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I. INTRODUCTION 

Let us consider the difference problem 

Au-r, (I) 
n 

in the region G tR , where A is a nonlinear operator, which pro-
vides a single solution u of the problem (1). Suppose also that 
the following difference approximation of the equation (I) is 
given 

Ah uh = f h • (2) 

where uh and fh are defined on the grids Oh and to solve the 
equation (2) the iterative process 

n+1 n 
u h -uh 

=-'l'(u~ ); 'l'(uh )=0, (3) 

is constructed which,converges to the solution uh with a rate 

llu~ -uhll~[q(h)]
0 

llu'b- uhll, q< 1. (4) 

If Q deoends on h. then. as a rnlP. 

q(h)-.1 h .. 0; 

When constructing iterative processes on 
oh·. i =1,2, ••• P , h1> h 2 > ... >hp • 
pr6blem (2) by the method (3) on the grid 

k 
lluh

1 
-uh 1 II.Sf1 . 

(5) 

the sequence of grids 
we solved the 

Oh 1 with accuracy £ 1 

Then the grid function u~ 1 is interpolated on the grid Oh
2 

and 
is used there as an initial approximation in (3) for decreasing 
the error to the value f 2 <£ 1 and so on. In papers /1,2,3/ it 
is shown that such a process gives a considerable economy as 
compared with the solution of the problem (2) with accuracy f 

by the method (3) without using auxiliary grids Ohio i =I ,2, .. ~ p. 
Here only general characteristics of the algorithms are used, 

such as the approximation error and the iterations convergence 
rate. If 

a 
£ 1 =0(ht). a>O, 

a 
where hi is the error of approximate solutions Ubi• then the use 
of a sequence of grids usually decreases the computational work 

O(ln£~1 ) times as h .. 0. 
p 

2 

. .,. 

... -.; 

2. METHOD FOR ACCELERATING THE CONVERGENCE RATE 

In this paper we suggest the method for accelerating the 
convergence of iterations on the sequence of grids, which is 
practically much more efficient, then the above-mentioned one. 
In this method one has to use additional information concerning 
the regularity of the decomposition of the error of the solu
tion uh into the degrees of the discretization step h: 

(6) 

where the functions c1 (x) are independent of h. The existence 
conditions for the decomposition (6) for nonlinear operators A 
were obtained in/4/ and we will not consider them here. 

The main idea of the proposed method is the following. Sup
pose we obtained solutions uh. on the grids Obi , i =I,... , P, 

1 am P=m+l , with equal accuracy f=O(h!Ttl ) for the steps hi 
different in pairs. Then for calculating the solutions uhp+t• 
hp+l <hp we take as an initial approximation the combination 

p 
Uh l y. Uh. , Xt {}hp+l' (7) 

p+l 1=1 I I 

where uh. are interpolated on the grid Ohp+ 1 with accu-
racy o(h~'¥ ), and the coefficients Yi are defined from the 
set of equations 

v.+v-+ .... +v_=l . .. " 

(8) 

assuming that the solution of (8) exists. Thus, using solutions 
on the grids Obi, i .$ p we perform the extrapolation to the 
exact solution u hp+l of the difference problem on the grid 
oh since from (6) and (8) it follows p+1 • 

p a 
Uh =ly.Uh+O(hp+ml), X-E0h . 

p+l 1=1 I I p+l 
(9) 

Note, that if ai ~ i or ai =2 i, which usually takes place, then 
the determinant of the system (8) is of the Wandermond type and 
differs from zero. Estimates of the coefficients Yi are given 
in/5/, 

Though the initial approximation ugp+l from (7) is close 
to uhp+l as hp-+0, however it doesn't provide fast conver-
gence of iterations (3) because of (5). Here it is necessary 
to use additional information about the nature of the interpo-
lation error. --·~·"·--· 

I'; 
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3. THE DIFFERENCE PROBLEM FOR THE POISSON EQUATION 

Consider, for example, Dirichlet's problem for the 
Poisson equation. For accelerating the convergence we will use 
only two auxiliary grids. 

