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1. INTRODUCTION [
Let us consider the difference problem
Au= f, ( I ) @

. . n . .

in the region G &R , where A is a nonlinear operator, which pro-
vides a single solution u of the problem (1). Suppose also that
the following difference approximation of the equation (1) is
given

Apuy =1, (2)

where up and f;, are defined on the grids {}, and to solve the
equation (2) the iterative process
un+1 un
h =Up
— ==Y, ); ¥(u,)=0, (3)

T

is constructed which, converges to the solution u, with a rate

n n
lloy —uyll<la®] flug- uw ]},  q<1. (4)
If 0 depends on h. then. as a rule. .
q(h)-1 h-+0; as q(hy)<q(hy), hy<h, . (5)
When constructing iterative processes on the sequence of grids
Qh,, i=1,2,...p , hi>hy> ... >hy we solved the

problem (2) by the method (3) on the grid ‘7h1with accuracy ¢,

k
lluhl '“h1‘|5 € -
Then the grid function u# is interpolated on the grid th and
is used there as an initial approximation in (3) for decreasing
the error to the value ¢,<e 1 and so on. In papers /1,2,3/ it
is shown that such a process gives a considerable economy as
compared with the solution of the problem (2) with accuracy e
by the method (3) without using auxiliary grids Ony, i =1,2,..?P.
Here only general characteristics of the algorithms are used,
such as the approximation error and the iterations convergence
rate. If

. a
fl':qhi )v a>0.
a . . .

where hj 1is the error of approximate solutions up;, then the use
of a sequence of grids usually decreases the computational work

-1 .
Oangp ) times as h 0.

P
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2. METHOD FOR ACCELERATING THE CONVERGENCE RATE

In this paper we suggest the method for accelerating the
convergence of iterations on the sequence of grids, which is
practically much more efficient, then the above-mentioned one.
In this method one has to use additional information concerning
the regularity of the decomposition of the error of the solu-
tion u, into the degrees of the discretization step h:

m aj A
u, = u(x) +i§10i(x)h +o(h ), x&€Qy, a <ag<.., (6)

where the functions ¢; (x) are independent of h. The existence
conditions for the decomposition (6) for nonlinear operators A
were obtained in/4/ and we will not consider them here.

The main idea of the proposed method is the following. Sup-
pose we obtained solutions uy, on the grids {p; ,i =1,... ,p,
p=m+1 , with equal accuracy (=o(ha"‘1 ) for the steps h;
different in pairs. Then for calculating the solutions Unpyq s

hpsq <hp we take as an initial approximation the combination
P
up . 1§1yi Up, » X€ thﬂ.

where up, are interpolated on the grid {np,, with accu-
racy o(hp;q ), and the coefficients y; are defined from the
set of equations

V. ¥+ Vi + ..+ v =1
Fy ~ v

a a a a
y“1;+y2h21+."+ y_h 1.p ! (8)

a a a

y1h1m+ y2h2m+...+ yph Mmep T

assuming that the solution of (8) exists. Thus, using solutions
on the grids {};, i< p we perform the extrapolation to the
exact solution Uuh of the difference problem on the grid

th+1, since from (6) and (8) it follows
P a
u = 3y h ™), x€Q . (9)
Dot hf““ﬁ+o(w1) Bp+q

Note, that if a;=i or a; =21, which usually takes place, then
the determinant of the system (8) is of the Wandermond type and
differs from zero. Estimates of the coefficients y; are given
in/s/,

Though the initial approximation uy_,, from (7) is close
to Uhpyy as h,+0, however it doesn't provide fast conver-
gence of iterations (3) because of (5). Here it is necessary

' to use additional information about the nature of the interpo-

lation error. e
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3. THE DIF:FERENCE PROBLEM FOR THE POISSON EQUATION

Consider, for example, Dirichlet's problem for the
Poisson equation. For accelerating the convergence we will use
only two auxiliary grids.

