n-1 ,...,l-.,'11 ,.....,n,....,....,....,......,+-~ ,.....,...r ._,...1 ,..........., 4-'\....-.. ...,,....._,.:_.....,

,, -......., ----------~ ---J --· ---- r-------------
of the WDSSM, as the entire WDSS has to be traversed, old rep­
resentations have to be deleted (preferable one at a time, for
the reason not to traverse the WDSS twice), and new representa­
tions have to be created. All these actions have to be perfor­
med under the condition, that the display process continuously
passes over the display list and is not disturbed by regenera­
tion.

For these reasons it has been decided to build a real-time
(incremental) garbage collection system, which is supposed to
keep the time required for allocating a new representation suf­
ficiently low.

Garbage collection has been introduced in list processing
languages by McCarthy (McC 60). The principles of garbage col­
lection are, see (Coh 81), to identify reclaimable storage
space (this is generally referred to as marking), and to make
this space available to the user (this is generally referred
to as collecting).

*A short version of this paper will be presented at the 5th
International Conference on Mathematical Modelling, Program­
ming and Hathematical Hethods for Solving Physical Programs.
Dubna 1983.

1

Due to the fact that in classic list processing systems com­
putation has to be suspended for the time required by garbage
collection, real-time garbage collection has been proposed as
an alternative (Knuth credits this idea to Minsky, (Knu 73)
pp. 422, 594). The algorithms developed for parallel garbage
collection, by Steele (Ste 75), Dijkstra et,al. (Dij 76), Kung
et.al. (Kun 77), and analyzed by Wadler (Wad 76), have in com­
mon, that they operate only on homogeneous memory spaces,i.e.
all objects managed by the garbage collector have to be of the
same size.

The general case of handling variable sized objects in real­
time is treated within the concept of copying garbage collection
(Bak 78),(Lie 83).Copying garbage collection has the disadva~ta­
ge that it requires two times the storage used by a non-copylng
garbage collector. Although this drawback may not be considered
to serious when one thinks of the advantages of including corn­
pact coding techniques within a copying garbage collector im­
plementation (see (Bak 78) for a listing of all those concepts,
like CDR-coding, etc.), and may be estimated a minor one in
the environment of large virtual memory systems (Bis 77), it will
not do for our implementation, considering the IGT's small core
capacity (48K bytes) and the absence of secondary storage.

The cornpactification attempted by some of the systems men­
tioned above, in an extra phase by Steele (Ste 75), or as a
property of allocation by Baker (Bak 78), is not suited for

~c ~t- o;f-hor .,......,.,~"';,...n..., ...: ,......,... +-..-. '\.....-.. t... __ ~---()11r n11rn,...c:p,c: .~. ___ ------- -- ~- ~ ~o -.. -....o..~

(Ste-75), or-relies on the copying concept (Bak 78).
In the WDSSM cornpactification is also inhibited by the

fact, that the microprogrammed display process is not (and
should not be) capable of performing semaphore-type operations
which are essential for excluding this process from accessing
those items on the display list which are currently relocated
and therefore temporarily unsave.

We will not, however, exclude a future version of a WDSSH
which will rely on a twofold strategy, where the proper WDSS
(residing in one partition of the memory) is handled by a
garbage collector with an additional r.ornpactification phase,
while the display list (residing in another, physically dis­
tinct partition of the memory) is managed by something close
to the present version. Unresolved remains the question where
to allocate bundles (Rud 83), when employing this strategy:
in the display list partition, splitted between WDSS and dis­
play list partition, or in a third partition?

2. DESIGN OF THE WDSSM
A schematic description of the interfaces between host and

workstation resident routines implementing GKS functions, the

2

i------------------~~;-=-~~;t-;;;;~;~;-------------------1

---- ~ritP ----------------------------------- rearl --< t:.uft,.reo 1nterfoce >
--:::--:-r-1-t:-:::_

---- rron ------------------------------- - r 1 (,I\;:, - won stAt ton res 1 d<>r,t i

i ----~----------------------------- i 1 rl:'n'l/ 1 ,.;,s;;;•, l 1
- wrlte ---- r,:'lwlle -- rP-'1<1/fPSf't -- tliHH11P ---- <orilf'-

-----------------< > > < rlisrotay list >

WDSSM and the display process is given in Figure I. Declara­
tions'and algorithms are described in PL-M/80 (our implementati­
on language) slightly modified for presentation.

The algorithms of the WDSSM recognize four different groups
of items, respectively:

(I) User Items

DCL user_itern STRUCT (type BYTE, s1ze INT);

User items are headed by a type field and a size field. For
some user items of fixed size (known to the procedure get_size)
size may be an implicit function of type. Types for user items
may run from four to 255 (a continuous subrange is supposed to
be used in an implementation).