Let us consider the Pbisson equation (I) in the stepped 
region G€ Rx R with the boundary r. where A=!'!. • Ur=- c,b co. 
which may be replaced by the difference problem 

!'ihuh=f, uh,r= c,b((), (E r, (10) 

defined in the grid nh. correlated with the boundary r and having 
the same step h for both variables. The operator f'ih is defined 
by the usual five-point difference scheme. 

Suppose the solution u(x,y)€c6 (G) of the problem (I) 
is such, that the function c 1 (x,y), defined by the equation 

1 a4
u a4 u !'!.cl = --(~+-. -). c r= 0 

12 ax4 ay4 1, 

satisfies the relation c 1 € c 4 (0 ). Then, according to 161 we ha
ve 

Uh =U(X,Y)+c 1 (X,y)h 
2 

+0(h4 ), (x,y) € Oh. (II) 

Writing the decomposition for the steps..!!... and h 
2 4 

and using 
the system (8) we easily find 

( 1 ?\ 

For interpolating ( 12) on the grid 0 h the operator Q is 
used, which is of the order o(h 4 ) for \he exact solutions 
u(x,y) and of the order o(h2 

) for the functions v EC 4(G ). 
Then, according to (II) it has accuracy O(h4) on the difference 
solution uh. If 

f!h={xi
1 

=-2i 1h, Yj
1 

=-2j 1h; i 1 EI, j
1
€Jl, 

then the operator Q is defined by 

Qu .. 
l,J 

..! (u. . + u . + u . . + u ) h2r 4 1·1.J·1 i·l,J+l I+l,J·l i+t,j+t - i,j 
i=2j1±1 

( 13) 

+U i,j+l +Ui,j -1 
i=2i 1 • j =-2j 1 ± 1 h2 

)- -f·. 
1 

-(u + u 4 i-l,j i+l,j 2 l,J 

which is twice applied to uh and once to u h Q(uh ) 

defined on 0 JL; Q 2 (uh ) and Q(u h ) ar:
2 

defined on 
2 2 

4 

is 

O.A._. 
2 

.. 

.. 

It should be noticed, that in calculations on the square 
grids besides the step discretization one can use the turn of 
the grid to the angle ~ as suggested in 171. If we denote the 
solution on such a grid by u7 , where for the given h we have 
r=J2h, then the extrapolation formulae will take form 

3 h2 
Uh =-U +.l_U +- f + O(r4); (X,y)€ Oh, 
- 4 h 4 T 16 
2 

1 1 h2 
u /2 =-2 uh +- u + -f + o(r~; (x,y)€ nh. 

T 2 T 16 

In this case solutions U7 and uh are defined on the same 
grid, therefore, only one interpolation by the formula (13) 
is needed. 

4. NUMERICAL EXPERIMENTS 

Efficiency of the extrapolation (12) using the solutions 
on two grids is investigated for the single-linked and multi
linked regions, at different values of the residue cp+t' and 
besides, the dependence of the number of iterations on the 
smoothness of the solution u (x,y) is considered. 

The oroblem f'iu=O Ur=exo("v)sin"xl.-. is r'nnsi-

dered in the square region G .. {o~x~1. o~·y 5: 1 l, whence 
u "'exp(rry sin(" x). For solving the problem in the square 
grid nh of the dimension 129xl29, h =1/128 four additional 
grids 0 2h , 0 4h , 0 Sh , 0 lSh were used. Calculations on 
each of these grids were carried out with the same accuracy c • 
The criteria for the end of the process on each grid is taken 
from the relation 

k k-1 
max I u h -u h I< c, ( 14) 

(x,y)E Oh 
where k is the number of iteration. As a basic ralaxation 
scheme we used either the Successive-over-Relaxation method 
(SOR), or Seidel's method (S). The use of the latter is 
caused by the fact, that Seidel's method well suppresses the 
high-frequency error component, which arises in the interpola
tion process. This component contains the eigenfunctions of 
the operator corresponding to large eigenvalues. The smooth 
part can be well restored using the relation (12). Therefore 
Seidel's method being used on the last grids, essentially 
accelerates the process. Calculations were carried out in 
the following way. The solution u16h was transformed by the ope
rator Q (13) into the initial approximation for u8h; then using 
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Table I 

Jt(16h) Jt(8h) Jt(4h) Jt(2h) 

10-4 

10-6 

10-6 

10-7 

21 

24 

2? 

