

1. INTRODUCTION AND PREVIOUS WORK™

The workstation dependent segment storage (WDSS) concept is
explained in (GKS 82). The workstation dependent segment storage
manager (WDSSM) coordinates the allocation of freshly created
segments with the recycling of deleted onmes in the memory of an
intelligent graphics terminal (IGT) (Lei 83).

In addition to the proper WDSS the WDSSM has to manage the
display list which is composed of representations, i.e. those
items which are generated for putting segments on the screen.

A concise description of all objects handled by the WDSSM may
be found in (Rud 83).

Special attention in the design of the WDSSM has been given
to the management of the display list, as this (or parts of it)
is thrown away with every regeneration of the display image.
Regenerations may occur selectively, (i.e. for one segment at
a time, e.g. when applying a new segment transformation),
globally (i.e. for all segments stored at the WDSS, e.g. when
updating the current workstation transformation). Beforemost

tho lattar PN n1nkq1 v'nrvnnnv'n.—-nvwr‘ vrlar An tha mavfavmansa
. »

ooy JSOIERRORIB IR AN

of the WDSSM, as the entlre WDSS has to be traversed old rep-

resentations have to be deleted (preferable one at a time, for

the reason not to traverse the WDSS twice), and new representa-
tions have to be created. All these actions have to be perfor-

med under the condition, that the display process continuously

passes over the display list and is not disturbed by regenera-

tion.

For these reasons it has been decided to build a real-time
(incremental) garbage collection system, which is supposed to
keep the time required for allocating a new representation suf-
ficiently low.

Garbage collection has been introduced in list processing
languages by McCarthy (McC 60). The principles of garbage col-
lection are, see (Coh 81), to identify reclaimable storage
space (this is generally referred to as marking), and to make
this space available to the user (this is generally referred
to as collecting).

* A short version of this paper will be presented at the 5th
International Conference on Mathematical Modelling, Program-—
ming and Mathematical Methods for Solving Phys1ca1 Programs.
Dubna 1983.

Due to the fact that in classic list processing systems com-
putation has to be suspended for the time required by garbage
collection, real-time garbage collection has been proposed as
an alternative (Knuth credits this idea to Minsky, (Knu 73)
pPpP. 422, 594). The algorithms developed for parallel garbage
collection, by Steele (Ste 75), Dijkstra et.al. (Dij 76), Kung
et.al. (Kun 77), and analyzed by Wadler (Wad 76), have in com—
mon, that they operate only on homogeneous memory spaces,i.e.
all objects managed by the garbage collector have to be of the
same size,

The general case of handling variable sized objects in real-
time is treated within the concept of copying garbage collection
(Bak 78),{Lie 83).Copying garbage collection has the disadvanta-
ge that it requires two times the storage used by a non-copying
garbage collector. Although this drawback may not be considered
to serious when one thinks of the advantages of including com-
pact coding techniques within a copying garbage collector im-
plementation (see (Bak 78) for a listing of all those concepts,
like CDR-coding, etc.), and may be estimated a minor one in
the environment of large virtual memory systems (Bis 77), it will
not do for our implementation, considering the IGT's small core
capacity (48K bytes) and the absence of secondary storage.

The compactification attempted by some of the systems men-
tioned above, in an extra phase by Steele (Ste 75), or as a
property of allocation by Baker (Bak 78), is not suited for

oY nurnneaaq ae i+ oithor vonuivran ftame #n ha hamanaeoo
T T . Y roes ttome

- SICIMIEGINICUl

(Ste 75), or relies on the copying concept (Bak 78).

In the WDSSM compactification is also inhibited by the
fact, that the microprogrammed display process is not (and
should not be) capable of performing semaphore-type operations
which are essential for excluding this process from accessing
those items on the display list which are currently relocated
and therefore temporarily unsave.

We will not, however, exclude a future version of a WDSSM
which will rely on a twofold strategy, where the proper WDSS
(residing in one partition of the memory) is handled by a
garbage collector with an additional compactification phase,
while the display list (residing in another, physically dis-
tinct partition of the memory) is managed by something close
to the present version. Unresolved remains the question where
to allocate bundles (Rud 83), when employing this strategy:
in the display list partition, splitted between WDSS and dis-
play list partition, or in a third partition?