Lflf9IJ-L-------_._Jle
Fig.2. Initial memory layout.

(2) Free List Items

DCL free_list_itern STRUCT (size INT, next PTR);

Free list items are circularily linked via their next field
and do not contain a type field. Algorithms are supposed to
recognize free list items by their relative position on the
free list. The free List is initialized as indicated in Figu­
re 2. First and last are two distinguished free list items

3

located at the low and high end of the memory respectively. As
their size always remains equal zero the allocation algorithm
(cons) ignores them, consequently the free list virtually is
never empty. The size of the free list item following first
initially comprises the whole memory.

(3) Loose Items

DCL loose item BYTE;

items shorter than four bytes and con­
item only, appropriately their type
Loose items are not on the free list
used for allocation, however, they

free list items.

Loose items are free
sist of the size of the
runs from one to three.
and may therefore not be
may serve for recombining

(4) Marked Items

DCL mark_item STRUCT (type BYTE, s1.ze INT);

Marked items are generated by the marking algorithm, they
suitably have type zero.

The WDSSM operates on three lists: The list of items to be
deleted (del list), the list of items to be marked (mark list),
and the list ~f free items (free list). Del list is built by
rouc1nes wn1cn 1mp1ement GKS tun~t1ons (del;te segment, redraw
all segments on workstation, clear workstation,etc.).Segments
and representations enter this list in LIFO order. Hark_list
is operated upon by the mark procedure. After each col­
lection cycle mark list and del_list change (in one, indivisible
operation) their relative roles, the past del_list becomes the
new mark list and del list is initialized to the empty list.
Marking ;ill only be p~rformed when at least one item had
been deleted, i.e. entered the previous del_Jist.

The mark procedure does not mark items in use, but discarded
items which are accessible from a deleted segment or represen­
tation. In the WDSSM explicit deletion does not require the
overhead usually associated with it, as only the headers of
segments and representations have to be deleted (i.e. added
to del~list) explicitely. Marking 1s performed nonrecursively,
see (Tho 72); mark list serves as an auxiliary list for tracing
out inserted segme;ts. Marking of more specific objects (in­
stances, s_junctions, and r_.functions) is not described in
detail. Note however, that for example mark ins contains a
critical section where it has to be synchro;ized in an appro­
priate manner with the insert procedure.

A special construct in the WDSSM is the synchronization
flag (synch) which is reset by the \.:llSS::-1 and is set by the

4

display process after completion of each refresh cycle (at least
all 20 msecs). Synch (when false) keeps tne mark procedure
from marking items the display process may still be proceeding.
Performing synchronization in this clumsy way is necessitated
by the fact that the (microprogrammed) display process may not
perform semaphore-type operations, but is only capable of a
global assertion like: "at this moment I am outside the display
list".

The collector (coll) has two free list items (termed prev
and next) with size zero (so the cons procedure does not consi­
der them for allocation) wander from first to last. Whenever
it encounters a free list item, coll sets (in one, indivisible
operation) the item's size to zero. When a new free list item
is created, temporarily a third free list item with size zero
(termed free) may exist, as outlined in Figure 3.

Cons uses for allocation the next-fit (also modified first­
fit, or FF/Rover) method, which is described in (Knu 73). Next­
fit uses memory worse than first-fit and best-fit as reported
by (Bay 77), but has significantly better performance characte­
ristics as simulation results document (Nie 77). In the real­
time system next-fit requires two more indivisible operations
in the collector, when during recombination a free list item is
swallowed and the rotating starting point for searching
(cons base) has to be relocated, this process is described 1n
Figure 4.

rn~~ ~~~~-~n~~~ ~~: ::~~=~ :: ~ ~==~ :~== ~:.~. :~.

on the f~e~uli~~o~apable to accomodate an object of a requested
type and size) between two structures (a_free and b_free). This
eliminates the need for saving the address of the previous (res­
pectively to the host) free list item in order to update its
next field when the host item has been exhausted by allocation.

prev "'an~ next.

11111111 fli ~ 111 II rr· I 111111 fll I I Ill

•
prev f.rf>e next

11111111 fll 111 /I fll 11111 1 fll 1///
•

prev next

11111111 til I 1111 1 ill I 11111 1 til I 1///
•

Fig.3. A new free list item lS created (slashes in-
dicate items in use).

