
/9:t9 jg};

"'
M.Rudalics

COOfilll8HMR
Ofih8AMH8HHOrO

MHCTMTYT8
RABPHbiX

MCC18AOB8HMI

AYGHa

1 !J lr-! .i/
Ell-82-82

THE MICAfl MICROASSEMBLER

1982

t

l • INTRODUCTION

Microassemblers are usually implemented on conventional
architectures where time and storage constraints are not
stringent. MICA/I has been designed for a working place con­
sisting of an Intellec [INTEL] Microcomputer Development Sys­
tem, two floppy-disk drives, a line printer and a PROM pro­
grllDIDer ['PROM]. Therefore some care had to be put in keeping
it as small as possible without great losses of efficiency.

- MICA/I uses the "Free Memory" in the LISP sense, aban­
doning the concept of tables and associated lookups.

- Assembling is of the one pass/one phase behaviour. La­
bels are inserted as soon as their definition has been en­
countered.

- MICA/I doee not require different definition and ptogram
parts. Instruction definitions and usages may be sequenced
dynamically, with the only requirement that each definition
has to precede its first usage.

- Keywords have been av~ided while attempting to maintain
readability and extensibility.

- MICA/l does not require any temporary files during as­
sembling.

This paper should be read as follows.

- Anyone who wants to work with MICA/l should read chap­
ter 2, chapter 5 and the User Manual [MICA} which will con­
tain further examples, a formal syntactic description, a de­
tailed description of I/0, an error listing, etc.

- Anyone who wants to extend, alter or adapt MICA/I to his
personal machine should additionally consult chapters 3 and 4.

A description of microprogramming and microassemblers in
general lies beyond the scope of this paper. The reader will
benefit from a study of [IEEE} for a general introduction
into microprogramming, [CERN] for a comparative study of va­
rious microassemblers and [M&M] for the formal description of
a meta-microassembly language.

'bE!lHHt:Htlblt1 MtiC fM rw
i1Uf.~IX ~r;r:n:· co~,.~.,...

6H611t10T!KA
I

2. FUNCTIONAL DESCRIPTION

MICA/I provides two basic operations - definitions and
usages - on three data types - variables, labels and instruc­
tions. Operations may be sequenced dynamically, with the only
restriction that the definition of a variable or instruction
has to precede its first usage. Variables and instructions
may be freely redefined, however once an identifier has been
associated with a specific type this may not be altered any
more.

A basic building block will be further referred to as "value­
length-pair". It consists of a value which has to be provided
unconditionally and optionally a length operator followed by
a length definition (in bits) which defines how many bits of
the value have to be taken when a usage of the vari.able occurs.
When no length has been provided, the minimal length for re­
presenting the value without truncating significant bits will
be assumed automatically. Two length operators, "#" and "@ 11

respectively, behave in ·the following manner:
- Equally, when the length indicator specifies a value

equal to the minimal length to represent the value: the value
and its lengt~ remain unchanged.

- Equally, when the length indicator specifies a value
greater than the minimal length to represent the value, in
this case zero filling on the left side will occur, The length

- . - ·-- ~ . -
UL Lilt! Val.Ut! Wl.l.l. ()t! t:H!L LU Lllt! l.t!ll~Lll pLUVl.Ut!U uy Lllt! l.t!ll!;;Lll

indicator.
- Differently, when the length indicator provides a value

less than the minimal value to represent the v~lue: with " @"
truncation of high order bits takes place and the length
of the value will be set to the length provided by the length
indicator, while" # 11 will cause a reset of the value to ze­
ro and of the length to one. In the latter case an error mes­
sage will be issued.

Some examples may illustrate this:

3

3 #2
3 @2

3#4
3 @4
3 #I

2

evaluates to three, the length indication has been
omitted, the default length for representing 3 are
two bits ·
evaluates to three
evaluates to three
the last three definitions are semantically
equivalent
evaluates to three, with two leading zeros, as
evaluates to three, with two leading zeros

• evaluates to zero (reset) and issues an error
• message

"

3@ I evaluates to one, the high order bit dropped. No
message will be issued.

