
OfibBAMHBHHbiM
MHCTMTYT
RABPHbiX

MCCJBAOBaHMM

AYfiHa
'' I

/.' • I

Yv/l Ji3
! , ~r

I Ell-83-393

M.Rudalics•

AN INTELLIGENT GRAPHICS TERMINAL'S

INTERMEDIATE DATABASE

Submitted to Symposium "Eurographics#83"
(Zagreb, Yugoslavia, 1983)

*On leave from Johannes Kepler University,
Linz, Austria.

1983

1 . INTRODUCTION

A database has to provide 151
: (1) A concise and understand

able representation of the state of a system at any time,
(2) efficient and high-level access to information, and (3)
simple and consistent update as the system changes state.
The Intel! igent Graphics Terminal~s Intermediate Database
(INGRID) is an attempt to meet these requirements for the Graph
ical Kernel System - GKS 11

•21 • by defining a minimal set of
data types for realizing on an intelligent graphics workstation:

- A "Workstation Dependent Segment Storage", consisting of
segments, instances of segments, and s functions, where latter
reflect the concept of "pritimives put into a segment".

-A "display list", consisting of representations of seg
ments, and r_functions for displaying graphic primitives.

- Bundles for storing and modifying attribute~ of output
primitives.

AI I objects built of these data types (plus some static
objects I ike the workstation state I ist and the workstation
rlP~rri~tinn t~hlP) rP~i~~ in 0~e ~~~~0~ ~~~~~y. The ~~d=~!;!~g
hardware is an Intelligent Graphics TerminaJ 1

3
1

- IGT, con-
sisting of three modules which may simultaneously access the
memory via a common time-shared bus: (1) A "monitoring module",
which realizes the protocol with the host computer and performs
storage management and segment handling, (2) an "arithmetics
module", which autonomously performs transformations and clip
ping of output primitives,and (3) a "display module", which
contains the drivers for the input devices, and generates output
for a vector display operating in combinational (store/refresh,
write-thru) mode.

Implementation note: All three modules are based on the
18080 series of microprocessors. Arithmetics and display module
are additionally equipped with bit-slice processors, where
the latter has direct access to the common bus. For a detailed
description of all modules, see 13l,

The capabilities of the IGT do not include various line
widths, text in CHAR quality may assume four directions only.
Fill areas. and cell arrays are simulated, neither colours nor
shielding are supplied.

~-·· ' ,1~ :~H~,·.~~~{l

' . . - ~ i¥lU~'i!l)
,. ~ ! >

·n:.

I

2. PRELIMINARIES

For the description of our data types we use the notation
of ELl/6,71• From ELl we borrow the built-in data types (modes):
INT, REAL, BOOL, CHAR, and PTR- a pointer to a (or one of) spe
cified type(s), STRUCT - like PL/I structures or Pascal re
cords, VECTOR - an array with a fixed number of components,
SEQ- an array with an arbitrary number of components, and
ONEOF which selects a type from several alternatives. MODE -
the type "data type'', and EXPR - which constructs a function
that may return a type, serve for defining new data types:

PAIR~ EXPR (M: MODE; MODE)
(VECTOR (2, M));

PAIR is a function which takes a MODE as argument and re
turns a VECTOR of two components of that MODE.

PTR PAIR~ EXPR (M: MODE; MODE)
(VECTOR (2, PTR (M)));

PTR PAIR is a function which takes a MODE as argument and
returns a VECTOR of two pointers to objects of that MODE. Note
that in ELl each pointer is initialized with "NIL", a pointer
to nothing. The mode definition operator is 11

"
11

NDC POINT :: PAIR (REAL);
DC POINT :: PAIR (INT);
NDC RECTANGLE :: PAIR (NDC POINT);
DC_RECTANGLE :: PAIR (DC_POINT);

Implementation note: Operations on data of type INT and PTR
by one process have been made continuous (i.e. indivisible)
relatively to operations by another process, by changing the
hardware mechanism for accessing the common bus. This has become
necessary as the (microprogrammed) display process synchronizes
with the monitoring process only from one refresh cycle to the
next, while other processes tnay intermediately add and delete
elements on the list the display process is working on.