5

The problem of remembering the previous item does not occur
when the free list is organized in a double linked manner.
This would, however, introduce additional overhead and enlarge
the size of the smallest free list item to six bytes.

r,· r f' v ~·ark next (cons_r>asel

i.i~,,~,[TIL I 1// I I Ill I fl(I I///.
.._.

prf'v free nf'Xt (cons_hasf'J

11111111 jlt I 1///1 0 til
treP (cons_oasel

11/1111] til 1~~~ I flj I
= " to

prev (cons_base)

11111111 til l II/ ;J til l I

• to

Fig.4. A free list item is swallowed and cons base has
to oe relocated ~slashes 1nd1cate 1tems in use).

3. IMPLEMENTATION OF THE WDSSM

1// I

I~~~
nPxt

{til

next

Two methods for implementing real-time garbage collectors
have been proposed:

•

The serial method has list processing and garbage collection
run on one and the same processor. In our implementation this
means that the WDSSM acts as a subordinate to the regeneration
process, invoked when time consuming operations (e.g. transfor­
mations, which have to be performed by the arithmetics proces­
sor) take place. Collection is assumed to be performed iterati­
vely, i.e. call will advance by one or two free list items in
one step.

The parallel method has list processing run on one proces­
sor and garbage collection on another. Collection is supposed
to run uninterrupted but for synchronization operations. The
parallel case is not implementable without modifications of our

6

present cons procedure, as a free and b free (and their relative
positions on the free list) may be altered by the call proce­
dure in between two searches. At least the two pointer scheme

of cons is not feasible in the parallel method, a double linked
implementation of the free list seems to be more appropriate
for this purpose. However the relative merits of the parallel
method seem doubtfull, as the call procedure is likely to be
locked out anyway during the whole duration of a cons operation.

Our present implementation adopts a quasi-parallel solution
which has regeneration run on one processor, cons and garbage
collection on another. Garbage collection is interrupted only
when regeneration needs to allocate a new object in the memory.
In this case cons is called and may serve the request. When
cons runs out of space, regeneration terminates gracefully,
1.e. the display image will remain incomplete but the proper
WDSS will remain untouched. In this situation the user may
free some space (for example by changing the current work­
station transformation or by displaying some segments in store
mode) and resume execution.

When performing indivisible operations the WDSSM need not
disable its interrupts to lock out requests which must not
interfere with the collector, but use a special test and set
logic to lock out oth~r processes only when critical sections
are concerned. In this context it should be remarked, that
operations on data of tvoe INT or PTR tin nnt- r.,~,; r<> "";'

interlocking on the IGT, as they have been rendered indivisible
by altering the hardware mechanisms for accessing the common
memory.

4. CONCLUSION

A workstation dependent segment storage management system
suited for implementation on a multiprocessor based g·raphics
workstation has been exhibited. The WDSSM presently operates
in the testbed of a simulator implemented on an intellec mds
development system. Work proceeds to incorporate the WDSSM
in the software of an intelligent graphics terminal, which
is currently under construction at the JINR.

Given certain restrictions, the algorithms constituting
the WDSSM may be recommended for use in general purpose memory
management systems like the one proposed in (Car 79). Optimal
performance, however, will be achieved only when the objects
to be handled by the WDSSM may accomodate at least a s1ze
and a pointer field.

7

llCL
oc [,
ncL.
UCL
OCL
OCt.
oct.

"'a r 1< _type J. l r • n • ;
IT·in_stze LLT '4';
tirst_oase PTII;
l~st-bdse Pfk;
cons_hi'lse PTil;
synct1 PYH:;
del_t,ase PTR;

% Glohal d~clarations: l
\ The type ot ~ marked item. \
\ Mini~um for tree list it~m. \
l Low end of memory. \
l Htqn enn ot ~emory. \
% Cons starts from here. \
' Set bY display proc~ss. \
\ ~oot at del-list. \
\ The procedure qet_size \

')et_size: PRU<'FilllH~
DCL item_b~se INf;

F:ND qet_s1ze;

(item_nase) I~T;

f>X-lOOp: 1-'KilC~:IJIJk~;

OCL mi'lrl<_nase PrR;

\ returns the size of the \
' item located at ite~-bas~. %
1 ~x-lnop synchronizes th~ \
' wuss~ with the display \
% ~nd deletion Processes. l
% Root of m~rK-list. \

STf~tJC'l DC[, tirst HA.SI'.:IJ tirst_bi'ISC
(size I~T, nf>Xt PtN); \ Flrst tr~e list item. \

S'fR'ICT DCL tree hAS~D tree_or~se
(size tNT, next PfH); % Initially the •hole memory. \