2. DESIGN OF THE WDSSM

A schematic description of the interfaces between host and
workstation resident routines implementing GKS functions, the

2

i Ghs = host resident i
mwme wTitlep wrecee- B R R kel ermencnmranmenre FTCA(==me-
< ctufterea interface >
cmme [OJ(] wwrewmmccmacmacneacen P R LR X Write =weo-

i K> = sorkstation resfdent
1 - e WS v e - Ay o> on =m em = - em e Wy M On Ee GG W S Se e 1
{1 reaas i rDESM) i
- write ===-= nandle == reaa/reset == handle ==-= Wwrite =
< NN > < synch > < display list >
- rQG! memme== SCl m~evweecnvecscsoa read wer—ecee=

i (rundles) 11splay process (renresnntatlnns) 1

Fig.1. Interfaces between GKS routines, WDSSM and
display process.

WDSSM, and the display process is given in Figure 1. Declara-
tions and algorithms are described in PL-M/80 (our implementati-
on language) slightly modified for presentation.

The algorithms of the WDSSM recognize four different groups
of items, respectively:

(1) User Items
DCL user_item STRUCT (type BYTE, size INT);

User items are headed by a type field and a size field. For
some user items of fixed size (known to the procedure get_size)
size may be an implicit function of type. Types for user items

may run from four to 255 (a continuous subrange is supposed to

be used in an implementation).
tirse last

L"'_LI_L*_L] I [f_LI.J

I

(2) Free List Items

Fig.2. Initial memory layout.

DCL free list_item STRUCT (size INT, next PTR);

Free list items are circularily linked via their next field
and do not contain a type field. Algorithms are supposed to
recognize free list items by their relative position on the
free list. The free list is initialized as indicated in Figu-
re 2. First and last are two distinguished free list items

located at the low and high end of the memory respectively. As
their size always remains equal zero the allocation algorithm
(cons) ignores them, consequently the free list virtually is
never empty. The size of the free list item following first
initially comprises the whole memory.

(3) Loose Items
DCL loose_item BYTE;

Loose items are free items shorter than four bytes and con-
sist of the size of the item only, appropriately their type
runs from one to three. Loose items are not on the free list
and may therefore not be used for allocation, however, they
may serve for recombining free list items.

(4) Marked Items

DCL mark_item STRUCT (type BYTE, size INT);

Marked items are generated by the marking algorithm, they
suitably have type zero.

The WDSSM operates on three lists: The list of items to be
deleted (del _list), the list of items to be marked (mark_list),
and the list of free items (free_list). Del_list is built by
routlnes which 1mplement GKS functions (delete segment, redraw
all segments on workstation, clear workstation,etc,).Segments
and representations enter this list in LIFO order. Mark list
is operated upon by the mark procedure. After each col-
lection cycle mark list and del_list change (in one, indivisible
operation) their relative roles, the past del list becomes the
new mark list and del_list is initialized to the empty list.
Marking will only be performed when at least one item had
been deleted, i.e. entered the previous del_list.

The mark procedure does not mark items in use, but discarded
items which are accessible from a deleted segment or represen-—
tation. In the WDSSM explicit deletion does not require the
overhead usually associated with it, as only the headers of
segments and representations have to be deleted (i.e. added
to del_list) explicitely. Marking is performed nonrecursively,
see (Tho 72); mark_list serves as an auxiliary list for tracing
out inserted segments. Marking of more specific objects (in-
stances, s_functions, and r_functions) is not described in
detail. Note however, that for example mark_ins contains a
critical section where it has to be synchronized in an appro-
priate manner with the insert procedure.