3. OBJECTS

2

An object is a structure

OBJECT:: STRUCT
(HEAD : OBJ HEAD, TAIL : ONEOF (SEGMENT, INSTANCE,
S_FUNCTION~ REPRESENTATION, R_FUNCTION, BUNDLE));

where

OBJ HEAD :: STRUCT
(TYPE : I NT, ALLOC : OBJ _ALLOC);

TYPE is the type of the object. OBJ ALLOC contains informa
tion for the storage allocator, and is-inaccessible to rou
tines which implement GKS functions.

Implementation note: Storage management is based on a real
time two phase (marking/reclaiming) garbage collection algo
rithm. Deallocation has to be required explicitly for segments
and representations. Instances, s functions, and r functions
are collected by the storage -manager as soon as the
associated segment or representation has been deleted. In
serted segments which have been explicitly deleted are col
lected, when all segments they had been inserted to, have been
deleted too. A detailed description of the storage manager ap
pears in '41

3. 1 . Segment

I"' r- ,._ ~~r- U"T"

...JLUitLnt •• ::>IKUL.I

(ID: INT, SEG: PTR PAIR (SEGMENT),
EXPORT : PTR PAIR (INSTANCE),
IMPORT : PTR-PAIR (INSTANCE),
S FUN : PTR PAIR (S FUNCTION),
REP : PTR (REPRESENTATION),
ATT : SEGMENT_ATTRIBUTES);

ID is the identifier (name) of the segment. In INGRID names
(segment names and pick identifiers) are integers > 0. ID = 0
is reserved for echoing purposes. SEG references the previous
and next segment - segments are ordered by their ID~s

(SEGMENT. SEG [l].ID<SEGMENT.ID<SEGMENT.SEG [2].10 is valid
for all segments). EXPORT references the first and last instance
which has been created, when !he segment has been inserted into
another segment. IMPORT references the first and last instance
which has been created when another segment has been inserted
into the considered segment. S FUN points to the first and
last s function associated with the segment. Note that the
firsts functions belonging to a segment have to retain the
setting-of primitives~ attributes at the time of creation
of the segment. REP points to the segment~s representation.

3

SEGMEN~ ATTRIBUTES :: STRUCT
(IRG FLAG : BOOL, TRANSFORMATION : VECTOR (6, REAL),
VISIBILITY : BOOL, HIGHLIGHTING : BOOL, PRIORITY : REAL,
DElECTABILITY : BOOL, REFRESH_MODE : BOOL);

IRG FLAG indicates whether changes of the segment's attri
butes may be performed immediately or have to be deferred until
a regeneration of the display image occurs. This prevents
a segment from appearing twice on the screen, e.g. when exe
cuting the following sequence of functions:

SET DEFERRAL STATE (ASAP, SUPPRESSED);
SET REFRESH MODE (SEG 10, FALSE);
SET VISIBILITY (SEG ID, FALSE);
SET SEGMENT TRANSFORMATION (SEG 10, TRANSFORMATION);
SET VISIBILITY (SEG_ID, TRUE);-

"SET REFRESH MODE" is a- actually our only- function not
contained in ("escaping") the standard. It takes as arguments
the name of a segment to be displayed according to a mode. By
properly setting REFRESH MODE and VISIBILITY, the following
levels of optimization are feasible within our implementation
(assume IRG_FLAG FALSE in all cases):

- REFRESH MODE FALSE and VISIBILITY FALSE: The segment is
not displayed, no representation has been created for it.Never-

thPlPc:;c:; thP ~~~~~~! 2::!:t: ~:--; ~~ . .:. 'n'ui·~:>Lai...iull Ut=JJt!rH..ienL
Segment Storage and may be used by the INSERT function. Under
these circumstances the Workstation Dependent Segment Storage
behaves like an extension of a Workstation Independent Segment
Storage.

- REFRESH MODE FALSE and VISIBILITY TRUE: The segment is
displayed in-store mode, thus economizing refresh time and
memory space, as the segment's representation may be deleted
immediately after the display processor has proceeded it.