.STRUCr '* r.r~st. tree list item. %
DC L 1 d s t F< i\ S ~~ n J d s t _base

(size I~T, next ~TR);
~ llnitialtz~tion at resetJ ~

+ mtn_size; free_hase = tirst_n~se
first.size = n;
first.n~xt = tree_oase:
tree.size = l~st_o~se -
tree.next = l~st_oase;
last.size = (J;
ldst.next = tirst_oase;
cons_base = freP_nase;
rlPI_bd~P: ~ilL:

rnark_o~se = N II,;
synch : fALSE;

Dfi fUkEIItF;
IF warl<_t>ase <> NIL
TH~~~~~ DO;

nu ~Hlt.E lsvncn =
f.t-40;
CALL war~< (~ar~_baseJ;

~ark_base = del_base;
del_h~se =rill,;

svnct1 = FAI,s~:;
CAI.L coll;

D<u;
~LSJO.: IHJ;

mark_hase = 1eJ_bdse;
1el_nase = ,,11,;

sync:n = FAI,Sf;
~"Jf"l;

~~J\IP;
£11'D ex_l oo~>;

8

~ Start cons at tree_base. \
l Set del-list empty. %
~ ~et marK-llst empty. ~
% keset synch. %
% [~n~ of initializat1onl \

~arK-list not empty. \

~ait for synch. %
:<~ark items 011 mark-list.%
lln~ivisible beoin] %
Del-list becomes mark-list. %
Set del-list empty. \
[lnrlivisible end] %
Reset synch. %
Collect. %

\ M~r1<-11st empty. \
% [Indivisible beqin1 %
% net_list becomes rnrtrl<-list. %
% set rlel_tist empty. %
\ [IndivisihJe enrtl %
\ keset syncn. ~

*

\
mark: PH,CtiJilfH: ((tPIT'_t>~Sf');~

l

~~rk manipulates a list \
of rleleterl items, wnicn \
ndve a type and a prev \
tield, where latter points \ UCL 1te~-n~se Pf~; %

DCl, del 1--A.St:ll item_bdSP ~TRIICT
(type "'1~, prev P1RJ; 1 to the previously deleted \

decl ~ark BASEU itern_oase STHUCT
(type ~YTf, sire I~T>; \ item. ~ark m~r~s ~11 items \

DCI· prev_oase I -.r; \ on this list and some \
\ items accessible from it. \

on wHILF. (item_n"tse <> Iloilo);\ .. hile martc:-11st is not \
If del.ty~e = seQ_tyue \ empty, do: \
Tllf>~ 11U: \ F'or every seqw•ent \

CAt. I, n•arlc-ins; % rn~rK importe(t seqments \
C 1\I,L mar~-5- fun: % anrl mark s_t uns. %

~~ND;
~~[.::;~: H' ctel.type = rep_type
TH~N % for every representation \

CALl. ~·ark._r_1un; \ marK r_tuns. \
prev_oase = del.orev; \ wememner prev it~m on list, \
mar~.s1ze = 4et-size llte~-b"'sel;
mark.type = marK-type; ~ store size In mark.s1ze, \
item_oase = prev_base; \ mark item in mark.typel \

~NO: \ "lnd proceed previous l~em. ~
~Nil mark.;

coll: 1-'f<UCI'IJIHH~;

•
~ Call mav occupy t-o (or \
\ three) consecutive items \
% on the free list: Prev, \

DCL or~v_orlse ~TN; % already proceeded, ~itn %
DCL prev AAS~n urev_odse srRucr

(size lNlr next PTR); \ prev.size zero, its actual \
DCL prev_SlZe I~T; % size reme~hers prev_stze; ~
OCI. t ree_odse P'('H; \ tree, just createa, wi tt1 \
DCJ, tree HA!)~~~~ tree_oase STRUCT

(size INT, next Pl~J; % tree.size zero, its actual \
ULL rree_slze J•o; '!> Sl:t.e remem1•er:s rrt-~-:.1ze; 'li
OCL next-oase PfK; ' next, yet to be oroceederl, \
DCL next HAS~D r•eXt-lldSP :'iTkdC!'