Value and length indications may be provided by constants
or variables with the difference, that the value of a length
has to be bound when appearing in a definition, while the
value of a value may be provided later (e.g., via a label de­
finition). In this case a length indicator has to be speci­
fied by any means:
II ~2 @I ~16 . is equivalent to the last pair above, where

" ~,. is the base designator, which has to be
followed by a base between 2 and 16, when omit­
ted, base 10 will be assumed

All 4 • A may be bound already or be the value of a la­
• bel yet to be encountered

3 #B • B has to be bound in any case, otherwise an error
. will occur

A #B
A

an error will occur when B is unbound
the length of this object is inherited from the
length of A, an error occurs, when A is unbound

A program for MICA/I is built up of statements. Each sta­
tement has to be followed by a semicolon, spaces may be free­
ly inserted anywhere, provided they do not separate syntacti­
cal units like identifiers or constants, and are obligatory
between identifiers and constants. Comments- i.e., text pre­
ceded by a period and tollowed by a new 11ne - ana new iint!:s

may be inserted anywhere spaces are allowed. In the following
examples each line is preceded by a line numbering as it
appears on a list file created by MICA/I. Left from the line
numbering a MICA/I list file displays addressed and generated
code, which does not appear in our examples.

Variable definitions appear as simple assignment statements,
with an identifier on the left side and a value-length-pair
on the right side of the "=" sign.
0001 A = 3; . Binds A to three, length defaulted to two
0002 B = A# 6; • binds B to A, adds two leading zeros
0003 C = B; . binds C to B, C inherits the length six
0004 · from B
0005 A= 3 #B; . binds A to three with one leading zero
0006 . as B will evaluate to three

Labels, which may head any statement, are identifiers fol­
lowed by a colon. Their value is the number of the next in­
struction usage encountered. The length of a label is defaul­
ted to the number of bits necessary to represent it without
truncating significant bits. Labels, for obvious reasons may
not be redefined:

3

0001 LAB 1: A = 3 # 4 ;
0002 LAB2: LAB3:B =A; .LAB1, LAB2 and LAB3 will

.evaluate to the same value

Instruction definitions consist of an identifier followed
by an 11=11 sign, followed by a value-length-pair which repre­
sents the instruction code (note that the value for the code
has to evaluate immediately) and an optional parlist (whose
elements will in fact be further referred to as parameters),
which consists of an arbitrary number of value-length-pairs,
separated by commas and enclosed within parentheses.
0001 INS= 3#4 (11A2, 0Al6#6, 20@4);
0002 -defines an instruction with the following
0003 ·default confi8uration:
0005 ·00111100101¢0100 (binary)
0006 ·0011 two leading zeros fill up 3 to length four
0007 .11 is 11A2 defaulted witp length two
0008 .001010 zero filled 0A 16 as length was six
0009 .0100 high order bit of 20 dropped as
0010 .length has been indicated with 4

Note that this configuration will not be evaluated at de­
fine time. Th~ code above is produced by MICA/I when an in­
struction usage of the kind
0011 INS; .use the default configuration

occurs in the text.
uenera!!y an ~nstruct~on usage is an identifier optionally

followed by a parlist which consists of identifiers, constants
and/or the wild sign 11 $ 11 separated by commas.

0001 INS($, 7, 24); .for the instruction defined above
0002 .will create the code:
0003 -0011110001110100
0004 ·0011 the code as above
0005 ·II as$ implies the default value
00¢6 ·000111 is 7 right adjusted to six bits
0007 ·0100 is 24 the high order bit dropped

A label or variable usage is characterized by the appea­
rance of its identifier within the parlist of an instruction
usage.

0001 A= 7;
0002 INS = 3#4 (I !'''2, 0A Al6 # 6, 20@ 4);
0¢03 INS ($, 7, 24); .as above
0004 LAB: INS ($, A, LAB); .while this instruction usage
~5 .will create the following code:
0006 • 00111100¢11100¢1

4

0007 .0011 for the instruction code
~8 .II still the same
00¢9 .000111 A evaluates to seven and is adjusted
0010 ,to length six
0011 • 0001 as LAB evaluates to one
0012 ,adjusted to four

As we have seen so far, definitions are not always assign­
ments in the usual sense of imperative programming languages.
One difference is that when the value of a value-length-pair
is a variable, its evaluation is postponed up to its usage
(it may in fact never be evaluated at all).

