


.l. Introduction

In the first paper on the given topic we have formulated the Monte-Carlo
perturbation source method (PSM) in inhomogeneous linear particle trans-
port problems on the basis of FREDHOLM integral equations for the par-
ticle fields /1/. In that framework the formulae for the second moment
of the difference event point estimator were derived. This was accom-
plished by an adequate extension of the adjoint integral method ;sed

by Coveyou et al. for representing the variances of the event point es-
timator in analog and biased solutions of ordinary particle transport
problems /2/. In the present paper we analyse the general structure of
the variance in the PSM, point out the variance peculiarities of this
method, discuss the dependences on certain transport games and genera-
tion procedures, and drav conclusions with respect to its improvement.
Only to complete the paper we preface the discussion of chapter 3 once
more by the mathematical formulation and a brief outline of the PSM in

chapter 2.

2. Mathematical Formulation and Outline of the Perturbation Source
Method

The physical problem considered here is the following. Let us have an
arrangement consisting of a constant outer particle source, a nonmulti-
plying material system and a detector. In the original state of the sys-
tem ("zero" state) the detector gives a certain counting rate A,. After
changing the system ("one" state) and waiting for the new equilibrium
dgistribution the detector shows now the counting rste Aq . We are in~
terested in the effect shown by the detector in consequence of the sys-
tem modification, i.e.,in the difference A of the counting rates Ai
!
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in both system states i=0,1

A=A, - Ao - (1)

The PSM seems to be s powerful MC method which at lesat in certsin casea
allows one to estimate the effect A with an acceptable statistical relia-
bility. In order to snalyse its genersl vsriance behaviour we have for-
mulated this method in s convenient mathematical model. We describe the
particle distributions in both system states by event denaitiee Ei(x) 20

which are to be the solutions of the FREDHOLM integrsl equatione

EW-56 + kir-nE[de =01 @

and give the counting rates
A= :D(”)Eé')dx ) i=04. ®

In equstions (2) So(x) represants s nonnegstive source distribution which
may be sssumed to be normslized. The kernels Ki(x-qy)ZU describe the
transitions of a perticle from sn event point x to the next point in dy
near y. They are completely determined by the aystem ststes. In equa-
tion (3) D{(x)20 is the detector function describing the localization

snd senaibility of the detector in counting thé events.

For the further explanstion it ie ueeful to introduce the so-called vslue

functions Hi(x)z.(] of both system etatee which are to be the solutione

Wie)=D6) + [l (e WG, =04,

In the PSM the same effect A is caslculated ae the difference of two
]
other counting rates A* , which sre the counting ratee of the same de-

dector but of the events of two types (j=0,1) of new particles

Lg *
A=Ay = Ao )



vhere

A; 5/3(\‘)[’;2\‘)/*‘ , ;'-121 (6)

and Ej(x)ZD are the event densitiea of the new ao-called perturbation

particles, or ahorter " perturbatons",

é}zr) = Blt) + /K{x'w)[}&%x’ , 01

We note that both typee of perturbatons live in the same syatem "one"
and thus have the same value function Hl(x), but are emitted by different
sources Pj(x)Z(L The sources Pj(x) themselvee ere generated by the ori-

ginal psrticles in the syetem state "zero" (basic perticles)

R = [BE-DEE A, j= 8L, w

wvhere the generation kernele Pj(x-»y) are defined es the nonnegative,

nonmultiplying remaindere of the difference of the tranaition kernels Ki

Kilr=p) - Kltyg) = Blesg) - Bl=y). o

The Pj(x) give the so~-called perturbation source

Pi) = Bx) - B&K) . 10

From equatione (2) and (5) through (8) follows the general outline of the
PSM:
1) According to [bo’Ko] eimulate the history of a basic particle.
2) According to equations (8) generate both types of perturbatons
during the random walk of the‘basic perticle.
3) Simulate the histories of all generated perturbatons in the
"one" state of the system and sum up eatimators 7; of the A;

during the lifetimea of ell generated "j" perturbatona.



4) The estimator (per basic particle) of the effect A is given by

f_ * * 1
,(/-21-20' ()

The variance of the difference estimator (l1) is compossd of the varisnces

I

Var( lz;) of the estimators IZ: and of their covsriancs Cov(bz:, Q:)

Var(y) = gvar@;) Q0yy).

Comparing the PSM with other methods which baae on estimstiona of the A;
ve may generally establish that all hopes in the PSM rest on its promising
features for introducing positive correlation between its subtracting esti-

[ ]
mators 2 ' .