(size I~r! next PT~J; % next.s1ze zero, its actual \
I>CL next_s ze I1H; % st7.e remembers next-size. \
DCL item_base PTH; % The current item. \
OCL item_type RAS~D item_nase HYf~;
UCL item_slze RAS~D ttem_base INT;
O(L ~arl< ~AS~U ltem_hase ST~UCT

(tyoe BYT~, size I~r>; ~ An item produced by marK. \
DCL loose ~As~n tree_base HYT~;
OCL add ~YT~; I A s~itch ••• \

acquire_next: PNUC~PUN~;
next-base = next.ne~t;
next-size = next.s1ze;
next.size = u;

~~0 acquire_n~xt;

replace_prev: PROCEDUR~;
free.sJze = O;
free.next = next_base;
prev.next = tree~o~se;
prPv.size = prev_size;

~~u repl~ce_prev;

rele~:~se_prev: PHcJCI:.!)U~t;;
Prev.size = prev_size;

~~o re!e~se_prev;

ti.rst_oase;

~ To make next inaccesible \ * [Indivisible beqinl \
\ tor cons: Locate it \
% remember Jts stz@ tlrst, \
% dno set Jt zero after. \
• £Indiv1si~Je endJ \
\ To insert an ne~ item into \
• tne tree list: ~
~ Set its size to zero, \
~ nav~ it point to next, and\
~ nave prev point to it. NOW \
~ restore pr~v·s size, ~na \
% cons ~ay use prev. t
'- ro release prev: Restore \
\ its actual s1ze (wnich I
il; tlds been rerr·e~•oere<l oy ~
% l'rev_sizeJ. Cons may no~ \
.... use prev. '
' ~ase orev at first. 1 * Cs1ze ot first is zero), \
~ Jet next oe the ~ext free \
~ J i. s t it e n• d t t. e r first. \

rrev_t>dse
prev_slze
next-hase
CALL acqut
i tem_t)dSP

o;
prev_bdse;

e_next;
tirst-bdse .. onin_stz<>:i.

9

DU tor~ver; % Loo'' "'i tn ne.,. cur rent 1 ten•. 1; IF 1t~m-oase = next_b~se
THE.N on; % tl it next • • • l5

CALL releas~-Pr~v;
If it~~-base = last_base

THEtt · % Next is already last - %
\ oone.' Rf.TU~N;

F:LSE DO; % ~PXt is not last - %
% next beco~rs orev, 1 orev_base = next_oase;

prev_siz~ = next_stzP;
CAl.L acquire_n~xt; % next.nPxt tecomP.s next. %
item-base = rrev_oase + prev_stze;
DO torever; % Loop witt> nP"' current ttP ..

IF item_base = next_bdse m. ~
THEN un; l Hit next ••• %

IF itPm_hdSP = Jast-~~se
TH~N UU; % Next is dlready last - %

CALL release_prev;
R t: TtH! N;

~.NO;
donP. !f.

ELSl llll; l Next is not l~st - SIIOallow. %
prev_size = prev_stze + next_sizP;

!J; (lnrlivisihJe beoinl %
1F item-bAse = cons-vase ·

THEN \ ~it cons_n~se -> relocAte. %
cons-~ase = prev_base;

\ Clndivisiole el'd] ~
CALL ac~uire_nPxt; \ ~P need A np"' next. ~
orev.next = next_basP;

1:;'-40;
~NO;

t:LSE: IF itP.n-tyoe : mdrll:_typp
T H ~: 1'4 ~ C 11 r rent i ten. 1 s , ark e d. 1;
~rev_stze = orPv_slzP + marK.size;

~···~f.. I ... " ... A"' ~ " ""' , '" " - - • - -

THEN --·· - ·i-~~;rent ttPm is loose. \
. P~ev_stze = orev_size t ltPm_tyoe;
ELS~ uu; 1 Current Jte~ still in usP, '
it~m-bA~e = tt~~-base + ~et_size Cttem_hase);
LEAV~--LitUP; ~ •> no turthf'r Appenr1J.. nQ "' gNO; • ~

item-Dase = orf'V-bAse + orev_size;
~~NO;

!:.&~0;
I!:Nfl;

~LSE If itt>m_tyoe < ~ln_stze
THEN DO; %

10

fr~e-base = 1t~m-oase; ~
If ttem_tyot> = .nArk_tyiJe 'J;

THt:N tJO; 'i
tr~e-sJze = ~~r~c.stze;
IF frP.e_stze < ~tn_size
THE~ l
aaa = FAL5f; '

~:LSE tHl; 11
CALL replace_prt>v; ~
add : TRUF; i

~~N I);
~~ND;

Current lterr1 is loose or*
mdrll:ed, may oe comnJned to %
a new tree list tte~. 1

Current item is marked, 1;

~~rkP~ item yet too snort %
to oPcomP freP list item. "

~arKe~ item lonQ enouQh to \
become tree list ltej, \
-> trPP replaces pr~v. %

~~LSE: 110;
tree_size = ttem_tyne;
at1<1: f"AI,S~_;

'j; .\ l on sf' lt e '" 1 s not n d d P d \
\ to tne tree lJst, but Jts \
!!; s 1 7. e 1 s r e :n P •n t' e red • %