Binding is static, i.e., each value is considered to be
bound in its defining context. So delivers:
0001 A= 3; .definition of A
0002 INS= 3 (A); -definition of INS, A is bound to the A
0003 . on the preceding line
0004 A • 2; -redefinition of A
00¢5 INS ($) ; . generates I III
00¢6 • II for the instruction code
0007 • II as A evaluates to three
0008 INS= 3 (A); .redefinition of INS, A is now bound to
0¢09 -the A on line four
0010 INS (S); .generates 1110
0011 • II for the instruction code
0012 • 10 as A evaluates to two

Evaluation is additionally determined by the associated
length indicator, thus:
0001 INS = 3 (0 # 6) ;
0002 A = 3; . A bound to 3, length defaulted to two
0003 B = A# 6; . B when evaluated will deliver three
0004 .with four leading zeros
0005 C = B@4; .C will evaluate to three, with two
0006 . leading zeros
0007 D = C@ I; . D will evaluate to one, the high order
0008 . bit dropped during adjustment
0009 E = D# 6; .E will evaluate to one, with five
0010 . leading zeros
0011 INS (E); • here this evaluation chain will be
0012 • performed actually, code generated is
0013 . 11000001

while:
0001 INS
0002 A
0003 B
0004 c
0005

3 (0 #6);
3;
A# 6;
B # 4;

. same as above

. same as above
• will produce an error message, with
. reset to zero .

5

f/J(/)06 INS (C);
f/Jf/Jf/>7

will create the following code:
Jlf/Jf/Jf/Jf/Jf/Jf/J

Note that the type of the length operator remains valid
for later usages:

f/Jf/Jf/J I INS = 3 (3 @ 2) ;
f/Jf/Jf/>2 INS (4); • truncates the high order bit of 4 without
f/Jf/Jf/)3 • error message, and creates the code Ilf/Jf/J

3. THE MICA/I STORAGE MANAGEMENT

Storage management is based on the usage of the free me­
mory, similar to LISP like systems. The memory of the host
computer may be divided up as follows:

~----------~-------.
FREE MEMORY

In MICA/I occupation of the free memory is controlled by
two pointers, MEM.LOW and MEM.HIGH respectively, where MEM.
LOW specifies the next free location in the free memory and
is advanced to the right when a new object has been created.
Whenever MEM.L~M collides with MEM.HIGH, the free memory is
full and assembling stops immediately (in a later version
a garbage collector may part from here).

MEM.LOW MEM.HIGH

As far as memory management is concerned we distinguish
the following data types:

Short Variables (<=65535) or variables bound to another
variable are stored as follows:

VALUE
ADDRESS

points to the next identifier

- All identifiers are linked in alphabetic order via the
POINTER field. The POINTER field of the last identifier con­
tains zero.

- SHIN and TAG bytes will be explained separately.

- The VALUE field either contains the value the variable
is immediately bound to (with the low order byte in the first
and the high order byte in the second byte) or contains a
pointer to the variable the variable has been bound to.

6

- PLEN indicates the number of bytes to store the print­
name.

- PRINTNAME contains the ASCII representation of the iden­
tifier~s printname.

Long Variables (> 65535) are stored as follows:

VALUE
BYTE

- VALPTR contains a pointer to the VALUE the variable is
immediately bound to. Note that this VALUE may be stored any­
where in the free memory, and does not necessarily follow
the PRINTNAME. A similar solution is planned for storing arith­
metic expressions,etc.

Labels:

- Where VALUE contains the number of the next instruction
usage.

Instructions:

...

- CODEPTR contains a pointer to the instruction code.

7

- The first field of the instruction code and of any
following parameter contains a POINTER to the next parameter.
In our example the value of the instruction code is stored
immediately in its VALUE field, while the value of the first
parameter has to be found on an address pointed by VALPTR.