Let us consider the Pbisson equation (1) in the stepped
region G&€ RxR with the boundary I',where A=A, up=g¢(£),
which may be replaced by the difference problem

Apuy =1, u =), £eT, (10)

defined in the grid Q;, correlated with the boundary I' and having
the same step h for both variables. The operator Ay is defined
by the usual five-point difference scheme,
. Suppose the solution u(zy)e c® (G) of the problem (1)
1s such, that the function c¢,(x;y), defined by the equation
” 4
Ac,=-1 (@ du_
12 9x* gyt

satisfies the relation Cl€c4 (6 ). Then, according to’® we ha-
ve

): cl'r=0

u, =uEy)+c, (1y)h2+00?), @y)< Q. (11)

Writing the decomposition for the steps -;— and —l;- and using

the system (8) we easily find

Uy =—§-u h - 1—uL . (xwneQ. . .
=5 P L

For interpolating (12) on the grid @1 the operator Q is
used, which is of the order o(h?) forz;he exact solutions
u(x,y) and of the order o(h2 ) for the functions VGC4(G ).
Then, according to (11) it has accuracy O(h#) on the difference

solutionu,.If

~
(R}
N

Q=lx; =2jh, y; =2jh; iel, el

then the operator Q@ 1is defined by

uiljl ) i=2i1- j=2j1
i=2i111
Qu = i(ui.1 T Yietiet P inien tY gy )—h2f. . (13)
i =Y 4 N N i+1,j-1 7 i+1,j41 1 j=2j 11
2 . .
1 h 1=21,,j=Rj, 1
! 2 i Py Uigen PYgag )T 5T
i=2i 1, i=2j,
which is twice applied to u, and once to uh : Qu, ) is
2

. 2
defined on Q:; Q (u, ) andQ(uh ) are defined on Qp .
2 2 2
4

It should be noticed, that in calculations on the square
grids besides the step discretization one can use the turn of
the grid to the angle T as suggested in/?/. If we denote the
solution on such a grid by u,, where for the given h we have

r=\/2h, then the extrapolation formulae will take form
3 1 h2
u%-=4—uh + 4 ur +1—6- f + 0(7’4); (X,Y)€ Qh R
NS U S i S
/272 h T T g S h

In this case solutions u, and up, are defined on the same
grid, therefore, only one interpolation by the formula (13)
is needed.

4. NUMERICAL EXPERIMENTS

Efficiency of the extrapolation (12) using the solutions
on two grids is investigated for the single-linked and multi-
linked regions, at different values of the residue €p+1* and
besides, the dependence of the number of iterations on the

smoothness of the solution u(xy) is considered.
The problem Au=0 . ul—‘:exo(nv\sinnxlr is congi-
dered in the square region G={0<x<l, 0<y<1}, whence

u=exp(ry sin(wx). For solving the problem in the square
grid @, of the dimension 129x129,h =1/128 four additional
grids Qg , Q4 s Qgn » Qygn were used. Calculations on
each of these grids were carried out with the same accuracy e.
The criteria for the end of the process on each grid is taken
from the relation

ko k-1 14

(;n,?r)xeﬂlhuh u, I<e, (14)
where k 1is the number of iteration. As a basic ralaxation
scheme we used either the Successive~over-Relaxation method
(SOR), or Seidel's method (S). The use of the latter is
caused by the fact, that Seidel's method well suppresses the
high-frequency error component, which arises in the interpola-
tion process. This component contains the eigenfunctions of
the operator corresponding to large eigenvalues. The smooth
part can be well restored using the relation (12). Therefore
Seidel's method being used on the last grids, essentially
accelerates the process. Calculations were carried out in
the following way. The solution U g Was transformed by the ope-
rator @ (13) into the initial approximation for ug, : then using
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Table 1
'3 K(16h) X(8h) K(4h) K(2h) K(h) K& Y
104 21 24 28 i 3.7 2.0
10™° 24 32 47 2 7.0 1.43
10-6 27 37 64 44 5 20.6 0.67
107 30 4 67 298 33 IOV 0.15
SOR SOR S S s
Table 2
& K(16h) K(8h) X(4h) K(2h) K(h) KX | 4
104 21 24 9 2 I 3.5 2.62
10° 24 32 53 7 2 8.6 1.50
106 27 37 28 48 5 32, 0.43
07 30 4 45 302 a3 1I3. 0.1
SOR SOR S S S
Tablq_g
3 K(16h) K(8h) K(4h) KX(2h) K(h) KZX ¥
) (\ pn S 24 28 7 i 4.9 1.55
10° 24 a2 47 46 7 22.0 0.5
10-6 27 37 64 87 80 106. 0.13
SOR SOR SOR SOR SOR
Table 4
[ 3 K(16h) K(8h) K(4h) K(2h) K(h) KZ '
w4 & 87 8 2 I 3.6 2.00
10° w146 49 7 2 9.3 I.I
10 91 206 214 48 5 33.9 0.40
10-7 106 265 455 303 32  I40. 0.1
S S ) S s