- REFRESH MODE TRUE and VISIBILITY FALSE: The segment is
not displayed, but may be redisplayed at once, i.e. without
newly evaluating it. Refresh time is kept low, however the
operator has to interact with the application program for se
lecting the segments he wants to see.

- REFRESH MODE TRUE and VISIBILITY TRUE: The segment is
permanently refreshed, this results in high refresh time and
memory requirements.

Primitives out of segment are displayed in store mode.

4

3.2. Instance

An instance is created when a segment is inserted into the
open segment. Instances are not explicitly accessible by GKS
functions.

INSTANCE :: STRUCT
(SEG : PTR PAIR (SEGMENT),

SOURCE INS: PTR PAIR (INSTANCE),
TARGET-INS : PTR-PAIR (INSTANCE),
ATT : INSTANCE_ ATTRIBUTES) ;

SEG points to the target segment, i.e. the segment open
at the time of invocation of the INSERT function, and to the
source segment, i.e. the segment specified in the parameter
list of the INSERT function. SOURCE INS references the pre
vious and next instance of the source segment, TARGET INS the
previous and next instance created when a segment is inserted
into the target segment.

INSTANCE ATTRIBUTES :: STRUCT
(TRANSFORMATION : VECTOR (6, REAL),
CLIPPING RECTANGLE : NDC RECTANGLE);

TRANSFORMATION contains the transformation, used as parame-
• r _ • f I lit"' r- "'T" r , • 1 , 0 1 • I 0 , I , I r
\..\.-1 lUI LIIC:. ll'f..JL.I\1 IUIII,..LIUII' IIIUILij...JIIICU WILli Lilt:: lldii::>IUIIIId-

tion of the source segment valid at the time of insertion.
CLIPPING RECTANGLE is the clipping rectangle valid at the time
of insertion and replaces all clipping rectangles in the source
segment (and all segments inserted into the source segment)
every time the target segment is evaluated.

3.3. S Function

S_functions are data structures for "primitives put into
a segment".

S FUNCTION :: STRUCT
Ts FUN : PTR (S FUNCTION), CODE : ONEOF

(S CLIPPING RECTANGLE, S POLYLINE, S POLYMARKER, S TEXT,
S FILL AREA~ S CELL ARRAY, S GOP, S POLYLINE INDEX~
S-LINETYPE, S POLYLINE COLOUR INDEX~ S POLYMARKER INDEX,
S-MARKER TYPE~ S MARKER SIZE SCALE FACTOR, -
S-POLYMARKER COLOUR INDEX, S-TEXT INDEX,
S=TEXT_FONT_AND_PRECISION, S-CHAR-EXPANSION_FACTOR,

5

S CHAR SPACING, S TEXT COLOUR INDEX, S CHAR VECTORS,
S-TEXT-PATH, S TEXT ALIGNMENT~ S FILL AREA JNDEX,
S=FILL=AREA_COLOUR_INDEX, S_ASPECT_SOURCE_FLAGS,
S PICK IDENTIFIER));

S_FUN points to the next s_function associated with the
same segment.

6

S CLIPPING RECTANGLE :: NDC RECTANGLE;

S POLYLINE :: STRUCT
TNR OF PO I NTS : I NT, COORDS OF PO I NTS SEQ (NDC_POINT));

S POLYMARKER :: STRUCT
TNR OF POINTS: INT, COORDS OF POINTS: SEQ (NDC_POINT));

S TEXT :: STRUCT
TSTARTING POINT: NDE POINT, LENGTH OF STRING

CHAR STRING : SEQ (CHAR));

S FILL AREA) STRUCT

INT,

TNR_OF_POINTS : INT, COORDS OF POINTS SEQ (NDC_POINT));

S CELL ARRAY :: VECTOR (3, NDC POINT);

S GDP :: STRUCT
(,...nn ,,..,...,,"T"Ir-o.-,.., ,,,.._ ••- -- --··---
\UVI ILIL..Illlr tr::..f\ ; 1n1, IH\ Ui t"UINI::> :

COORDS OF POINTS : SEQ (NDC=POINT));
IN I,

S POLYLINE INDEX : INT;

S LINETYPE :: INT;