~: N 0:
item-base = tret>_oase + frPe_s]7.e:

J

[

DO FOREVto.:~;
IF 1tem_t:>as«> =

THEN DO;
IF' it«>m-Dase

TliEN DO;

next_base
\ Hit next ••• % = IAst_base
\ ~ext is already last. %

IF add : FALSE
THEN 00; % Item netore last is loose. %

CALL release_prev;
loose-size = free_size;

END;
~:LSE

tr«>e.size =
RETUNN;

\ Item bt>fore last is tree. \
free_stze;

% &Jone. \
F.: NO;

ELSE DO; % llPriate fret>-size. %
tree-size = tree_size + next-size;
CALL acqutre_next; % Get next free item. %
IF add : FALSE

THEN ou; % Point to next trom prev. %
prev.next = next-base;

% [lnjlvisible bPQinl %
If ltem_base = cons_nase

THEN l Hit cons_nase ·> relocate. %
cons_oase = prev_nase;

t:ND; % [lnrlivisible t:No l %
tLSE oo; % Point to next from free. %

tr«>e.next = next_base;
% !Inrlivisiole beQinJ %

IF 1te~-base = cons-base
THEN \ Hit cons_hase •> relocate. %
cons-base = free_base;

lND; % [IndiVisible e:l'<o 1 \
ENU;

END;
ELSE IP 1tem_type = mark_tyoe

1 ru:. N 'II '- u I' r II" n 1. 1 L"" m 1 :. n• d I """ <J • t<
free-size = tre~-size + mark.size;

ELS~ IF item_type < min-siZP
THF.N \ Current item is loose. \
tree-size = tree_size + item_type;

~LSE oo: \ current item still in use %
item_base = item-base + size (item_base);
LEAVE-LOOP; \ -> no further appendinq. %

END;
IF (fr~e-size

THEN DO;
>= min-size) AND (aod = FALSE)

CALL replace_prev:
add : TRUE;

END;

\ Combined item lonQ enouQh %
\ to become tree list item, %
% •> tree reolaces prev. %

item_base = tree-base + tree_size;
END;
IF add = FALSt:

THEil!
loose-siZf" =

ELSE oo;
% ltP~ too snort •> loose. I

tree_size:

prev_base = tree-base;
prev_size = tree-size;

END;

~ Item Ionq enouqh, tree now %
% no~tn~lly oecomes orev. %

ENU;
ELSF. \current ite,., still in ust". "*

item_base = item_oase + size Citem_base>;
END;

END coll;

*
11

%Cons tries to alloc~te ~
cons: PROCr.fJIIIH-. lrea_type, req_sizP) P'l~<;
DCL req_trPe RY1~; 1 dn 1tem ot tyop rPq_type %
DCL req_s ze INt; \ dnd size rea-size, %
DCL req_oase PTk; % initialize Jt, an1 return ~
DCL req BAS~D req_base STPUCT

(type RYT~, size INTJ; % a oointer tn it. 1
DCL a_free_base PTH; % Tne host ite~ will oe %
DCL a_free BAS~~ a_tree_nase srMurr

(size INT, next PTH); % either a_tree or o_tree, %
DCL c_free_base PTM;
DCL b-free tiAS~IJ o_tree_nase s I'RIICT

(size INT, next PTRJ; % atter allocation its %
DCL rem_stze INT; l si7.e will be rem_size. %

% lnlt-req initializes the %
1n1t-req: P~uc~~P'JME (orev_base, nost_oase) PTt<;

DCL host-base PT~;
% allocaterl item. \
% Tne host lte~. %

DCL host BASED host_nase
(Size INT, next PfR);

STIWCT

DCL prev_oase PTR; % The tree ite~ rrecedJnq '
DCL prev RASt:O orev_base SlRIICT

(size lNT, next Ptk); \ rne nost item. %
% Sat1sty a reuuest: %

rem-size = host.slze - rea-size;
I~ rem-size >= min-size

THF.:N 00;
host.size = rem_stze;
cons-base = nost_nase;

END;
ELSE DU;
host.stze =
cons-base =
prPv.next =

END;

re'll-SiZPi
f'lost.nPxt;
cons_o<tsP;

% Tne host Jte~ remains on l
\ tne tree list, ~ttn size %
6 redttCPd to re~_size. l

% The nost 1 t err has neen %
l exh<tnsted, 'l loose ltem or 'I;
\ notnina rP~ains, ann orev '
\ aets d new next. t

req_base = nost_oase t r~~-size;
r~q.type = rea_tvoe: ~ ThP ~llnr~tPrl ltPm nptc a~
req.slze = rea-size; \ tyne anrl a size, its \
RETURN (r~q-t>ase); % ar1Jress is rPturnect. \
E~D 1n1t-req;

o_tree_base = cons_base;
a_frPe-base = o_frPe.next;
DO FOREV~R;