A special construct in the WDSSM is the synchronization
flag (synch) which is reset by the WDSSM and is set by the

4

R R R R EmEE_ammER A m—mm—

display process after completion of each refresh cycle (at least
all 20 msecs). Synch (when false) keeps tihe mark procedure

from marking items the display process may still be proceeding.
Performing synchronization in this clumsy way is necessitated
by the fact that the (microprogrammed) display process may not
perform semaphore-type operatious, but is only capable of a
global assertion like: "at this moment I am outside the display
list"

The collector (coll) has two free list items (termed prev
and next) with size zero (so the cons procedure does not consi-
der them for allocation) wander from first to last. Whenever
it encounters a free list item, coll sets (in one, indivisible
operation) the item's size to zero. When a new free list item
is created, temporarily a third free list item with size zero
(termed free) may exist, as outlined in Figure 3.

Cons uses for allocation the next-fit (also modified first~
fit, or FF/Rover) method, which is described in (Knu 73). Next-
fit uses memory worse than first-fit and best—fit as reported
by (Bay 77), but has significantly better performance characte-
ristics as simulation results document (Nie 77). In the real-
time system next-fit requires two more indivisible operations
in the collector, when during recombination a free list item is
swallowed and the rotating starting point for searching
(cons base) has to be relocated, this process is described in
Figure 4.

Crne v‘\1v‘\h—!‘\r\v\nﬁ o-l-w-. nnnnn L Aﬂ - k.\.,n- ienm [N oo trom
L o JOROSAD ORI [OROREIEED TN [P U S Y

on the Free list capable to accomodate an object of a requested
type and size) between two structures (a_free and b_free)., This
eliminates the need for saving the address of the previous (res-
pectively to the host) free list item in order to update its
next field when the host item has been exhausted by allocation.

prev mark next

111177/] 0 R E /777 0 Y/7/
1.1_1 [1 It_I_II

-

111111/ ;:ifT‘I B 222! %:ij B2 ;ii:r | | 2

1171/7/] 1 1 {7 bod ¢ 1 1o | 177/
4| o S—

Fig.3. A new free list item is created (slashes in-
dicate items in use).

The problem of remembering the previous item does not occur
when the free list is organized in a double linked manner.
This would, however, introduce additional overhead and enlarge
the size of the smallest free list item to six bytes.

rrev mark next (cons.base)
! a_l_ [1222 IR ¥_1_r { {7/7.

! — ,

rrev free next (cons.hase)

11111171 i‘l'] 2K *_l_ I {77/

tree (cons_base)

11111111 %_l_- I 222! f_l_w | T 127

.

» to next

prev (cons_base)
! i'l‘" IR 222! i_l_ T 127

® to next

Fig.4. A free list item is swallowed and cons base has
to pe relocated (slashes 1indicate items in use).

3. IMPLEMENTATION OF THE WDSSM

Two methods for implementing real-time garbage collectors
have been proposed:

The serial method has list processing and garbage collection
run on one and the same processor. In our implementation this
means that the WDSSM acts as a subordinate to the regeneration
process, invoked when time consuming operations (e.g. transfor-
mations, which have to be performed by the arithmetics proces-—
sor) take place. Collection is assumed to be performed iterati-
vely, i.e. coll will advance by one or two free list items in
one step. ' ’

The parallel method has list processing run on one proces-
sor and garbage collection on another. Collection is supposed
to run uninterrupted but for synchronization operations. The
parallel case is not implementable without modifications of our

6

present cons procedure, as a free and b_free (and their relative
positions on the free list) may be altered by the coll proce-
dure in between two searches. At least the two pointer scheme

of cons is not feasible in the parallel method, a double linked
implementation of the free list seems to be more appropriate
for this purpose. However the relative merits of the parallel
method seem doubtfull, as the coll procedure is likely to be
locked out anyway during the whole duration of a cons operation.

Our present implementation adopts a quasi-parallel solution
which has regeneration run on one processor, cons and garbage
collection on another. Garbage collection is interrupted only
when regeneration needs to allocate a new object in the memory.
In this case cons is called and may serve the request. When
cons runs out of space, regeneration terminates gracefully,
i.e. the display image will remain incomplete but the proper
WDSS will remain untouched. In this situation the user may
free some space (for example by changing the current work-
station transformation or by displaying some segments in store
mode) and resume execution.