Additionally values for (presumed) labels referenced in
forward jumps - due to the one-pass behaviour - have been
stored as follows:

POINTER
ADDRESS

SHIN
BYTE

TAG
BYTE

points to the next
presumed label

... LINE
ADDRESS

LSTBLCK
ADDRESS

PARNR
ADDRESS

LSTBYTE
ADDRESS

VALPTR
ADDRESS

DSHI
BYTE

ERROR
ADDRESS

points to the value
which has to be evaluated

OBJBYTE
ADDRESS

- DSHI indicates the location within the generated code,
which has to be filled after the label has been resolved.

- ERROR points to the last error encountered so far.

- LINE contains the number of the input line where the
label usage occured and is needed by the error handling rou­
tines.

- PARNR is the number of the parameter where the label ap­
pears, and is needed for error handling too.

- LSTBLCK, LSTBYTE, OBJBLCK and OBJBYTE refer to the posi­
tion of the involved instruction on the list and object files
respectively, and will be further explained in chapter four.

Similar solutions have been followed for storing errors:

8

)

)

POINTER I CHIFFRE
ADDRESS BYTE

to the next error

LINE
ADDRESS

PARNR
ADDRESS

BYTE
IDPTR
ADDRESS

to the identi­
fier involved
in the error

and Cross-References:

POINTER
ADDRESS

LINE
ADDRESS

points to the next reference

When a Cross-Reference Listing has been demanded, each data
(instructions, variables and labels) is preceded by the fol­
lowing structure:

FIRST
ADDRESS

.~
po1nts to

LAST
ADDRESS

the first reference

LINE .. (this is the
ADDRESS .. POINTER field)

points to the last reference

TAG-BYTES are interpreted as follows: r · ---r- · ---r0~-;-- 1-0~~-1 00 --~-~-··I~ ·- r- 00- -~-~-]

00
01
10
11

The garbage collector bit (presently unused)
The dynamic evaluation bit (presently unused)

The "@ 11 operator bit, when set truncation
may occur in evaluation

The.redefine bit, used in searching
The BIND bits

The TYPE bits
The TYPE bits are defined as follows:

For a yet unresolved type
For instructions
For variables
For labels

9

The BIND bits are defined as follows:
f/Jf/J For unbound
f/JI For short variables
lf/J For long variables
II For bound

The SHIN BYTE has to be interpreted as follows:

[- SHIFT I INDEX l
1 (I J I I

INDEX indicates the index of the first (highest order) byte
occupied by the value, whereas SHIFT indicates the position
of the first (highest order) bit in this byte.

As for the PLEN byte the maximal length for values and
printnames is thus fixed with 256 ASCII-characters and bits
respectively. Note that for all lengths stored in the SHIN/
PLEN fields, due to the PL/M characteristic of starting array
boundaries at zero, not the actual lengths but the index of
the last element are stored. Thus these values may be used in
DO-Loops operating on the associated structures.

4. IMPLEMENTATION DETAILS

~!~A~~ ~;~==t=: =~ ~~~ ~~!!0w:~£6 ~a~a ~~LU~LUL~~ \DOL~
that registers are not the hardware registers of the host
computer, but software registers which however operate in
a similar way).

R 'INPUT
E BUFFER
A
D

s
T
0
R
E

G A-REGISTER p
-E~

B-REGISTER r-U
T T

C-REGISTER
"' D-REGISTER

~FREE- MEHORY

F
E
T
c
H

OUTPUT
BUFFER w

R
I
T
E

The INPUT BUFFER is parsed in one pass, no character is
read twice. Identifiers and constants pass through the A- or

10

B-REGISTER before either being stored in the memory or passed
through the D-REGISTER to the OUTPUT BUFFER. Values stored in
the memory pass via the D-REGISTER, which serves actually for
the code construction, to the OUTPUT BUFFER. The C-REGISTER
serves for building the values of lengths according to which
a value in the A- or B-REGISTER will be adjusted (remember
that the value of a length has to be adjusted too). The
A/B/C/D-REGISTERS are 256 bytes long and are headed by the
following information:

BoUND CHECK DYNEV INDEX SHIFT REGISTER
BYTE BYTE BYTE BYTE BYTE BYTES ••

True when the associated value is bound
True when truncation has to be checked (" # ")

Will be used for dynamic evaluation
The INDEX from SHIN

The SHIFT from SHIN

Note that values in the A/B/C-REGISTERS are stored accord­
ing to general rules bytewise in ascending order, with the
lowest order byte in register position f/J, while the D-REGISTER
stores values in descending order with the highest order byte
in nosition 0. Zero filling occurs right hand side in all re­
gisters, within a byte however on the left in the A/B/C-REGIS­
TERS and on the right in the D-REGISTER (INDEX and SHIFT have
a different meaning for the D-REGISTER: INDEX denotes the pre­
sently filled byte and SHIFT the next bit to fill within this
byte).