IF a_trPe.stze >= req_sizP

\ RasP h_tree on cons_oase, t
\ A_free is n_tree's next. %
\ Cons1rter a_tree, \

THEN l • • • f 1 t s. \
RETU~N <1nit_rea Co-tree_oase, a_free_base>J;

F.LSE DO; \ ••• noes not tit. '
I~ a-free_base = cons_bas~

THEN \
RETURi-4 (Nil,); \

ELSE \

~ull cycle round, *
Cannot satisfy request. t
A_tree is a_trPe's next. %

o_tree_case = a_tree.next;
END; \ Consider b_tref', %
IF b-freP.slz~ >= req_size

THEN \ ••• tits. \
RETURN (intt_rea (a_tree_oase, n_free_oase)J;

ELSt. uo; \ ••• does not tit. \
IF b_tree_basf' = cons_base

THEN \
HETUHN (NIL); \

~:IJSE \
a_tree-base = o_tree.next;

END;
END;

~o:No cons;

12
*

Full cycle round, '
Cannot satisfy reuuest. \
A_tree is ~-tree's next. % t

REFERENCES

(Bak 78) Baker, H.G.jr. List Processing in Real Time on a
Serial Computer. Comm.ACM 21, 4 (April 1978), 280-294.

(Bay 77) Bays, C. A Comparison of Next-fit, First-fit, and
Best-fit. Comm. ACM 20, 3 (March 1977), 191-192.

(Bis 77) Bishop, P.B. Computer Systems with a Very Large
Address Space and Garbage Collection. Ph.D. Thesis,
MIT/LCS/TR-178, Cambridge, Mass., May 1977.

(Car 79) Cardelli, L. A General Purpose Memory Management
System. Unpublished Notes, 1979.

(Coh 81) Cohen, J. Garbage Collection of Linked Data Structures.
ACM Computing Surveys 13, 3 (Sept. 1981), 341-367.

(Dij 76) Dijkstra, E.W., Lamport.L., Hartin,A.J., Scholten,
C.S., and Steffens,E.F.M. On-the-fly Garbage Collection:
An Exercise in Cooperation. In: Language Hierarchies and
Interfaces. F.L. Bauer and K.Samalson (eds.), Springer-Verlag,
New York, 1976, pp. 43-56. Also appeared in: Comm.ACM 21, II
(Nov. 1978), 966-975.

(GKS 82) Draft International Standard ISO/DIS 7942, Information
Processing Graphical Kernel System (GKS), Functional Descrip-
t-i.-, u.,,...,;,..., 7? NT-<; Q/l-R1 N.-.u IQR?

(Knu 73) Knuth,D.E. The Art of Computer Programming, Vol. I:
Fundamental Algorithms. Addison Wesley, Reading, Mass.,
1973.

(Kun 77) Kung,H.T., Song,S.W. An Efficient Parallel Garbage
Collection System and Its Correctness Proof. Department of
Computer Science Report, Carnegie-Mellon Univ., Pa., Sept. 1977.

(Lei 83) Leich,H., Levchanovsky,V., Prikhodko,V. Multimikro­
prozessorsystem zur Steuerung eines Intelligenten Graphischen
Terminals (IGT). To appear in: Nachrichtentechnik Elektronik.
Also appeared as: .JINR. PI0-83-7 (in Russian), Dubna,

1983.
(Lie 83) Lieberman,H., Hewitt,C. A Real-Time Garbage Collector
Based on the Lifetimes of Objects. Comm. ACM 26, 6 (June 1983),
419-429.

(McC 60) McCarthy,.J. Recursive Functions of Symbolic Expres­
sions and Their Computation by Machine, I. Comm.ACM 3, 4
(April 1960), 184-195.

(Nie 77) Nielsen,N.R. Dynamic Memory Allocation in Computer
Simulation. Comm.ACM 20, II (Nov. 1977), 864-873.

. 13

(Rud 83) Rudalics,M. An Intelligent Graphics Terminal's
Intermediate Database. In: Proc. of Eurographics 1 83, North­
Holland Pub., Amsterdam, 1983, pp. 383-392.

(Ste 75) Steele,G.L.
Collection. Comm.ACM
Comm.ACM 19, 6 (June

jr. Multiprocessing Compactifying Garbage
18, 9 (Sept. 1975), 495-508. Corrigendum:

1976), 354.