S POLYLINE COLOUR INDEX I NT;

S POLYMARKER INDEX: INT;

S_MARKE~TYPE :: INT;

S MARKER SIZE SCALE FACTOR :: REAL;

S POLYMARKER COLOUR INDEX :: INT;

S TEXT INDEX :: I NT;

S TEXT FONT AND PRECISION :: STRUCT
TFONT-: INT, PRECISION :VECTOR (2, BOOL));

S CHAR EXPANSION FACTOR REAL;

S CHAR_SPACING :: REAL;

S TEXT COLOUR INDEX :: INT;

SCHAR VECTORS :: PAIR (NDC_POINT);

The character height and width vectors as described in the
GKS metafile section (see also 4.5.5 in/11).

"2 /,

S TEXT PATH ::VECTOR (2, BOOL);

S TEXT ALIGNMENT :: STRUCT
THORIZONTAL ALIGNMENT : VECTOR (2, BOOL),

VERTICAL ALIGNMENT :VECTOR (3, BOOL));

S FILL AREA INDEX : : I NT;

S FILL AREA COLOUR INDEX I NT;

S ASPECT SOURCE FLAGS :: VECTOR (10, BOOL);

S PICK IDENTIFIER:: INT;

o-~---.._~
,,.._..t'',.J'-"11\..0 L lVII

Segments are displayed with the help of representations.

REPRESENTATION :: STRUCT
(SEG: PTR (SEGMENT), REP : PTR PAIR (REPRESENTATION),
R FUN : PTR PAIR (R FUNCTION)J;

SEG points to the represented segment, REP points to a pre
vious and next representation. Representations are ordered
according to the descending priority of the associate~ segment
(for al 1 representations holds:

REPRESENTATION.REP [1].SEG.ATT.PRIORITY > =
REPRESENTATION.SEG.ATT.PRIORITY> =

REPRESENTATION.REP [2].SEG.ATT.PRIORITY). This has
the nice advantage, that for pick input the priority of the
associated segment need not be investigated, as any picked pri
mitive always belongs to the segment with the relative highest
priority the display process has encountered so far. R FUN points
to the first and last r_function belonging to this represen
tation.

7

3.5. ILfunction

R functions are 11 commands" for the display process.

R FUNCTION :: STRUCT
TR FUN : PTR (R FUNCTION, REPRESENTATION), CODE : ONEOF

(R POLYLINE, R-POLYMARKER, R TEXT, R STROKE TEXT,
R FILL AREA, R-CELL ARRAY, R-GDP, R POLYLINE BUN,
R-LINETYPE, R POLYLINE COLOUR BUN, R POLYMARKER BUN,
R-MARKER TYPE: R MARKER SIZE,-R POLYMARKER COLOUR BUN,
R-TEXT BUN, R TEXT FONT~ R TEXT-COLOUR BUN~ -
R-CHAR-S I ZE, R CHAR DISPLACEMENT, R TEXT DIRECT I ON,
R-FILL-AREA·BUN, R FILL AREA COLOUR-BUN,
~ASPECT_SOURCE_FLAGS, R_PICK_IDENTJFLER));

R FUN points to the next r function associated with the
same-representation. The last-r_function associated with
a representation contains a back pointer to the representation
itself.

8

R POLYLINE :: SEQ (DC_POINT);

~POLYMARKER :: SEQ (DC_POINT);

R TEXT :: STRUCT
7CT/\DTI~If"' n"lt.IT ~''" ,.. I""''' .. -\ \
\- 1 1 "~I I o• \ol I \J I 11 I

1"'\f" nn 1 ''"T'
uu_t v111 1, \.riiMI\ ..J II\ 11'4U .:>C.IJ. \ l..nl-\1\)) ;

R STROKE TEXT :: SEQ (DC_POINT);

R_FILL_AREA :: SEQ (DC_POINT);

R CELL ARRAY :: SEQ (DC POINT);

R GDP :: STRUCT
TGDP IDENTIFIER : INT, NR OF POINTS : INT,

COORDS OF POINTS : SEQ (DC POINT));

R POLYLINE BUN :: PTR (POLYLINE_BUNDLE);