30 

SOR 

24 

32 

3? 

44 

SOR 

28 
4? 

64 

6? 

s 

2 

6 

44 

2?8 

s 

Table 2 

e K(16h) K(8h) K(4h) K(2h) 

Io-4 2I 24 9 2 

Io-5 24 J2 53 ? 
Io-6 2? J7 216 48 
ro-7 30 44 45 302 

SOR SOR s s 

TalHe 3 

! Jt(16h) Jt(8h) K(4h) Jt(2h) 

Io-4 21 24 28 7 

Io-5 2~ 32 4? 46 

Io-6 2? 3? 64 8? 

Jt(h) K1 

I J.? 

2 ?.0 

5 20.6 

JJ I07 

s 

Jt(h) K% 

I 3.5 

2 8.6 

5 32. 

3J II3. 
s 

K(h) K% 

I 4.9 

7 22.0 

80 106. 

SOR SO~ SOR SOR SOR 

Table 4 

K(16h) K(8h) K(4h) K(2h) K(h) 

64 87 8 2 I 

?? I46 49 7 2 

9I 206 214 48 5 

106 265 455 303 32 

s s s s s 

K% 

3.6 

9.3 

JJ.9 

I40. 

'( 

2.00 

1.43 

0.67 

O.I5 

2.62 

!.50 

0.43 

O.I 

1.55 

0.5 

O.I3 

2.00 

I. I 

0.40 

O.I 

J 

) 

Io-4 

10-5 

10-6 
ro-7 

Table 5 

K(16h) K(8h) K(4h) K(2h) K(h) 

2I 

24 

27 

30 
SOR 

24 3? 3I I 

32 48 76 ?I 

37 65 IOO I56 

44 74 I29 2I2 
SOR SOR SOn SOR 

Table 6 

K(16h) K(Sh) K(4h) K(2h) 

27 52 IOI I97 376 
SOR SOR SOR SOR SOR 

11.5 

91.3 

IBS. 
249. 

376 

0.73 

O.I2 

0.07 

0.06 

u 16h and u8h we constructed by the formula (12) the initial 
approximation for u 4 h and so on, up to the last grid n h. Tab
les 1-4 show the main characteristics of iterations at various 
combinations of SOR and S methods on the sequence of five 
..... -..:.l,.. lrth\ ...:~ .......................... t.. ......... -t... .... - ..... 4= .: ........ _ ........ .:............... ....t-_ ---:..l n 
b ........ OJ. -- , •• , ........................ OJ ................. _ .. u ....................................................................... L. ......... o.a.. ~~ ..... n 
before the condition (14) is fulfilled. kl designates the 
whole number of iterations calculated by the formula 

4 . i 
kl .. lk(21 h)4- +1 

1•0 

which takes into account the interpolation. The number y indi
cates the asymptotic efficiency of the iteration process: 

-1 
exp ( -y k l ) .. f • r 

0 
, 

where r 0 is the initial error. 
Note, that the highest efficiency of the relaxation method 

proposed by R. P. Fedorenko for the analogous problem is y =0. 4i~1 

which doesn't depend on the dimension of the problem. The method 
of fictitious variables devised by E.S.Nikolaev and I.E.Kapo
rin/9/ requires for decreasing the error 10'4 times (according 
to/ 101) on the average six iterations for the single-linked 
regions and nine iterations for the couple-linked regions. The 
corresponding values of y are approximately 1.1 ~ y ~ 1.0. 

