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1. UNFOLDING PROBLEMS AND INTEGRAL EQUATIONS

Unfolding problems arise in measuring the density u(x) of
some quantity x when only the distorted (smeared) distribution
of x can be observed, x may be one dimensional or higher dimen-
sional and x may be a random variable or a certain physical
quantity which can be described by a density function u(x). Since
the principles of the problems which are considered here are
always the same independently of the dimension of x, in the fol-
lowing, for convenience, x 1is always considered one dimensio-
nal and taking values between O and 1.

A common unfolding problem is the following. Let x be a ran-
dom variable with probability density function u(x). In a great
number of cases a real measurement of x does not yield an ideal
sample of the x-values from the density u(x) but one has dis-
torted values y with a density function v(y) where the distor-—
tion is caused by some measurement noise w which is indepen-
dent of x and which has the probability density p(w). This si-
tuation leads to the well-known problem of the solution of the
convolution integral equation of the first kind.

Very often, however, the independent noise model is not ge-
neral enough such that more complicated equations than the con-
volution one have to be solved. First of all the measurement
distributions can depend on x such that p becomes the function
of two variables and the equation relating the distributions
u,v and p generalizes to the Fredholm”s integral equation of
the first kind:

1
V(Y)=0f p(x,y)u(®dx, 0<ygt, ey

where p(xy)>0for 0¢x,y <1.Secondly, it can happen that no
y —value is measured even if an x-value occurred. This fact
may be expressed by the function

1
A¥ = [ p(x,y)dy, 0gxgl (2)
0
for this, in this case, the inequality
0 A1, 0<x g1 (3)

holds. The function ‘A is called the acceptance function of the

experimental device r?preseﬂted‘invour*case”by p(x,y). Suppose
™~
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that

A< (4)
for all the x in some interval in [0,1].It then follows from (1)
to (4) that

1 11 1

f V(X) dy = [ [ p(xy)u(x)dxdy = [ A(®x) u(x)dx<1 (5)

0 00 0
if it is assumed that the order of integration in the double in-
tegral in (5) can be changed. The occurrence of this inequality
also causes problems in practice.

Two more problems can be considered. The density v can only
be measured with some error and often the function p is not exact-—
ly known. For instance, in high energy physics, either p can
only be estimated by Monte-Carlo. simulation or due to compu-
ter cost, for an assumed uy the corresponding Vo can be estimated
only. Another well-known problem comes from the fact that the
problem of solving (1) for given p and v is an ill-posed mathe-
matical problem. That means, for small changes in v large changes
in u may be caused. Many different proposals to solve equation
(1) have been made ranging from series solutions over least squa-
re solutions to regularization. Since there is no unique method
which solves the problem in general, sometimes different methods
may have to be tried. This implies that it is important to have
different methods available.

In this letter an iterative method is proposed whose conver-
gence properties have not yet been proved mathematically. How-
ever, numerous cases of a limited class of equations (1) with
measurement noise on vand p have shown that good results may be
obtained in practice.

In section 2 the class of equations (1) is given to which
the iterative method is applied together with the iteration
scheme. In section 3 numerical examples are presented.

2. THE METHOD OF CONVERGENT WEIGHTS

In order to construct an iteration for solving Eq. (1) the
following assumptions are made to define the class of equations
to which the iteration is applied.

(2) The kernel function p(xy) is non-negative and continuous
on [0,11x[0,1] except possibly isolated integrable singula-
rities.

(b) The acceptance function ‘A (x)is positive on[0,1]

1
0 <A(® = [ p(xy)dy, O0gLx < 1. (6)
0
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(c)
1
gy)= [ p(xy) f(9dx > 0, 0gyx 1 7)
0 .

for every integrable positive function f(%).
(d) For a given v=Vy) which is assumed to be positive and con-
tinuous on [0,1] the integral equation

1
v(y) --of p(xy)u(xdx, O0gy<1 (8)

has a unique continuous solution u=u(x) for 05 x < 1.
(e)
11 11
Of({ p{xy)u(x)dxdy = Of({ P (xy) u(x) dydx. (9)

Before constructing the iterative scheme a consequence of the
above assumptions will be discussed. Suppose one has a series of
iterative approximations{u(ﬂ(ml€ ., of the exact solution u(x).
Using Eq.(7) one can calculate v“ky) the iterative right-hand
side

1
. A
v (5 - pxy)uP(max, ogyst.