3. Variance Analysis of the PSM Event Point Estimator

The event point estimator of the PSM is given by equation (11) with event

. .
point estimators lz' (j=0,1). Denoting with xl( 1=0,1...L) the event points
of a baaic particle and wvith L .(n=0,l...N) the event points of a genera-

ted "j" perturbaton the ' may be represented as »

t ﬁ ‘(X.'x"uo’XL, q,Xqv ...,Xn‘)'yx'v) jgo”l. (13)

L8 net
Here wj(xo’""xl;xoj’xlj""'xnj) 2 0 is to be the statisticsl weight of
a "j" perturbaton at its event point xnj vhich wes generated in a baaic

event at X and after that has psesed the event points x ,le,...,x ie

0j nJ

As contribution function the estimstora contain the detector function D(x).
: ' ) '

We point out thst the estimators 7’ are summed up over all perturbatons

of the type "j" which vere generated during the lifetime of a basic particle.

To study the variance of the PSM event point eatimator

Val‘(zf)=M[Z*z] - Az (18)

ve have to derive expressions for ita second moment M[z’z]. That wvas accomp-
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lished in /1/ with the help of the following properly defined random va-
riables’s .
go(x) is to be & random variable whose value ia, for each posaible baaic
particle of unit weight experiencing an event in dx near x, the
total contribution to the estimate of /\ , present and future,
resulting from the particle during ita further random walk in the
system Ko (including the present event) by generating perturba-
tons which then contribute to the estimate.
yj(x) (3=0,1) is to be a random variable whose value is the contribution
to the eatimate of A: , made by a "j" perturbaton which is poa-
sibly generated in reault of sn event of a basic particle with

unit weight in dx near x.

—fl(x) is to be a random variable whose valus is, for each possible per-
turbaton of unit weight experiencing an event in dx near x, the
total contribution, present and future, to the estimate (of /\'0

or /\.1) of its perturbaton type.
Furthermore, let us define the random variable ;(x) according to
) = $,00 - L&) . (15)

Tha specified random vsriables are so defined that their expected values

(over all particle histories in question) are given by

ME®] = W6 , o
M[?'@] = W(*) an

with W(x) as solution of

W6 =] + x| oo

*Furtheron dashed entities announce that they are related to biaaing
Y

schemes.



M[Tw] = M[Ee] - M[Z6)] o
M[Fel= (R6- Wb’ , 464 co
According to the definition of fo(x) the mean value of the estimatar

MOl - [SoMERld .

Starting from this equation it is easy to show that YL is an unbiased

is given by

estimator of ) s le€4y

M[Z*] =A. (22)

The estimator variance (14) depends on the types of tranaport games carried
out with the basic particlee and perturbatons and on the procedure used

for the generatidn of the perturbatons. Only for clearness we have reatric-
ted our derivation in /1/ to the important clsss of survival-biaaing tran-
sport gamea, the extension to the genmeral biasing /2/ is straightforward.
As generation procedures we considered three different biasing schems but

all base on the event pointa of a baaic particle.

For the second moment M[z"‘]we have found the closed expression

M[Z“] N ﬁ'mﬂg W) ‘M&MMX + \ér(ﬁc))f@dx (23)

where T o(x) 20 ia the solution of

F&) = 5,6&) +f¢°< ) KL EG)det @

and Var( ?(x)) the variance function of J’(x)

Var( f(f‘)) = M[ﬁ’] - MZ?&)] , (25)

In equation (24) and in further equations we uase the denotations G’i(x)
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for the normalization functiona of the transition kernels Ki(x-y), rsapec~

tively
' ! .
6; &) Eﬂ(s(’(""‘)dx , (=04, e
The @i(x) are the biasing aurvival probabilities.

The veriance function Var( F(x)) id determined by the gensration procedure
and by ths transport game used for the perturbatons. It is compossd of the

variancs functions of the J (x) and of their covariance function

Vor(F6) = Zvarﬁ’(o) 2 Cof0,76) .
Co 70,76 = M[Z05ie] - MERINER].

In the generation procedure (A) at an event point x' of-a basic particls

vhere

the "j" perturbatons are statistically independent generated and trans-
fered to their first event points according to the gsneration probabilities

p (x) and the transfere functions P p (x—y), respsctively. Then,

[‘f()] @)/ﬂr-»x M[f{k‘)]({)f , .'=&;1 (;9)
Mo // Rbeor Rl MEOTH T

»
In the generation procedurs (B) the "j" perturbatons are generated in pairs

using a pair generation probability P(x) but transfered to their firat
event points by statistically indepsndent aelecting from the distribution

functions p p (x-ay) We gstz '
M[f(x)]' ) /%Mﬁﬂ&l , j‘=’;1 (1)

and

Mt~ 2 [Re- R MBS T



b)

‘ A= / M[Fw]E, () dlx 37)

vhat mekes clear that A may be estimated directly in the basic game.