Table 5 shows the results of calculations for the same 
problem when the solution on the grid nhk was used only 
as an initial approximation for the calculation of uhk+l For 
all grid the SOR method is used. For the comparison the results 
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of calculations for f = 10 - 6 by SOR method with the initial ap
proximation u. . =0 on each grid are given in table 6. In tab
les 7-8 the ;~sults for the multi-linked region "B" are pre
sented. Table 7 corresponds to the regionG1 , which is obtained 
from the initial square by excluding the rectangles nl and n2. 

TI 1 = 1 o.25~ x.s: o.75; o.25~ y ~ o.375l 

n 2 =I 0.25 ~x .s 0.75; o.625~ y .s 0.751 

and table 8 is constructed for the rectangles 

n 1 = 1 o.375 .s x ~ o.625; o.25!> y !> o.375 1 

ll 2 =10.375~x~0.625; 0.625~y~0.75I. 

Sizes of the rectangles TI 1 and TI 2 are correlated with the ini-
tial grid 0 16h • It is seen, that the iterations convergence 
rate practically doesn't differ from that one for the rectangu
lar region and is even greater for f =Io-7. In table 9 the 
dependence of the convergence rate on the smoothness of solution 

Table 7 

" K(16h) K(8h) J( (4h) K(2h) J( (h) X% 'I 

ro-4 21 16 27 2 I 4.4J I.70 

ro-5 23 25 39 6 2 6.42 I.b4 
ro-6 26 33 55 5d 6 24.5 0.54 
I0-7 29 42 72 I6d 35 S2.2 0.19 

SOR SOR SOR s s 

Table 8 

E Jt(16h) K(8h) J( (4h) K(2h) K(h) K'l. '( 

ro-4 20 19 26 2 I 3.7 I.94 

10-5 23 26 43 6 2 6.7 I.40 

10-6 26 J4 58 4\J 6 22.5 0.59 
ro-7 28 39 ?I 164 .34 ?9.0 0.20 

SOR SOR SOR s 5 

8 

p 

I 

2 

3 

4 

5 

6 

? 

8 

9 

IO 
20 

K (16h) 

I? 

I? 

18 

I? 

I? 

I6 

I 

IY 

I8 

I9 

Iti 
~OR 

K(8h) 

22 

2'.1 

3I 

::i2 

34 

35 

36 

37 

39 

3'.1 

39 
SOR 

Table 9 

K(4h) K(2h) 

26 2 

44 6 

58 64 

6I 

6b 

6'.1 

?3 

72 

72 

73 

<JI 
SOR 

?2 

6? 

60 

b4 

49 

44 

4I 

9? 
s 

K(h) 

I 

2 

4 

7 

42 

65 

?2 

73 

70 

6? 

41 
s 

3.53 

8.I3 

24.I 

2'.1.3 

6.3.4 

84.9 

Y0.6 

'.10.4 

OO.I 
84 • .3 

72.6 

( 

2.54 

I.2? 

0.46 

0.38 

O.Iti 

O.I4 

0.13 

u.I3 
O.I3 
u.ra 
u.I? 

u(x,y) is shown. All calculations werP nPrformPn tm to ' = 
=10-b.The problem 

~u =-2p2 7T 2 BiD7TPX· Sin11py 

ur = o 
with the exact solution U=SiD7TPX·SiD7TPY is solved in 
the region G. Calculations for p =I+ 10 and p =20 are presen
ted. It is seen that beginning with P =7 the quantity y does 
not decrease and even increases for P =20. In all cases 
miny~ 0. 13. This can be explained by the fact that the smooth 
component of solution is extrapolated exactly by (12) and the 
high-frequency error component can be suppressed easily by 
Seidel's method. 