What follows is a description of some of the modules MICA/I
has been built of:

EXLOOP: Provides syntax check mainly, its length (about
2K-bytes of hex-code) is mainly due to the fact, that key­
words have been avioded and occasionally a quite long string
has to be parsed before its syntax has been recognized.

Error recovery is performed when either a")" or ";" are
encountered, thus usually more than one statement should not
get lost during syntactic analysis.

General Routines:

STORE-/FETCH-: Transfer values (and lengths) from the A­
or B-REGISTER to memory and backwards, according to the basic
design of the memory management system.

GET-(IS-)/PUT-: Perform I/0 between A/B/C/D-REGISTERS and
INPUT-/OUTPUT BUFFERS. Note that these modules make extensive
use of ISIS-II [ISIS] System Routines like READ, WRITE,SEARCH,
etc.

11

PREPARECODE: Is the code constructing routine. The code
is established in the D-REGISTER.

SAVE-/RESOLVELABEL: Perform the saving and resolving of
labels in forward jumps. In the present ("batch") version
RESOLVELABEL is called once at the end of processing. The
reason for this is mainly to save code as RESOLVELABEL is in
the last overlay of MICA/I, and without a garbage collector
immediate resolving (i.e.~ when a label is defined) would not
be efficient (however the data/code tradeoff shall be consi­
dered in the near future). At the moment the following two
strategies have been choosen to remedy crowding of the free
memory with too much unresolved labels.

(I) Whenever a label definition is encountered after its
identifier has already appeared in an instruction definition,
its corresponding TAG is immediately set to bound. This pro­
vides that only labels in forward jumps are saved for later
resolution, on the other hand a program may contain in its
definition part a lot of unresolved labels without giving any
warning.

(2) When more than one unresolved label occurs in one in­
struction usage, the addresses of the code on the object and
list files respectively (OBJBLCK, OBJBYTE, ••) are remembered
only once. This however operates correctly only in the present
environment, where labels are resolved in the final step.

Assistant Routines:

ALLOCATE: Performs memory allocation by advancing MEM.LOW
and Comparing it with MEM.HIGH. The message '~MORY FULL­
ASSEMBLING STOPPED" is issued from here.

ADJUST: Adjusts a value in the A- or B-REGISTER, according
to a length in the B- or C-REGISTER. When the length indicated
is greater than the minimal length to store the value, zero
filling on the left occurs. Otherwise either an error message
with reset to zero (when" # 11 has been used) or cutoff (with
the "@" operator) takes place.

COPYSHIFTINDEX: Takes a value stored in a register and
stores it into the INDEX/SHIFT field of this register. Note
that a length zero may not be represented.

LOOKUP: Returns (if successfull) a pointer to the searched
identifier.

INSERT: Inserts an identifier in the id-list, no insertion
is performed (and an error message is printed) when the iden­
tifier is already in use for a different type.

12

EVAL: Is an inherently (non tail-) recursive procedure,
operating on the A- and B-REGISTER. In the calling part it
follows the backward chain of definitions and in the tail
part it calls COPYSHIFTINDEX to establish the length in the
C-REGISTER and ADJUST to adjust the value in the A- or B-RE­
GISTER according to this length. It returns false when the
deepest value has been encountered unbound. This will cause
the saving of a label during PREPARECODE and an error message
when encountered in RESOLVELABEL.

5. ADDITIONAL REMARKS

MICA/I programs require no special headers or EOF marks.
A missing ";" after the last statement however will not appe­
ar in the error listing but cause a message on the console:
"PREMATURE EOF ENCOUNTERED" which may be considered insigni­
ficant. Note that the semicolon to conclude statements is ba­
sically redundant, and serves only for recovery purposes in
the syntax check.