R_LINETYPE :: INT;

R POLYLINE COLOUR BUN :: PTR (COLOUR_BUNDLE);

R POLYMARKER BUN :: PTR (POLYMARKER BUNDLE);

R MARKER TYPE I NT;

R MARKER SIZE I NT;

'I
J

J

R POLYMARKER COLOUR BUN :: PTR (COLOUR_BUNDLE);

R TEXT BUN :: PTR (TEXT_BUNDLE);

R TEXT FONT :: INT;

R TEXT COLOUR BUN :: PTR (COLOUR_BUNDLE);

R CHAR SIZE : : I NT;

R CHAR DISPLACEMENT :: DC POINT;

The position of a 11 next11 character relative to the position
of a 11 previous 11 character.

R TEXT DIRECTION ::VECTOR (2, BOOL);

R FILL AREA BUN :: PTR (FILL_AREA_BUNDLE);

R FILL AREA COLOUR BUN :: PTR (COLOUR_BUNDLE);

R ASPECT SOURCE FLAGS :: VECTOR (8, BOOL);

R PICK IDENTIFIER : : I NT;

lmplementat~on note: One DC POINT is encoded in four bytes
(32 bits). As the maximum size-of our display screen is
4096x4096 discrete addressable points - resulting in 24 bits
actually addressable space for one DC POINT - encoding
a DC POINT leaves eight bits free. Two of them are presently
used:

- One bit is employed in R POLYLINE, R STROKE TEXT,
R FILL AREA and R CELL ARRAY to indicate whether the line lead
ing to-a point has to be displayed with the required intensity
or with intensity zero, i.e. invisible.Invisible lines may ap
pear as a result of the clipping process.The same bit is used in
R POLYMARKER for the indication whether displaying a marker at
this point has to be suppressed for MARKER TYPE not equal one
(i.e. not the smallest displayable dot). This provides against
the unpleasant effect of 11partially visible" markers appearing
wrapped around, after dynamically modifying the MARKER TYPE
entry of a polymarker bundle.

- One bit is used to indicate the last DC POINT of each
R POLYLINE, R POLYMARKER, R STROKE TEXT, R FILL AREA, and
R=CELL_ARRAY ,-and the last CHAR in-R TEXT.CHAR STRING.

9

The pointers in R POLYLINE BUN, R POLYMARKER BUN, ... are
interpreted by the display process a~ calls of the corres
pondent bundle. After copying the values of "realized" compo
nents into its internal registers, the display process con
tinues with R FUNCTION.R FUN.

3.6. Bundle

Bundles are specific GKS entities. In INGRID settable bund
les are created dynamically: Whenever a SET .. INDEX or a
SET .. REPRESENTATION function is issued, referencing a bundle
not existing so far,a new bundle with the appropriate index is
constructed. Once created, bundles may not be deleted until
the workstation is closed.

BUNDLE :: STRUCT
(HEAD : BUNDLE HEAD, TAIL : ONEOF (POLYLINE BUNDLE,
POLYMARKER BUNDLE, TEXT BUNDLE, FILL AREA BUNDLE,
COLOUR BUNDLE)); - - -

AI 1 bundles have a header,

BUNDLE HEAD : STRUCT
(INDEj: INT, STORE_FLAG : BOOL);

vv:,;._;, '-UIILdill~ dll ri~Ut.i\- ounotes ot the same type are ordered
according to this INDEX - and a STORE FLAG which indicates
whether the associated bundle has been actually (i.e. not all
output primitives using this bundle have been clipped to "non
existence") used for store mode output since the last update.
When a SET .. REPRESENTATION function modifies at least one
of the bundle's components and the associated STORE FLAG is
TRUE, a new frame action becomes necessary. With every clearing
of the display surface the STORE FLAGs in all bundles are reset
to FALSE. Bundles may be of one of the following types:

POLYLINE BUNDLE :: STRUCT
(BUN : PTR (POLYLINE BUNDLE), LINETYPE : INT,

INTENSITY : PTR (COLOUR_BUNDLE));

BUN is a pointer to the next poly! ine bundle, LINETYPE is
the realized 1 inetype, INTENSITY is a pointer to the colour
bundle containing the realized poly! ine intensity.