5. CONCLUSIONS 

These numerical results allow us to expect that when the 
error of approximate solution exhibits a regular behaviour 
according to (G), then the suggested method of accelerating the 
convergence in the case of elliptic equations gives an algo
rithm, which is optimal in viewpoint of the order of the number 
of arithmetic operations and the required storage exceeds the 
corresponding storage for the finest grid less than 1.5 times. 
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It should be noticed, that the quantity y can be controlled 
during calculations ~nd when its value be1 come~ as smhaldl 1~~ h' h 
Y . >y, one can eas1ly change to there axat1on met o ,w 1c 
mm- . 

requires analogous organization of calculat1on on the sequence of 
grids. 

Note also, that in tables 1-4 and 7-9 the number of itera
tions on the last grid is always less, than the maximum number 
of iterations on each of the rest four grids, which means, 
that for the given f the number of iterations does not increa
se with increasing h. For f = o(h2 ) !! 10-4 the number of itera
tions decreases monotonously from one grid to another, that 
is, the summary computational work required is estimated by the 
quantity o(h - 2 ). 
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AHpRH 3.A., ~AKOB E.n., XopoMCKHH E.H. Ell-82-492 
EbiCTpblH HTepa~HOHHbiH MeTOA Ha llOCJieAOBaTe.JlbHOCTH CeTOK 
pemeHHR pa3HOCTHOH 3aAaqH AJIH ypaBHeHHH llyaCCOHa 

llpeAJIO~eH MeTOA ycKopeHHH CXOAHMOCTH HTepa~HOHHbiX npo~eccOB 
Ha TIOCJieAOBaTeJibHOCTH CeTOK, yqHTbiBaiOm;Hfi pa3JIOJ!I:eHHe pa3HOCTHOI' 
pemeHHR no CTeneHHM mara AHCKpeTH3a~HH, llpHOJIHl!l:eHHhie pemeHHH 
C HeCKOJibKHX BCllOMOI'aTe.JlbHblX CeTOK 3KCTpanOJIHpYIOTCH K TOqHOMY 
pemeHHIO pa3HOCTHOH 3aAaqH Ha OOJiee Me.JlKOH MeTKe, B CJiyqae 
pa3HOCTHOH 3aAaqH AJIR ypaBHeHHH llyaccoHa norpeWHOCTb TaKOH 3K
CTpanOJIR~HH Ha nocneAHeH ceTKe ObiCTpO llOAaBJIReTCR npOCTbiMH 
HTepa~RMH B CHJIY H3BeCTHbiX CBOHCTB I'JiaAKOCTH COOCTBeHHbiX 
¢lyHK~HH pa3HOCTHOI'O onepaTOpa, ilpHBeAeHbi pe3yJibTaTbl qHCJieHHbiX 
3KCnepHMeHTOB, HJIJIIOCTPHPYIOm;He Bb!COKYIO 3~eKTHBHOCTb MeTOAa AJIH 
pemeHHR yKa3aHHOH 3aAaqH, 

Pa6oTa BbiDOJIHeHa B TiaoopaTOpHH Bb~HCJIHTe.JlbHOH TeXHHKH 
H aBTOMaTH3a~HH ORHH. 

Ayrjan E.A., Zhidkov E.P., Khoromsky B.N. Ell-82-492 
Fast Relaxation Method for Solving the Difference Problem 
for the Poisson Equation on the Sequence of Grids 

A method for accelerating the convergence of iterative pro
cesses on the sequence of grids is proposed, which makes use 
of the decomposition of d_ifference solution into the degrees 
of discretization step. Approximate solutions from a number of 
auxiliary grids are extrapolated to the exact solution on the 
finest grid. In the case of a difference problem for the Pois
son equation the error of such extrapolation on the last grid 
is quickly suppossed by simple iterations due to same pro
perties of smoothness of the difference operator's eigenfunc
tions. The results of numerical experiments are presented 
which illustrate the high efficiency of the proposed method 
for solution of the given problem. 

The investigation has been performed at the Laboratory of 
Computing Techniques and Automation, JINR. 
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