The "ORG" (ORIGINATE) statement has been realized as a cons­
tant followed by a colon, and may head any statement (even be
intermingled with labels). When its value is greater than the
present code line, all lines up to the line indicated by the
ORG statement are filled with zeros, otherwise an error mes-
C!!:Irro T.T; 11 'hn ..,.."J

~- --- -- -----·---·
MICA/I has been written in PL/M-80 (PL/M-80) on an INTELLEC

MDS. PL/M-80 has been the only high-level language available
providing based variables (PASCAL existing only in the inter­
pretative version). We hope to obtain a PASCAL compiler in the
near future and to rewrite the whole system in PASCAL, thus
being able to run it on other architectures. Note that MICA/I~S
only requirements are direct addressable bytes and the possibi­
lity to use up the free memory. MICA/I has run through its de­
velopment the following design steps:

(I) The GET-(IS-) and PUT-routines have been designed,
using the ISIS-II interfaces READ, WRITE and SEEK mainly.

(2) The external loop, thus being able to work with "real"
files already.

(3) The FETCH- and STORE-routines.
(4) The actual code building routines.
(S) Saving and resolution of labels.
(6) Elimination of parameters, this caused a saving of some

4K of memory with some loss of program readability, however
interfaces in PL/M-8Q) had never been very clean at all.

13

The present version of MICA/I uses about 20K bytes of main
storage. A "natural" overlay (dividing MICA/I in an input, mai
and output step) would reduce this to some ISK and allow
MICA/I to run on 32K byte. A second overlay structure with
however an already drastic increase of load operations should
run on 12K with some 2K of working storage.

The forthcoming MICA/2 will provide two additional binding
mechanisms, dynamic- and let-binding respectively. To maintair
compatibility with future versions you should refrain from
using the following features provided by MICA/I:

Factored variable and instruction definitions.
- Omitting commas between parameters in instruction usages.
- Symbolic names like: "DO", "END", "IF", "CALL", "RETURN"

and others known from high-level languages.

ACKNOWLEDGEMENTS

We thank Professor N.N.Govorun for his support of our work
Angelika and Holger Leich have been of substantial help durin
the implementation of MICA/I.

REFERENCES

(CERN) Halatsis C. Software Tools for Microprocessor Based
Systems. Proceedings of the 1980 CERN School of Computing.
Geneva. 1980. oo.24I-281 (1981).

(IEEE) Rauscher T.G., Adams P.M. Microprogramming: a Tutorial
and Survey of Recent Developments. IEEE Transactions on
Computers. Jan., 1980, vol.C-29, No.I, pp.2-2·0.

(INTEL) INTELLEC MDS OPERATOR~S MANUAL. INTEL CORP., DOC.
NO. 98-132, I 976.

(ISIS) ISIS-II USER~S GUIDE. INTEL CORP., DOC.N0.98-3068, 197,

(MICA) The MICA User~s Manual (in course of preparation).

(M&M) E.Skordalakis. Towards a More Flexible Micro-Language
for Bit-Sliced Microcomputers. Microprocessing and Micro­
programming. Jan., 1981, vol.7, No.I, pp.46-57.

(PL/M-80) PL/M-80 Programming Manual. INTEL CORP., DOC.NO.
98-268, I 976.

(PROM) UNIVERSAL PROM PROGRAMMER REFERENCE MANUAL, INTEL
CORP., DOC.NO. 98-133, 1976.

14

Received by Publishing Department
on February 2 1982.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices • in US I,

09-10500

02-10533

013-11182

017-11490

o6-n574

03-1,1787

013-11807

01,2.;.12450

D-12965

011-80-13

04-80-271

04-80-385

04-80-572

02-81-543

010,11-81-622

including the packing and registered postage

Proceedings of the Second Symposium on Collective
Methods of Acceleration. Dubna, 1976. 11.00

Proceedings of the X International School on
High Energy Physics for Young Scientists.
Baku, 1976. · 11.00

Proceec;Iings of the IX International Symposium
on Nuclear Electrohics~ Varna, 1977. 10.00

Proceedings of the International Symposium on
Selected Problems of Statistical Mechanics.
Dubna, 1977. 18.00

Proceedings of the XV Symposium on Nuclear
Spectroscopy and ~uclear Theory. Dubna, 1.978. 4.70

Proceedings of the III International School on
Neutron Physics. Alushta, 1978. 12.00

Proceedings of the III. I~ternational Meeting
on Proportional and Drift Chambers. Dubna, 1978.