When performing indivisible operations the WDSSM need not
disable its interrupts to lock out requests which must not
interfere with the collector, but use a special test and set
logic to lock out othear processes only when critical sections
are concerned. In this context it should be remarked, that
operations on data of tvpe INT or PTR da nnat reanive any
interlocking on the IGT, as they have been rendered indivisible
by altering the hardware mechanisms for accessing the common
memory.

4. CONCLUSION

A workstation dependent segment storage management system
suited for implementation on a multiprocessor based graphics
workstation has been exhibited. The WDSSM presently operates
in the testbed of a simulator implemented on an intellec mds
development system. Work proceeds to incorporate the WDSSM
in the software of an intelligent graphics terminal, which
is currently under construction at the JINR.

Given certain restrictions, the algorithms constituting
the WDSSM may be recommended for use in general purpose memory
management systems like the one proposed in (Car 79). Optimal
performance, however, will be achieved only when the objects
to be handled by the WDSSM may accomodate at least a size
and a pointer field.

% Global declarations: %
NCL markotype LIT “07; % The type ot A marked item
NCL min_size LIT “4°; % Miniwum for tree list 1
NCL tirst.oase PT¥; % Low end of memory. %
UCL last_base PTK; % Hign end ot mremory. %
NCL, cons_.bAse PTR; % Cons starts from here, %
DCL synch BYTE; % Set by display process. %
DClL, del_pase PTkK: % Root ot del_.list,
% The procedure get.size %
get.size: PRUCKNURE (item_.pase) IANT;
DCL {tem_base INT; % returns the size of the %
END get_.size; % item located at item_base,
% kEx.loop synchronizes the %
ex.loop: PROCEDIKE; % WDSSM witnh the display $%
% and deletion processes. %
DCL mark.base PLUIR; % Root of mark.list.
DCL tirst RASED tirstobase STRUCT
(size InT, next PTR): % Flrst free list jitem, %

Inftially the whole memory.

hast free list ftem, %

(lnitialization at reset) %
nin_size;

free_pbase;

sStart cons at tree.base,
Set del.list enmpty,

S5et marKk.ilstl empry. %
Keset synch, %

(£nd of initialization] %

“arKk.llst not empty. %
dajit for synch., %

mark_list,
begin) %

4ark items on
[Indivisible

NDel_1ist becomes mark.list,

Set del_.list empty. %
{Indivisible end) %
Reset synch, %
Collect, %

Mark.list empty, %
[Tndivisible begin] %
Del.list becomes mark.1lis
Set del_.list empty,
[Indivisible end] %

keset synch., %

DCL, free RASED tree_nase STR!ICT
(size (KT, next PrK); %
DCL last KRASED Jast_base STRUCT
(size INT, next ©TR); I
free.hase = first_.nase +
first.size = 0;
first.next = tree_pase;
free.size = last_pase =
tree,.next = last_pase;
last.size = 0y
last.next = tirst_pase;
cons.base = free_base; %
Ael_base = dNll,: %
mark.pase = NILi;; %
synch = FALSF; %
DN FUREVER;
ITF mark.pase <> w10
THEN DI %
DU wHILE (synch = FALSE);
END; %
CALL marx (markx_base); %
rark.base = del_base; %
del_._.bhase = il §
synch = FALSE? %
CALL coll; %
END;
ELSE Ui %
%
mark_nase = 4ej_bdase; %
del._.pase = wll; ;
synch = FALSK; %
KND
N7

END ex_loop;

3

%

t.