(10)
. (j . j

Introducing 5! (x), the difference of u(x} and u”)(@, the follow-

ing equation can be found

1 .
Lo Vo) = pxy) 87 (max, 0syst, an

r (y)
where

v{(y) .
vi(y)

Eq,(ll).?roves that constructing a convergent to the unity se-
ries {rU l: under the assumptions (c) and (d% one will have
a convergent series of the corresponding {u”'i: with the limit
u” = u(x) being the solution of Eq.(8).

Forming such an iteration at first we transform the original
equation to one having a normalized kernel. It is easy to do

via introducing the so—called importance function

8" 0=u@-uv" (®  amd Py -

z2(X)= A(® u(x)- (12)
It then follows from (1), (2) and (6) that
1
V(y)‘-of q(x,y)2(x)dx, 0<y <1, (13)
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where
p(xy)
A

and q(x,y) is normalized to the unity. Eq.(13) has the property
of normalization

q(XDY) bl

11 1
IIV(y)dy = [ [ a(xy) z(x)dxdy = [ z(x)dx. (14)

0 0.0 0

This normalization may have a regularization effect on the ite-
rative solution, so Eq. (14) is used as a motivation for re-
questing to satisfy Eq.(14) by all theiterants. This requirement

implies the following form of the iterational equation. Choosing
a starting function u'0 (¥) one can calculate r(m(Y) as
D (y) = 2L 0sys1
(0)(}’)
and z(m(m as
P xy=a®u®, 0gx g1
and then the further iterants z(ﬂ(@ will be given by
. 1 . : .
z D ®=f Py a2 @, ogxgl, (15)

0

where equations (7) (13)were used and u(ok@ was supposed to be
arbitrary but satisfying assumptions (a)-(d). 0

Eq. (15) "has two characteristic+features. All the 00 sa-
tisfy the normalization requested for the exact’ solutlon z(%)
by Eq.(14) and the definition of q(xy) in (13) guarantees the
convergence- of z(l(m in the cases when r ](y) » 1.The reason
of choosing the name the Method of Convergent Weights (MCW) ‘for
this iteration was the central role of the convergence of the
series () to the unity. The ratio r!) 1is called a weight be-
cause it guarantees as a weighting functlon the satlsfylng of
the normalization (Eq.(14)) until the series of z() has not
been converged.

The basic equation of the iteration can be transformed to

the following one

: Lo (4
Wy o 7 amdyu (), 0<x <1

0

(16)

U S

which is equivalernt to
(»

W0 w1s F7 P (, an

where

G 1 @
F7 g v&-v (y-—)-—Q(X.y)dy.

0 (’)(y)

. . . (i) .
One can see that the multiplicative operator ¥ ! depends on its
arguments via an integral of the relative error of the iterative
right hand side
(j) 1
M—L»; Bf = [ p(xy)f(x)dx.
Bu 0

Eqs. (16) and (17) are equivalent in the case of exact values
but in their numerical realization Eq.(17) has advantages giv-
ing higher stability against the rounding errors and those of
the discretizdtion of the integrals.

3. TEST CASES

Two test cases will be presented to demonstrate the conver-
gence and the stability of the MCW. Both the cases are created
on the analogy of real physical experiments.

Case 1

In this test case we demonstrate the solution of the one-
dimensional smearing problem by the example of a purified nume-
rical model of a real experimental problem Y. The problems aris-
ing from the finite experimental resolution and the imperfect
acceptance of a real experiment we modelize by a Fredholm”s in-
tegral equation of the first kind:

V() = L0, (), (0, (n
where )
a=4, b=24
u, () = 1600/ x” *
P, (£,y)= [:‘A—B(5~x>2-élck exp [~D, (x~%) Ix
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x exp{-E (x—y)2}F‘

A =12
\

Xx<5b

1 for
B =
0.0023 for others

Cy =0.4; 0.3; 0.2

D, =5/ 51 ’
X =7:9;13

E = 10

for | x—-y| <0.08x 4+0.88

1
{ 0 for others

and the right hand side v (y)
ration (see Fig.l).