Table 5

3 K(16h) K(8h) K(4h) K(2h) K(h) KZ Y
I a1 24 37 a3l I 11.5 0.73
100 24 32 48 7% 71 91.3 0.12
0% 2 37 65 100 156  Is5. 0.07
1077 30 44 74 129 2I2 249, 0.06
SOR SOR SOR SOR SOR
Table 6
£ K(16h) K(8h) K(4h) K(2h) «=z ¥ g
08 2 52 I0I 197 376 37 V.04

SOR SOR SOR SOR SOR

Usgn and ug, we constructed by the formula (12) the initial
approximation for ug,y, and so on, up to the last grid{,. Tab-

les 1-4 show the main characteristics of iterations at various

combinations of SOR and S methods on the sequence of five

e A b /hy drmnban tlhn cviembine ~€ Jhnemnrlmmn me sl Anld O
STIGC. TN, LQTOCUCC LAT TUmCCTY OO LUCTAULCAS Sn Tal grid ey

before the condition (14) is fulfilled. kX designates the
whole number of iterations calculated by the formula

kT 2k ma e
i=Q
which takes into account the interpolation. The number y indi-
cates the asymptotic efficiency of the iteration process:
em(—ykz)-('(olt
where ¢, 1s the initial error.

Note, that the highest efficiency of the relaxation method
proposed by R.P.Fedorenko for the analogous problem is y=0.42/?/
which doesn't depend on the dimension of the problem. The method
of fictitious variables devised by E.S.Nikolaev and I.E.Kapo-
rin’®/ requires for decreasing the error 10" times (according
to’1%/) on the average six iterations for the single-linked
regions and nine iterations for the couple-linked regions. The
corresponding values of y are approximately 1.1 >y >1.0.

Table 5 shows the results of calculations for the same

problem when the solution on the grid p, was used only
as an initial approximation for the calculation of Uhgyy - For

all grid the SOR method is used. For the comparison the results
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of calculations for ¢=10"% by SOR method with the initial ap~-
proximation u,. =0 on each grid are given in table 6. 1In tab-—
les 7-8 the résults for the multi-linked region ’'B** are pre-
sented., Table 7 corresponds to the region G; , which is obtained
from the initial square by excluding the rectangles H1 and Hz‘

M ={0.25<x<0.75; 0.255y<0.3751

IT, =10.25<x<0.75; 0.625<y<0.75}

and table 8 is constructed for the rectangles

I, =10.3755x<0.625; 0.255y<0.375}
IT,={0.375< x<0.625; 0.625<y<0.75 .

Sizes of the rectangles Il and Il, are correlated with the ini-
tial grid Qg4 . It is seen, that the iterations convergence
rate practically doesn't differ from that one for the rectangu-
lar region and is even greater for ¢ =10"7.In table 9 the
dependence of the convergence rate on the smoothness of solution

Table 7
€ K(16h) K(8h) X(4h) 'K(Zh) K (h) KZ Y
10~4 21 18 27 2 1 4.43 1.70
10- 23 25 39 6 2 6.42 1.54
10-6 26 33 55 58 6  24.5 0.54
10~7 29 42 72 Ie8 35  82.2 0.19
SOR SOR SOR s S
Table 8
3 K(16h) K(8h) K(4h) K(2h) K(h) K% Y
1004 20 19 26 2 I 3.7 1.94
10° 23 26 43 6 2 6.7 1.40
106 26 34 58 49 6  22.5 0.59
107 28 39 71 164 34  79.0 0.20
SOR SOR SOR S )

Table 9 _
P K{(16h) KX(8h) K(4h) K(2h) X (h) KZ 7
I 17 22 26 I 3.53 2,94
2 17 29 44 2 8.13 1.27
3 I8 31 98 64 4 24,1 0.46
4 I7 32 6l 7R 7 9.3 V.39
5 17 34 69 67 42 63.4 0.1y
6 16 36 69 60 65  84.9 0.14
7 I 36 73 o4 72 90.0 V.13
8 19 37 72 49 73 9U.4 V.13
9 18 39 72 44 70 86.1 0.13
IV 19 39 73 41 67 84.3 v.13
20 Io 39 9l 97 41 72.6 0.17
SOR SOR SOR s [
u(x.y) is shown. All calculations were performed un tn » =
=10"°, The problem
Au =-2p2 7 2sin #px- 8in 7py
up =0
with the exact solution u=singpx-singpy is solved in
the region G. Calculations for p =1+ 10 and p =20 are presen—

ted. It is seen that beginning with Pp=7 the quantity y does
not decrease and even increases for P =20. In all cases

miny 2 0,13, This can be explained by the fact that the smooth
component of solution is extrapolated exactly by (12) and the
high-frequency error component can be suppressed easily by
Seidel's method.