%

%

%

%

%

% ™Ark manipulates a list %
mark: PHGLCEDIIRE (ftem_pdase);% of deleted items, which %
‘ % Dhave a type and a prev %
UCL item_hase PlIw; % tield, where latter points %
DCL del BASED jtein_base STRUCT
(type BYIE, prev PIR); % to the previously deleted %
decl mark BASED item_pase STRUCT
(type BYTE, slze IwnT); % 1ltem, Mark marks all items §
DClL. prev.pase [~1I; % on this list and some %
% items accessible from {t,
DD WHILFE (item_.pase <> NIL);% while mark.list is not %
1F del.tyre = sea_tyve % empty, do:
THEN 103 . % For every segment %
CAl{l, mark.ins; % mArk importea segments %
FSBLL mark-s.fun; % and mark s.funs,
g ’
kLol [# del,type = repatype
THEN % For every representation %
CALL mark r-fun; % marx r.funs,
prev.base del prev; % Rememher prev jitem on list,

mark.size

yet_size (item_

base);

%

mark.type = marx.type; $ store size in mark.,size, %
item_base = prev_base; % mark item in mark, type 3
END? % Aand proceed previous ftem, %
END mAark;
»
¢ Coll may occupy two (or %
coll: PRUCFDURE; £ three) consecutive items %
$ on the free list: Prev, %
DCL prev._base PTR; % already pbroceeded, with %
DCL prev BASED prev.pase STRUCT
(size LIN1, next PTH): % prev.,size zero, its actual %
NCL prev.size [NT; % sSizZe remembers prev.osize; %
VCL tree_pase PIR; 4 free, just createa, with %
DCL tree BASEL free_base STRUCT
(size INT, next PIR); %4 free,size zero, its actual %
DCL tree_slze ini; ¥ S1Z€ TEememners rree.>1ze; x
DCL next.pase PTk; % next, yet to be proceeded, %
DCL next BASED next.bdse STRJUCY
(size InNT, next PTR); % next.size zero, its actual %
NCL next-size TurT; $ size remembers next_size, %

PDCL item.base PTR;

NCL item_type BASED

% The current item,

item_base HYTE;

VDCL item.slize RASFD item_base INT;

NDCL mark AASED ftem_base STRUCT
(type BYTE, size IN(); % An item produced by nark. %
DCL lo0se BASED tree_base BYTE;
DCL add BRYTE; %« A switch ... %
% To make next inaccesible %

acguire_next:

next.base
next.size
next.size

PROCEDURFK
next.next;
next.slze;
0

END acquire_next;

replace.prev: PRUCEDURE;
free,size [V
free.next next_nase;

prev.next
prev.,size

tree_nase;
prev_size;

mND replace.prev;

release_prev: PRUOCEGURE?
prev.s1ze = prev_size;
END release.prev;

prev_.hdse
prev.size
next.hase

first_oase;
U3
prevobase;

CALL acgquire_next;

item_base

tirst_base +

2 O I 90 AL I N W IO OO HE o A WP K PO P IO 90 00 A

[Indivisible beginl %
for cons: Locate {t

remempber jits size tirst, %

and set it zero after, %
{Indivisible end)

To insert an new item into %

the free list: %

Set its size to zero, %
nave it point to next,
nave prev point to {t,
restore prev’s size,
use prev, %

cons nAay

and
NOw
and %

fo release

its actusl s
has been rem
rrev.size),

prev:

Restore %
1ze (wnich %
enpered oy %
Cons may now %

use prev. &
“ase prev at first, %
(size ot first is zero),

%

lJet next pne the next free %

9

list {ten atter first. %

min_sizeri

%
%

DO forever:
IF {tem.base =
THEN DO;
CQLL release_prev;
IF {tem_base = last_bhase
THEN ' %
RETUKN? %
%
%

Loon
next.base

Hit next ... %

4

Next {s already last
done, %

FLSE DO; Next is not last = %

prev.hbase = next_nase;
prev_.size = next.size:
CALL acquire_next; %
item_pase =

prev.base + prev_size;
DO torever: % w1t

»1th new current ftem,

- %

next becomes prev, %

next.next rtecomes next. %

% Loov with new current {tem,

1F item_base = next._base
THEN 003 % Hit next ,.. %
I;Hé}pmahdse = Jast.bAse
N DO : Next is alread -
g@%&kgélease-prev: v lest ¥
[H % done,
ENDS . *
ELSE Dhig % Mext is not last = swallow,

prev_size = prev.size + next_size;