In that way the PSM procedure degenerated fo the solution of an ordi-
nary linear particle transport problem in the system [SO,KOJ ‘with M[-?(x)J
a8 the contribution function in an event point estimator 'l: Using the

results from /2/ for such Monte-Carlo solutions wve get

M = M- B e oo

what is just the first part of M[z"’] in equation (23). In compsrison with
the true PSM procedure this solution realizes the estimation of A

using the expected value M[?(x)] instead of the random varisble JF(x),

76) —— M[T0]. -

Teking into consideration (39) equstion (38) may also be derived from

l.8.9

belsnce (II) in /1/.

W.(x) is assumed to bs known

Using equations (8),(10),(19) end (20) A from equation (37) may be re-

wvritten as functionsl of the perturbation source

A -/M&)ﬂ?)a(x ' (40)

»
This relstion shows that, hsving \vll(x), /\ may be estimated by only simu-

lsting the perturbation source. Practically the PSM procedure then termi-
nates st the first event pointsof the perturbatons and \vll(x) must be used
as the contribution function in the event point estimators 'Z:,b for the
difference estimator of this variant. Thet is, this state of the PSM in-.
cludes the generation process of the perturbatons (up to their first
event point) but not their transport game. In comparison with a) the

occurrence of the generation process in the Monte-Carlo solution results

in an additional varisnce contribution

Vur(1) = Var(zs) -+ /%r,(ﬁ))f(x)alx. a

9



In the geperation procedure (C) only one perturbston is generated which
now dillectly represents the difference of both perturbation source terma.
In extension of the procedure (B) here we use not only the same generation
probability B(x) but also a common transf'er ‘function P(x-sy) for both

generation kernels. We find

M[fé] Fé) ’-,(:-‘:I) M[“ré‘)de ) 7-"21 (33)

and

M[fﬁ’)fﬁ] Fé" /M)M[ﬁ]b' (34)

G—=x)

The moments M [#(x)] and M[fl(x) fl(y)] appearing in equations (29)
through (34) are determined by the trensport game of the perturbatons.
We have not yet studied correlated games for both typee of perturbatona.

W= amfene-ow) + §4 [ K e MBI’ oo

ME©OTH]=WeWy X#;-‘ eR

With the help of equstion (23) we now anslyse the genersl structure of the
variance (14) of the PSM event point eetimstor (11). For thia end we look
at three different atstes of the PSM which differ by the degree of know-
ledge on the solution (evsluation of /\ ) utilized in the Monte-Cerlo cal-
culation. . :

a) M [?(x)J is assumed to be known \

This meana that with Nl(x) the solution of the field equation (4) is
known and, furthermore, that the quadrstures (20) and the subtraction
(19) are carried out deterministically. Using equstions (4) through (8)

/\ may be represented



The knowledge on the solution is reducsd from MF(x)] to wl(x), i.e.»
the qusdratures (20) and the subtraction (19)are now performed statis-
tically in the Monte-Carlo procedure. This loss in knowledge causee the
increase in veriance.

In comparison with the true PSM procedure in thia varient b) A is esti-
mated by using the expected value H[?l(x)] =H1(x) inetesd of the ran-

dom variable i(x), i.e.
iét) _— M[ft@‘)] . (42)

With (42) equation (36) is valid end, furthsrmors,

M[?,%O] = \J:(X) . (43)

With that the expressions for the veriance functions Varb( F(x)) for all
generation procedures may be derived from equations (27) through (34) /1/.
It should yet be pbinted out that the additional variencs part also de-
pends on the transport game of the basic psrticlea vie the weighting

~ function ro(x) in the quadreture of var( F(x)).

c) Only the detector function D‘)Q is_known

In this case we have to perform the complete PSM procedure. The general

structure of the varisnce is the game as in b)

Varlg) =Vae(l) + [T,

however, the additional vsrisnce term is increased becsuse of

var‘(ﬁi)) 2 Vafb ( ﬁ)) (45)

what is in consequence of

M[f(rﬂ _>_ \Jj(X) (46)

if the rsndom vsriable gl(x) is ueed instead of its expected value as
it was in b). As the ?1(") we use the event point estimstor with D(x)

as the contribution function in s history sterting at x and taking
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place in the system Kl. In comparison with a) not only the integrals
(20) and their difference (19) but also Vl(x) itself ia unknown.. The
extraction of sll thease informations is now included in the Monte-

Carlo procedure. Comparing with b), the further loss in knowledge results

in 8 further increase of variance.