10

POLYMARKER BUNDLE :: STRUCT
(BUN : PTR (POLYMARKER BUNDLE), REFRESH FLAG
MARKER TYPE : INT, MARKER SIZE : INT,
I NTENSlTY : PTR (COLOUR_BUtWLE)) ;

BOOL,

r

•

BUN points to the next polymarker bundle, REFRESH FLAG indi
cates whether this bundle has been actually used for-refresh mode
output.When this flag is TRUE and a SET POLYMARKER REPRESENTATION
function modifies the MARKER SIZE component of the bundle,
REFRESH FLAG is reset to FALSE and a reevaluation (no
implicit regeneration) of all refreshed segments is per
formed. MARKER TYPE is the realized marker type, MARKER SIZE
is the realized-marker size, INTENSITY is a pointer to the-co
lour bundle containing the realized polymarker intensity.

TEXT BUNDLE :: STRUCT
(BUN : PTR (TEXT BUNDLE), REFRESH FLAG : BOOL,

FONT : INT, PRECISION :VECTOR (2, BOOL),
CHAR SPACING : REAL, CHAR EXPANSION FACTOR : REAL,
INTENSITY : PTR (COLOUR_BUNDLE)); -

BUN is a pointer to the next text bundle, REFRESH FLAG indi
cates whether this bundle has been actually used for-refresh mode
output.When this flag is true and a SET TEXT REPRESENTATION
function modifies at least one of the bundle's components
PRECISION, CHAR SPACING or CHAR EXPANSION FACTOR,
REFRESH FLAG is reset to FALSE and-a reevaluation of all re
freshed-segments is performed. As neither character spacing
nor character expansion factor may be evaluated exactly in all
cases, this reevaluation will not always cause a visible effPrt
on the display image. FONT is the realized text font of this
bundle, PRECISION is the text precision required for this
bundle. CHAR SPACING is the character spacing required for this
bundle and CHAR EXPANSION FACTOR is the required character ex
pansion factor for this bundle. INTENSITY is a pointer to the
colour bundle containing the realized text intensity.

FILL AREA BUNDLE :: STRUCT
(BUN: PTR (FILL AREA BUNDLE),

INTENSITY : PTR-(COLOUR_BUNDLE));

BUN is a pointer to the next fill area bundle, INTENSITY is
a pointer to the colour bundle containing the realized fil 1
area intensity.

COLOUR BUNDLE :: STRUCT
(BUN; PTR (COLOUR_BUNDLE), INTENSITY : INT);

BUN is a pointer to the next colour bundle, INTENSITY is
the calculated (realized) intensity of this bundle.

ll

4. CONCLUSIONS AND FURTHER EXTENSIONS

An intermediate database of a graphics terminal with suf
ficient capabilities for transforming and clipping output pri
mitives and dynamically modifying their attributes may consist
of a few building blocks. A straightforward implementation of
INGRID, comprising memory management and object handling (with
out transformation and clipping), written in PL/M-80 on an
lntellec (MDS) Development System, required about 8K byte of
8080 object code.

Without great efforts a full implementation of the Graphical
Kernel System may be (at least conceptually) accomplished:
Apart from the realization of a metafile and a Workstation
Independent Segment Storage (both may be simulated with existing
data types by adding some flags to the definitions of segments)
and a modification of bundles - presently bundles do not con
tain "set" components which are needed by GKS' INQUIRE func
tions -we need normalization transformations and an event
queue: Normalizations should be created when they are referenced
for the first time, a method we have already used for bundles.