% [Indivisible beain) %

lf ;tem-nase = cons.vase

THEN $ Hit cons_base
prev.base;
% (lndivisiple end] %
% «f¢ need A
next._base;

cons_.base =

CALL acauire.next;
prev.next =
END 7
END;
ELSE IF ftenl.type = mark_tyne
THEN % Current itenm

vrev_size = prev_size ¢+ marx,size;
Ed IR BN - - -

new next, %

=-> relocate, %

is marked. %

FLSH W {itam Funa : - -
THEN - "% Current item is lo
Ebgiexastze = prev.size + item_type; loose. 1
; $+ Current jtem still i
item_base = item_base + aet_size (item-éase%? nse. ¥
Fkgth-LuuP: ¥ => no further appendinrg. %
- ’
Fﬁggm-base = prev_base + prev_size;
ENDS
rEgE:IF i
) SE " iftem_type < min_size
THEN DO; Current item is Jloose or %

free_base = item.pase; }

IF ftem_tyve = park.type %

THEN 0Q; %
tfree_size = gparx,size;
IF free_size < min_size

marked,
d new tree list itemn

may oe compined to %

3

Current item is marked, %

THEw % ™Marked jtemn yet to
_ - . 0 short
Fngd”ﬁ.FALaE, % to o:c?me free list ltem.%%
4 : % Marke tem Lona enough
CALL_replace_Drev: % become free list lte%, ;o *
Fﬁg? = TRUF; *+ => free replaces prev, %
. r
KLSE’
’, VIO H ¥ A lonse ites 1S not added
free_size = 1ten_type; % to tne tree list, but itszi
p:g? = FALSH; size 1s vremembered. %
’
item_vase = free_oase + free_size:

10

]

2

a

%

DO FOREVER:
IF item.base = next.base
THEN DO; Hit next ... %
IF item_bpase = last_base i
THEN DO; % Next 1s already last, %
1F add = FALSE
THEN DO; % Item pefore last is loose. %
CALL release.prev;
Elgose.size = free_size:;
ND32
ELSE £ Item before last is free, %
free.size = free_size;
RETURN: % vone, %
END;
ELSE DO; % Update free.size, %
free_size = free_size + next_.size; .
CALL acquire.next; % Get next free item, %
IF add = FALSE
THEN DU; $ Point to next trom prev, %
prev.next = next._.base;
% (Indivisiple beain) %
I¢f item_base = cons_hase
THEN % Hit cons.hase => relocate, %
cons.pase = prev.base;
END; % [Indivisible END 1 %
ELSE DU; % Point to next from free, %
free,next = next.base;
% (Indivisiple beqgin)} %
IF {tem_base = cons.base
THEN % Hit cons.base => relocate. %
cons.base = free_nase;
END; % (Indivisible END 1 %
END?
END;.
ELSE IF item_type = mark_type
IeEnN ¥ LUIrenL LLem 1D HdIRK®g, ¥

free.size =
ELSE IF item_type <

HEN
ree_siz
MV H
~base
=-L00

E
ree.s
L

AT

DO;
rep
= TR

SE DO

prev_hase
prev.size
ND;
D:
[
e

E

EL
item_rase =
D

4
“wrruzm

£
END coll;

free_size + mark,.,size;
min_size

% Current item is loose, %

e = tree_size + item_.type;

Current ftem still in use %
= ftem.base + size (item_base);
p; % «> no further appending. %
{ze >= min_.size) AND (add = FALSE)

Combined ftem long enough %
lace.prev; £t to become free list item, %
UE; % =~> free replaces prev,

= free.pase + free_size;

% [tem too short => loose, %

e = free.size;
% Item long enough, free now %
free_base; % nominAally becomes prev. %

= free.slze;

% Current item still in use. %
zZ

item_pase + size (item_base);

11

.] % Cons tries to allocAte 3%
cons: PROCrNUKRE (rea.type, reg.size) PTkK;

DCL reqg.tyre RBY1E; an i1tem ot tyove reqa_type %

et Faazeate M oL T

- ; % nitialize jt ani return %

DCL req BASED req_base STRUCT ’