Proceedings of the VI All-Union Conference on
Charged Particle Accelerators. Dubna,· 1978.
2 volumes.

Proceedings of the XII Ipternational,School on
High Energy Physics for Young Scientists.
Bulgaria, Primorsko, 1978.

The Proceedings of the International School on
the Problems of Charqed Particle Accelerators
for Young Scientists. Minsk, 1979.

The Proceedings of the International Conference
on Systems and Techniques of Analytical Comput­
ing and Their Applications in Theoretical
Physics. Dubna, 1979.

The Proceedings of the International Symposium
on Few· Particle Problems in· Nuclear Physi·cs.
Dubna, 1979.

The Proceedings of the International School on
Nuclear Structure. Alushta, 1980.

Proceedings of the VII All~Union Conference on
Charged Particle Accelerators. Dubna, 1980.
2 volumes.

N.~.Kolesnikov et al. "The Energies and
·Half-Lives for the a - and ,8-Decays of
Transfermium Elements"

Proceedings of the VI International Conference
on the Problems of Quantum Field Theory.
Alushta, 198'1

Proceedings of the In~ernational Meeting on
Problems of Mathematical Simulation in Nuclear
Physics Researches. Dubna, 1980

14.00

25.00

18.00

8.00

8.00

8.50

10.00

25.00

10.00

9.50

9.00

Orders for the above-mentioned books can be sent at the address:
Publishing Department, JINR

Head Post Office, P.O.Box 79 101000 Moscow, USS~

SUBJECT CATEGORIES

OF THE J-INR PUBLICATIONS

la4ex Suhjeet

1. High _ energy experiMnta 1 phys fcs

2-. High energy theoretical physics

3. low energy e-xperi~~enta 1 ph-ysics

4 .. lc:w energy theoretical physics

5. Mlthellatics.

6._ Nuclear spectroscopy and radiochemistry

1. H-.vy ion physics

8-.. Cryogenics

9.. Accelerators

10. Autollatization- of data processing

11. COIIIPUting_ 111thematics and te-chnique

12. Cheln-istry

13. Experime-ntal techniques and methods

14. Solid state physics. liquids

15. Experilllental physics of nuclear reactions
at low- energies

16. Health physics. Shieldings

17. Theory of conde-need matter

18. Applied researches
19. Biophysics

PyAa11114 M.
MICA/I-MHKpoacceM6nep

Ell-82-82

npeAJ1araeTCR YHHBepcaJlbHWH R3WK AJ1R OnHCaHHR B MHeMOHI14eCKOH ¢opMe
a11r0p11TMOB pa60TW yCTPOHCTB C MHKponporpaMMHWM ynpaBJleHHeM, a TaKMe
paCCMaTpHBaeTCR nporpaMMa npeo6pa30BaHHR 3JleMeHTOB R3WKa B MHKpOKOA
/MHKpoacceM6nep MICA/I/.

Pa6oTa BWnOJlHeHa B na6opaTOPI111 BW411CJ111TeJ1bHOH TeXHI1KI1 11 aBTOMaTH3a­
~1111 0~~~.

C~eHMe 05~H8HHOrO MHCTHTyTa RAePHWX HCCJleAOBaHM~. AY6Ha 1982

Rudalics M. Ell-82-82
The MICA/I Microassembler

MICA/I is a Universal (Meta-) Microassembler implemented in PL/M-80
on an lntellec Development System. The following description of MICA/I
contains a general part, explaining the definition and usage of microin­
structions and special parts on memory management and implementation.
MICA/I has been developed at the Laboratory of Computing Techniques and
Automation of the Joint Institute for Nuclear Research in Dubna.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