NORMALIZATION :: STRUCT
(NUMBER : I NT, NORM : PTR PAIR (NORMALIZATION),
WINDOW : WC_RECTANGLE, VIEWPORT : NDC_RECTANGLE);

NUMBER contains the transformation number of the normal iza
tion tran~form~tinn. NORM i~ ~ n~ir nf nninTorc ~n n~h~~ n~~-

ma]izations (normalizations wil'l be ord~~ed-by-d~~c~~dl~g~~i
ority), WINDOW and VIEWPORT are window and viewport of the
normalization transformation, where:

WC RECTANGLE :: PAIR (WC POINT);
WC-POINT :: PAIR (REAL);-

An event queue is a linked list of events:

EVENT :: STRUCT
(EV : PTR (EVENT), SIM FLAG : BOOL, REPORT : ONEOF

(LOCATOR REPORT, STROKE REPORT, VALUATOR REPORT,
CHOICE_REPORT, PIC~REPORT, STRING_REPORT));

EV is a pointer to the next event - events are ordered by
increasing event times, SIM FLAG a flag indicating the occur
rence of a simultaneous event: When SIM FLAG is TRUE the next
event should be considered as simultaneous to the present event.

Events are not to be confused with prompt and echo types
for input devices. Latter are realized with our basic data
types. So, a realization of STROKE echo type 11 311 requires one

12

J,

segment with s polymarkers (which are transformed at each work
station updateT and one representation with r_polymarkers.
CHOICE echo type "5" is realized with the help of a segment
with absolute highest priority, STRiNG echo with the help of
an r_text, initially filled with spaces.

LOCATOR REPORT :: STRUCT
(NORMALIZATION_NUMBER : INT, POSITION

STROKE REPORT : : STRUCT

WC_POINT);

(NORMALIZATION NUMBER, NR OF POINTS : INT,
POINTS IN STROKE : SEQ (WC~POINT));

VALUATOR REPORT :: REAL;

CHOICE_REPORT :: INT;

PICK REPORT :: STRUCT
(STATUS : BOOL, SEGMENT NAME : INT,
PIC~IDENTIFIER : INT)7

STRING REPORT :: STRUCT
(STRING_LENGTH : INT, STRING

A[KNOWLEDGEMENTS

SEQ (CHAR));

The author wishes to thank V.Prikhodko for his constant
encouragement, and A. and H.Leich, W.Mikut and B.Naumann for
their constructive comments on this project. Material support
has also been provided by B.Buchberger and J.Weiss.

REFERENCES

1. Draft International Standard ISO/DIS 7942, Information
Processing Graphical Kernel System (GKS), Functional
Description, Version 7.2, Nl-5.9/1-83. Nov. 1982.

2. FORTRAN Interface of GKS 7.2, Nl-5.9/40-82. Erlangen,
Oct. 1982.

3. Leich H., Levchanovsky V., Prikhodko V. Multimikropro
zessorsystem zur Steuerung eines Intel l igenten Graphischen
Terminals (IGT). To appear in: Nachrichtentechnik Elektro
nik. Also: JINR, P10-83-7, Dubna, 1983 (in Russian).

4. Rudal ics M. A Workstation Dependent Segment Storage Ma
nager. Submitted to: 5th Conference on Mathematical Model
ling, Programming and Mathematical Methods for Solving
Physical Problems. Dubna, 1983.

13

5. Smith J.M.S., Smith D.C.P. Database Abstractions:
Aggregation. Comm.ACM 20,6 (June 1977), 405-413.

6. Wegbreit B. The ECL Programming System. Proc. AFIPS 1971
FJCC, vol.39, AFIPS Press, Montvale, N.J., 1971, pp.253-262.

l Wegbreit B. The Treatment of Data Types in Ell. Comm.
ACM 17,5 (May 1974), 251-264.

14

Received by Pub! lshing Department
on June 10,1983.

WII,L YOU FILL BLANK SPACES IN YOUR LIBRARY?
You ean receive by post the booke listed below. Prices - in US I,

D-12965

011-80-13

04-80-271

04-80-385

induding the packing and registered postage

The Proceedings of the International School on
the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979.

The Proceedings of the International Conference
on Systems and Techniques of Analytical. Comput
ing and Their Applications in Theoretical
Physics. Oubna, 1979.

The Proceedings of the International Symposium
on Few Particle Problems in Nuclear Physics.
Oubna, 1979.

The Proceedings of the International School on
Nuclear Structure. Alushta, 1980.

Proceedings of the VII All-Union Conference on
Charged Particle Accelerators. Oubna, 1980.
2 volumes.