(type BYTEL, size INT); % a pointer to it, %
DCL a_free_base PTR; % The host item will oe %
Dgglggf{:§ BASED g¥t§ee-hase STRUCT
] next R) ejither a_free -free

DCL b.free’base PTR; or p-tree, 3

DCL b.free nASED b_free_nase STRICT
(stze INT, next PTR); % atter allocation its %

OCL rem.size INT; % ls{ze ﬂil} ?P rem.size., %

% Init.req infitielizes th

init_reaq: PRUCEDNIRE (prev.base, host_base) PTy; e’

¥ aAallocated item, %

DCL host.base PTk; % The host fitem,

DCL host BASED host.hase STRUCT

Dézlze INT, nex% PIR)?

prev.base PTk; % The free iteir preceding %

OCL prev BASED prev_base STRICT m fna 3

(size INT, next PTR); % The nhost jtem, $
% Satisty a reuuest: %
rem.size = host.size - req.size;

IF rem_.size >= min_size
THEN D0O); % The nhost fter remains on %

host.size = rem_size; £t the free list, with size %
Fggqs-base = host.base; % reduced to rem_size, &
- ’

ELSE Du;p % The nost {ter has been %
host.slze = rem_size; % exhausted, A loose {tem or %
cons.base = host.next; t notnina remains, and prev %

Egggv.next = cons.pase; % gets 4 new next, %

r

reg.base = host.base + rem_size;

r:q.t:pe = rea_ t:oe. % The allnrared item mnate a 3

reg.slze = req.size; % type and a size, {ts %

RETUKN (req.base); adiress 1is r

Enb inyeredst H % s returned, %

b.tree_base = cons.base; % Base b_free on cons.base, %

a_.free_pase = b_free.next; % A_free is b_tree’s next, %

DO FOREVER: % Consider a_tree, %

IF a.free.size >= req.size
THEN % ... fits, 3
RETURN (init_rea (b. tree base, a.free_hase));
ELSE DO; eees d0es not fit, %
I;H tree base = cons. oase
) $ Full cycle round, %
Rgrunu (NIL); t Cannot satisty request, %
ELSE % A_free is a_tree’s next, %
b_free_pase = a.tree.,next;
END; % Consfider b.tree, %
IF b.free.size >= req.size
THEN ees flts, %
RETURN (inft.rea (a_free_pase, bh_free_base));
ELSE bLO; «eee does not tit, %
I;HE tree base = cons.base
% Full cycle rouna, %
_ RETURN (NIL): $ Cannot satisty réquest. % !
ELSE % A.free is b_tree’s next. % f
a_free_base = p_free.next; i
END;
END;
END cons;
E3
12

" Based on the Lifetimes of Objects.

REFERENCES

List Processing in Real Time on a
4 (April 1978), 280-294.

(Bak 78) Baker, H.G.jr.
Serial Computer. Comm.ACM 21,

(Bay 77) Bays, C. A Comparison of Next-fit, First-fit, and

Best—-fit. Comm. ACM 20, 3 (March 1977), 191-192.

(Bis 77) Bishop, P.B. Computer Systems with a Very Large
Address Space and Garbage Collection. Ph.D. Thesis,

MIT/LCS/TR-178, Cambridge, Mass., May 1977.

(Car 79) Cardelli, L. A General Purpose Memory Management
System. Unpublished Notes, 1979.

(Coh 81) Cohen, J. Garbage Collection of Linked Data Structures.
ACM Computing Surveys 13, 3 (Sept. 1981), 341-367.

(Dij 76) Dijkstra, E.W., Lamport,L., Martin,A.J., Scholten,
C.S., and Steffens,E.F.M. On-the-fly Garbage Collection:

An Exercise in Cooperation. In: Language Hierarchies and
Interfaces. F.L. Bauer and K.Samalson (eds.), Springer-Verlag,
New York, 1976, pp. 43-56. Also appeared in: Comm.ACM 21, 11
(Nov. 1978), 966-975.