(Tho 72) Thorelli,L.E. Marking Algorithms. BIT, Nordisk
Tidskrift for Informationsbehandling 12, 4 (1972), 555-568.

(Wad 76) Wadler,P.L. Analysis of an Algorithm for Real Time
Garbage Collection. Comm.ACM 19, 9 (Sept. 1976), 491-500.

14

Received by Publishing Department
on August 12, 1983.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices · in US I,

0-12965

011-80-13

04-80-271

04-8Q-385

including the packing and registered postage

The Proceedings of the International School on
the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979.

The Proceedings of the International Conference
on Systems and Techniques of Analytical Comput­
ing and Their Applications in Theoretical
Physics. Oubna, 1979.

The Proceedings of the International Symposium
on Few Particle Problems in Nuclear Physics.
Oubna, 1979.

The Proceedings of the International School on
Nuclear Structure. Alushta, 1980.

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Oubna, 1980.
2 volumes.

04-80-572 N.N.Kolesnikov et al. "The Energies and
Half-Lives for the a - and ,8-Decays of
Transfermium Elements"

02-81-543 Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 1981

u1v, ,,-o'-""'"' r.Lu(.;~~u.J..ny~ oi. "Lne .1.nterna-c.10nal. Meet1ng on
Problems of Mathematical Simulation in Nuclear
Physics Researches. Dubna, 1980

01,2-81-728 Proceedings of the VI International Seminar

8.00

8.00

8.50

10.00

25.00

10.00

9.50

9.00

on High Energy Physics Problems. Oubna, 1981. 9.50

017-81-758 Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Oubna, 1981.

01,2-82-27 Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Dubna, 1981.

02-82-568 Proceedings of the Meeting on Investiga­
tions in the Field of Relativistic Nuc­
lear Physics. Dubna, 1982

09-82-664 Proceedings of the Symposium on the
Problems of Collective ~lethods of Acce­
leration. Oubna, 1982

03,4-82-704 Proceedings of the IV International
School on Neutron Physics. Oubna, 1982

15.50

9.00

7.50

9.20

12.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR

Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES

OF THE JINR PUBLICATIONS

Index Subject

1. High energy experimental physics

2. High energy theoretical physics
3. Low energy experimental physics
4. low energy theoretical physics
5. Mathematics
6. nuc l ear spect roscopy and raa1ochem1stry
7. Heavy ion physics
8. Cryogenics
9. Accelerators

10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. liquids
15. Experimental physics of nuclear reactions

at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

PyAan~4 M. Ell-83-588
Paapa6oTKa ~ pean~aa~~R c~cTeM~ ynpaeneH~R naMRT~ np~6opHo-aae~c~Mo~
6aa~ AaHH~x AnR cerMeHTOB

npeACTaeneHa C~CTeMa ynpasneH~R np~6opHo-3aB~C~MO~ 6a3~ AaHH~X AnR
cerMeHTOB, KOTOpaR pacnpeAenReT ~ BHOBb HCnOnb3yeT ~3MeHReM~e 4aCT~ naMRT~
s peanbHOM MacwTa6e speMeH~. c~cTeMa o6ecne4~BaeT ynpasneH~e np~6opHo­
aas~c~Mo~ 6a30~ AaHH~X AnR cerMeHTOB, KaK on~CaHO B CTaHAapTe rKC, ~ cn~CKOM
AHCnne~H~X KOMaHA AnR BeKTOpHoro A~CnneR 8 naMRT~ ~HTenneKTyanbHOrO rpa­
~H4eCKOro TepM~Hana, pean~aosaHHoro Ha ocHose MynbT~npo~eccopHo~ c~cTeM~.
AeTanbHo on~caH~ anrop~TM~, oco6oe BH~MaH~e YAeneHo MexaH~3MaM c~HxpoH~­
aa~HH H ceRa~ Me~y npo~eccaM~.

Pa6oTa e~nonHeHa B fla6opaTop~~ B~4~cn~TenbHO~ TexH~K~ ~ aBTOMaT~3a~~~
011.1111.

Rudalics M. Ell-83-588
Design and Implementation of a Workstation Dependent Segment Storage
Manager

A workstation dependent segment storage management system which allocates
and recycles variable portions of memory under real-time conditions is pre­
sented. The system is capable of handling a workstation dependent segment
storage, as described in the Graphical Kernel System, and the display list
for a vector display, in the memory of a multiprocessor based implemen­
tation of an intelligent graphics terminal. Algorithms are presented in
detail with particular attention to mechanisms for interlocking and com­
munication between processes.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Communication of the Joint Ins titute for Nucl ear Resea rch . bubna 1983