04-80-572 N.N.Kolesnikov et al. "The Energie!f' and
Half-Lives for the a - and .8-0ecays of
Transfermium Elements"

02-81-543 Proceedings of the VI International Conference
on the Problems of Quantum Field 'l'heory.
Alushta, 1981

010,11-81-622 Proceedings of the International Meeting on
YrooJ.ems OJ: Mat:nemat:J.CaJ. ::.J.mu.Lat:J..on .1.n NUCJ.ear

8.00

8.00

8.50

10.00

25.00

10.00

9.50

Physics Researches. Oubna, 1980 9.00

01,2-81-728 Proceedings of the VI International Seminar
on High Energy Physics Problems. Oubna, 1981.

017-81-758 Proceedings of the II International Symposium
on Selected Problems in Statistical Mechanics.
Oubna, 1981.

01,2-82-27 Proceedings of the International Symposium
on Polarization Phenomena in High Energy
Physics. Oubna, 1981.

02-82-568 Proceedings of the Meeting on Investiga
tions in the Field of Relativistic Nuc
lear Physics. Oubna, 1982

D9-82-664 Proceedings of the Symposium on the
Problems of Collective Methods of Acce
leration. Oubna, 1982

03,4-82-704 Proceedings of the IV International
School on Neutron Physics. Dubna, 1982

9.50

15.50

9.00

7.50

9.20

12.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR

Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES

OF THE JINR PUBLICATIONS

Index Subject

1. High energy experimental physics

2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
.. Nttrl 1'\'::111.,.. ron",..+- ... ,.---··

••-- • ..,__. -'t-"'-""' ""'' \.1.,)\.oVtJJ

7. Heavy ion physics
8. Cryogenics
9. Accelerators

__ ...
·-- ...J ~ - -I - -· •

UIIU IOU IU\..IIt:llll :>l.f Y

10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry

13. Experimental techniques and methods
14. Solid state physics. Liquids

15. Experimental physics of nuclear reactions
at low energies

16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Pyp;a.rmq M.
llpoMe)KyToqHafl 6a3a p;aHHhJX llHTeJIJieKTYaJlbHOro
rpa~HqecKoro TepMHHaJia

El 1-83-393

llpoMe)KyToqHaH 6a3a p;aHHhiX HHTeJIJieKTYaJibHoro rpa~HqecKoro
TepMllHaJia yrrpaBJIHeT XpaHeHHeM, BOCCTaHOBJieHHeM ll MaHlliiYJifl~HeH

OIIHCaHHH rpa~HqecKHX 06'beKTOB B rraMHTlf TepMHHaJia. 0Ha 06'bep;H
HfleT B op;HOH 06llleH rraMHTH rrpep;CTaBJieHllfl 11rrpH60pHo-3aBHCHMafl
6aga p;aHHhiX p;Jifl cerMeHTOB 11

, OIIHCaHHafl B CTaHp;apTe fKC, ll
"p;ucrmeliHhiil: cnHcoK" p;JIH TepMHHana, o6ecrrequBaiOlllero rrocTpoeHue
rpa~HqeCKHX rrpHMllTHBOB Ha 3KpaHe BeKTOpHoro p;llCJIJieH B 3aiTOMH
HaiOllleM u pereHepaTHBHOM pe)KHMax.

Pa6oTa BhJJIOJIHeHa B J1a6opaTopHu Bbl'mCJiuTeJihHoli TeXHHKH
H aBTOMaTu3a~uH OHHH.

npenpHHT 06beAHHeHHOrO HHCTHTYTa RAePH~X HCCfleAOBaHHH. ~y6Ha 19~3

Rudalics M.
An Intelligent Graphics Terminal~s
Intermediate Database

El 1-83-393

The Intelligent Graphics Terminal's Intermediate Data
base (INGRID) handles storage, retrieval and manipulation
of the description of graphic items in the memory of an
Intelligent Graphics Terminal. INGRID combines on one sto
rage level the concepts of a Workstation Dependent Segment
Storage, as described in the Graphical Kernel System (GKS),
and a display list for a workstation providing output of graph
ic primitives on a vector display in store and refresh mode.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