(GKS 82) Draft International Standard ISO/DIS 7942, Information

Processing Graphical Kernel System (GKS), Functional Descrip-
NT-5 0/1-87 19R9

tian Varaeinan 7 2 NaArvr

(Knu 73) Knuth,D.E. The Art of Computer Programming, Vol. I:
Fundamental Algorithms. Addison Wesley, Reading, Mass.,

1973.

(Kun 77) Kung,H.T., Song,S.W. An Efficient Parallel Garbage
Collection System and Its Correctness Proof. Department of
Computer Science Report, Carnegie-Mellon Univ., Pa., Sept. 1977.

(Lei 83) Leich,H. Levchanovsky, , Prikhodko,V. Multimikro-
prozessorsystem zur Steuerung eines Intelligenten Graphischen
Terminals (IGT). To appear in: Nachrichtentechnik Elektronik.
Also appeared as: JINR, P10-83-7 {in Russian), Dubna,

1983.

(Lie 83) Lieberman,H., HewittsC. A Real-Time Garbage Collector

Comm. ACM 26, 6 (June 1983),
419-429.
(McC 60) McCarthy,J. Recursive Functions of Symbolic Expres-

sions and Their Computation by Machine, I. Comm.ACM 3, 4
(April 1960), 184-195.

(Nie 77) Nielsen,N.R. Dynamic Memory Allocation in Computer
Simulation. Comm.ACM 20, 11 (Nov. 1977), 864-873.

. 13

.

(Rud 83) Rudalics,M. An Intelligent Graphics Terminal's

Intermediate Database. In: Proc. of Eurographics'83, North-
Holland Pub., Amsterdam, 1983, pp. 383-392.

(Ste 75? Steele, G.L. jr. Multiprocessing Compactifying Garbage
Collection. Comm.ACM 18, 9 (Sept. 1975), 495-508. Corrigendum:
Comm.ACM 19, 6 (June 1976), 354.

(’{‘ho 72) Thorelli,L.E. Marking Algorithms. BIT, Nordisk
Tidskrift for Informationsbehandling 12, 4 (1972), 555-568.

(Wad 76) Wadler,P.L. Analysis of an Algorithm for Real Time
Garbage Collection. Comm.ACM 19, 9 (Sept. 1976), 491-500.

Received by Publishing Department
on August 12, 1983.

14

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8,

including the packing and registered postage

D-12965 The Proceedings of the International School on
the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979. 8.00

D11--80-13 The Proceedings of the International Conference
on Systems and Techniques of Analytical Comput-
ing and Their Applications in Theoretical
Physics., Dubna, 1979. 8.00

D4-80~271 The Proceedings of the International Symposium
on Few Particle Problems in Nuclear Physics.

Dubna, 1979. 8.50
D4-80-385 The Proceedings of the International School on
Nuclear Structure. Alushta, 1980. 10.00

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators, Dubna, 1980.
2 volumes. 25,00

D4-80-572 N.N.Kolesnikov et al. "The Energies and
Half~-Lives for the ¢ - and B-Decays of 10.00
Transfermium Elements"

D2-81-543 Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.

Alushta, 1981 9.50
VIV,1 17017044 FLUCERULNYS O TNEe internatctional Meeting on

Problems of Mathematical Simulation in Nuclear

Physics Researches. Dubna, 1980 9.00

D1,2-81-728 Proceedings of the VI International Seminar
on High Energy Physics Problems. Dubna, 1981. 9.50

D17-81-758 Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Dubna, 1981. 15.50

D1,2-82-27 Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Dubna, 1981. 9.00

D2-82-568 Proceedings of the Meeting on Investiga-
tions in the Field of Relativistic Nuc-
lear Physics. Dubna, 1982 7.50

D9-82-664 Proceedings of the Symposium on the
Problems of Collective Methods of Acce-

leration. Dubna, 1982 9.20
D3,4-82-704 Proceedings of the IV International
School on Neutron Physics. Dubna, 1982 12.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR
Head Post Office, P.0.Box 79 101000 Moscow, USSR