0t We have chosen 50 equidis-

uuk tant coarse mesh points for dis-
cretizing of functions of one
variable. The pseudo~experimen-—
tal errors of the RHS we had
from the following expression:

is given by straightforward integ-

V,=v (x)(1+60,p),

(T2)
i=12,..,50,

10! b
where: ¢, are equally distributed
random numbers from the interval
-[-1,1] and p=0.05. /

The' possible errors of the
kernel function we have modeli-
zed in the following mahner:

pi,k = P, (xi'yk)(1+6i,k5)'
(T3)

i, k=1,2,..50,

.
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Fig.l. Functions u,(¥) and
v, (y) for the Case I.

where

P = max (0.5, (1+py]i-k|)

-~
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Fig.2. Fluctuations in the
iterated solution in the case
of +57 error in the RHS and applying smoothing transforma-
+(5450)7 error in the kernel tions to the kernel function.
function. ;

Fig.3. Changes in the stabili-
ty of the iterated solution.

The discretization of Eq. (T1) has been provided using the Simp-
son”s quadrature with 20 fine mesh intervals in each coarse one.
The resulting quadratic system of linear equations has been
solved by using the MCW and thé standard Seidel”s method, the
later used for comparison.

For the purpose of illustrating the application of the MCW we
tested the convergence in the ideal case, i.e., with errorless
p (x,y) and v (y) but having the errors of the discretization
(Fig.1). We started with a trial function 1'% constant. The re-
lative error of the iterant was found to converge to within +0.57
in 7 iterations. The stability of the iteration has been proved
in 1000 iteration steps in which case the iterant reminded in
the +0.5% error corridor. -~

Modelizing the experimental errors as formulated above we have
got the following results. In the case of ¥V and p, the result
from | iteration is shown in Fig.2 by full line, while the case
of V and P is illustrated by triangles. The parallel computation
by the Seidel’s iteration leads to a solution with fluctuations
in a range of +100% for the case of v and p.

The stability of the MCW can be improved by two transforma-
tions of the basic equations both having smoothing character. At
first one can transform the diﬁcretized system of linear equa-

7



tions to the normalized one multiplying by the transposed mat-
rix of the system. As a second step one can apply a proper po-
wer function (w1th an exponent 0<k <1) for substituting r(ﬁ(m
by [+{? (1% in Eq. (16). Slowed down the iteration one has

to choose a more realistic trial function than u'® = const. The
change in the stability of the MCW has been 1nvest1gated in

7 iterations choosing

I3

0% = 1100/ x2(1+ 2:5in (0.2 x —0.8) ‘

which differs from u,(x¥) in a range of +(20#00)7%. The smoothlng

properties of the above transformations forx=1/2 are shown in
Fig.3.

Pr
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Case 2

[Frantiifasusi S

For the second test case we have chosen a typical ill-posed
problem. Our ‘test case is based on that of the monography of
Tikhonov and Arsenin’/?¥.

It can be constructed the following mathematical experiment
on the analogy of the unfolding procedure of irradiation”s
spectra,Suppose that the physical process under discussion led
to solving the following integral equation:

7 vwrme e my wramees 3

b Al
v, (y) = [ P (®xyu (®dx, (T4)
where E
a=0 b =10 i

u, (D =(1-exp { —A(b-

2
2
+ £, G omtongenf ~

with

B =0.5

Ck =6;86

.
»

D, =3:4

—— T v

Xk-3;7

P, (xy) = (1 =)y (y=%) ;

)/(Z) :{
1

\ -
1 for z>0

0 for others

and v (y) is given by straightforward integration (see Fig.4).
=L,
u _'J‘ K=5%00
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Fig.5. Comparison of fluctia-
tions excited by +57% error of
the RHS for large numbers of
iterations.
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Fig.4. Functions u,(x) and
v, (y) for the Case 2.

The discretization has been provided as in Case 1. The errors
of the RHS have been modelized by the formula given in ref./%:

-a

vi = V(yi )(1 +

where #; are random numbers from the interval [~1,1] and p =0.05.
Due to the integral in Eq. (16) the convergence of the MCW

is extremely slow for this test case which gives good possibili-

ties of investigating the numerical stability of the iteration.