5. CONCLUSIONS

These numerical results allow us to expect that when the
error of approximate solution exhibits a regular behaviour
according to (6}, then the suggested method of accelerating the
convergence in the case of elliptic equations gives an algo-
rithm, which is optimal in viewpoint of the order of the number
of arithmetic operations and the required storage exceeds the
corresponding storage for the finest grid less than 1.5 times.



It should be noticed, that the quantity y can be controlled
during calculations and when its value becomes as small/gﬁ
y . >y, one can easily change to the relaxation method’”’, which
requires analogous organization of calculation on the sequence of
grids.

Note also, that in tables 1-4 and 7-9 the number of itera—
tions on the last grid is always less, than the maximum number
of iterations on each of the rest four grids, which means,
that for the given ¢ the number of iterations does not increa-
se with increasing h. For ¢=o0(h?) = 107" the number of itera-
tions decreases monotonously from one grid to another, that
is, the summary computational work required is estimated by the
quantity oh —%),
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Atpsin 3.A., MupxoB E.Il., Xopomckuit B.H. El11-82-492
BricTphit HTepalHOHHbI MeTON Ha MNOCHeOoOBAaTeJIbHOCTH CEeTOK
PEemeHHA pa3HocTHOH 3amauH qisa ypaBHeHusa IlyaccoHa

IIpepnoxeH MeTOHd YCKOPEHHA CXOOHWMOCTH HTEPAalHOHHBIX NpOLEeCcCOB
Ha NOCHefOBATEJIbHOCTH CETOK, YUYHTHBAWIHH pa3JIOXeHHE Pa3HOCTHOIG;
PEemeHHA O CTeNeHAM mara AMCKpPeTH3auHH. [[pHOJIMXeHHble peleHH:A
C HECKOJIBKHX BCNOMOTAaTelIbHBIX CEeTOK 3KCTPAaNoJIHPYKWTCA K TOYHOMY
PemeHH Pa3HOCTHOH 3apmayd Ha 6ojsiee Menkol MeTke. B cnyuae
pPa3HOCTHOH 3aiayH Ui ypaBHeHHsa IlyaccoHa NOrpemHOCTb TAaKOH 3K~
CTPANOJISIUMH Ha noclefnHeH ceTKe GhCTPO NMOAABIIAETCH IPOCThIMH
HTepalHAMH B CHJIY H3BECTHHIX CBOHCTB IJIaJJKOCTH COGCTBEHHBbIX
¢yYHKUHH pPa3HOCTHOroO oneparopa. llpHBelieHbl pe3yibTAThH UYHCIIEHHBIX
3KCNEepHMEeHTOB, HJUIOCTPHpYWIHe BHCOKYKW 3¢bekTHBHOCTL MeToma IJIA
pelleHHA yKa3aHHOH 3apmayH.

PaGora BrmonHeHa B JlaGOpaTOPHH BbMHCIIHTENbHOH TEeXHHKH
H aBToMaTH3auum OWAH.

NpenpuHT 06BEAMHEHHOrO MHCTWTYTa AAEPHWX uccneaosamnui. [lyGHa 1982
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Fast Relaxation Method for Solving the Difference Problem
for the Poisson Equation on the Sequence of Grids

A method for accelerating the convergence of iterative pro-
cesses on the sequence of grids is proposed, which makes use
of the decomposition of difference solution into the degrees
of discretization step. Approximate solutions from a number of
auxiliary grids are extrapolated to the exact solution on the
finest grid. In the case of a difference problem for the Pois-
son equation the error of such extrapolation on the last grid
is quickly suppossed by simple iterations due to same pro-
perties of smoothness of the difference operator's eigenfunc-
tions. The results of numerical experiments are presented
which illustrate the high efficiency of the proposed method
for solution of the given problem.

The investigation has been performed at the Laboratory of
Computing Techniques and Automation, JINR.
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