Foxr the ideal case (p=0) the result of 4000 steps is presented

in Fig.5 in comparison, with the exact solution. Choosing p=0.05

one can see (Fig.5) that the characteristic fluctuations of u(k

appear enough late for distinguishing real peaks from ones aris-

ing due to errors of the RHS. p

4., CONCLUSIONS

Introducing the acceptance and the importance functions re-
lated to the kernel function of Fredholm’s intégral equations
of the first kind has led to the construction of an iterative
procedure which seems to be satisfactorily stable against the
errors of the RHS and the kerfiel function. The convergence 1is
controlled by the integral of the relative error of the iterated
RHS that restricts the iteration to be recommended for solving
integral equations with nonsmooth RHS.



The effect of the transformation to the normal equation as
well as that of the introduction of a power function of the
RHS” ratio (in Eq. (16)) is to reduce the instability of the
MCW due to the errors in the RHS and the kernel function. Ap-
plication of an exponent in the power function far from the
unity makes the convergence slow down, so in such a case one i
has to choose a more realistic trial function than u{®a const.

~
R —
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?t is hoped that, improvements in the direction of regulari- i

’za§1on of the basic equation will permit the method to be ap- E

plied in a wide range of the ill-posed problems. 1
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Koupnop A. MeTom cxopaumudxcsi BeCOB — E11-82-853
UTepalydoHHasa npouenaypa OIA pelleHHusa HHTeIDANbHhX YpaBHEHHH
OpepronbMa nepporo poga

llpegcTannen MeTon pelleHMsT HHTEerpanbHuIX ypaBHeHHi Open—
roasMa nepBnoro poga OJjsa Cilydasi IOJIOKHTEJNIBHBIX fgpa B CBOBOOHOTIO
unena. Hrepanuonnoe peneHHe sBIAETCH VHOBJIETBOPHTEIIBHO CTabGHIIb
HbIM NPH HAIHYMH BO3MYNEHHE CTaTHCTUUYeCKOI'o Xapakrepa. 3TOT
dbaKT M caM OCHOBHOH. MPUHIHII HTEPAUHH BHITEKAWT H3 BKINOYEHHS
B anropuT™ QYHKIUMH akKcernTaHca, COOTBETCTBymero agpy HHTer-
panpHOro onepartopa. OCHOBHAasA 4UepTa MeTOoma — HTepanusa IPH Io-
MouM riagkux GYHKIME - CTaHeT NPeHMYLeCTBEHHOH IO CPaBHEHHIDO
CO CTaHOApTHHIMH METOHNAMM OJIs1 TAKHX HHTErpAalbHBIX ypPaBHEHHH
C TIagKUMH DemeHHsMH, Yy KOTODHX KaK sJp0, TaK H CBOGOMH.IA
YieH BbIPA3SUTEeNbHO HeIVIaJIKhe, UTO YaCTO BCTpedaeTcs IpH peme—
HHH Ipo6iieM CcMemeHHs OAaHHBIX B SKCIepHMEeHTaX BBICOKOH SHEepIHH.

PaGora BeirontHeHa B JlaGopaTtopum sAjepHbix Ipo6iiem OUAU.

MpenpuHT 06BEeAUHEHHOTO MHCTUTYTa AAEPHHX WccrnepoBauui . [lybHa 1982

Kondor A. Methods of -Convergent Weights - E11-82-853
an Iterative Procedure for Solving Fredholm”s Integral

Equations of the First Kind

A method is presented for solving Fredholm’s integral
equations of the first kind for the case of positive kernel
function and right-hand side one. The iterative solution seems
to be satisfactorily stable against perturbations of statis-—
tical nature. This feature and the basic principle of the ite-
ration itself come from including into the algorithm the so-
called acceptance function related to the kernel of the in-
tegral operator. The main characteristic of the method - to
iterate via smooth functions - becomes to be advantageous as
compared to standard methods in such cases of integral equa-
tions with smooth solutions when both the kernel function and
the right-hand side function are stromngly nonsmooth, which
is often the case at the solution of the smearing problems
of the high energy physics” experiments.

The investigation has been performed at the Laboratory

of Nuclear Problems, JINR.
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