Next we show which elements of the PSM in what way help in positive corre-
lating both estimators rLf]. For this purpose we compars the variance of the
PSM estimstor with that of s difference estimator (11) with statistically
independent estimators 'I} . The lstter meane that we have two statistically
independent, modified PSM calculations esch of them containing only a single
generation procees, namely, for the estimation of A; ( A'l ) the generation

of "zero" ("one") perturbstons. The variancee Var (Dz;) are essily calculated

vith the help of the formulas derived in /1/ for the case of s single
generation process. Then, in accordance with eyuation (12), we find

for the covarisnce

Covly,n;) = é’-/(ﬂ,(ik/,'_ﬂ.) fﬂ’a%“/‘f;}}:@){{x
+/(av(£m,£a9f6f)dx - Aods
_Mi'”[f;(”)} , W‘M{\‘)* ) 01w

and defined the Hg(x) 2 0 aa solutions of

\n/!(’() =N[J7@)] +/I(.(A‘-wx9 M'@'?dl" ) =04, @

The integral terms on ths right side of squation (47) announce two featurea
of the PSH which may help in positive. r-.‘orrelating thg estimators Dz: The
term containing the covariance function Cov( ?o(x), 3;(x),) is determined by
the simulation procedurs of the generation process and by the following
random walk of the perturbstons. The behaviour of thia function is imme-

diately discussed in more detail for different casea. The other, nonnegativs

.
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integral term atems from that fact that : in the PSM the generation processes
of both'typea of perturbatons are baaed on the aame bssic histories. Both
constituents of the covariance enlighten that the common generation pro-

cess of the pefturbatons snd their following random walk in the same sys-

tem state are the promising featuras of the PSM for introducing positive
correlation between subtracting estimators and, therefore, are recisive

with respect to the usefulness of this method st all.
Now let us discuss the effects of the different generation procedures considered

above on the variance function Var(|? (x)). Because in the generation procedure

(A) both perturbatons are inuependently generated accoroing to ﬁj(x) and ﬁj(x-y)
these functions influence the varisnces Var( ?J(x)) only and not the covariance
Cov’(?o(x), }l(x)). The dependences of the aecond moments M[fﬁx)] on the
biasiny functions ﬁj(x) and ﬁj(x-oy) are those as usually in a biasiny of a

transition kernel /2/. Ubviously,
f}(’() = 1 ) J=‘},1 (50)
results in minimum variance.

from equations (27) through (30) we see that variance reduction by a positive
covariance function Cov( J;(x), ia(x)) requires positive correlated transport

yames of the "zero" and "one" perturbations so that

M[g(X)f(y)] 2 \4/1&) M[ﬂ , Ktg.oov

Such possibilities should be theoretically and practically investiyated. For

uncorrelated transport yames the equality is valid (equation (36)), hence,
Cov(£®, @) = 0. 2)

The generation procedure (B) comprises a positive correlatjon in the generation

of both perturbatons and thus yives variance reduction. It is obvious that for

E(x) = F(X) =4 , = Ld 3

(A) and (B) become identical. However, ror

12



/?'(r) _—./3[«\’) < 1 , f=41 (54)

we yain in (B) by a positive covsrisnce function Cov(fd(x), ;'r'l(x)) and this

+

even in the case if the transport gsmes of both perturbatona are uncorrslated,

Cov(f(*‘), f@)) 2(,5% ‘1)["[&0]/»{[‘—6‘)] . (55)

The gensration procedure (C) could be quite favoursble with respect to variance

i.084

reduction provided there are sufficiently extended phase space regions where

the. gsneration kernels are overlapping, i.e.,
73@' "}) E& '7) > (56)

Then, there would be a great portion of common generation processes for the
"zero" and "one" perturbatons which heve equsl, expected contributions to
their estimators 7;; and. 2: » Tespectively, Just those contributions sre
identicslly simulated by one resulting perturbaton of the procedure (C). Of
courae, . furthermore we would hsve s considersbly reduced numerical expense

by economizing the tranaport game of one perturbaton. On the other hsnd,
nothing will be gsined by (C) if there sre no such overlapping regiona. On

the contrary, then the common biasing by the transfer function P(x=sy) would
split in a generation of either s pure "zero" or a pure "one" perturbston,
With p(x) = 1 we would get the variancss Var ( ag(x)) from the generation pro-

cedure (A) but additionally a negative covariance function
Cov (R0, ) = — MEoo] M[00] o

vhat is caused by the "either - or" generstion,

Next we point out the dependence of Var( 2') on the distribution of the random
varisble ?(x) vhich takes a decisive part with respect to the ef'ficiency of
the PSM. The first variance part Var ( zz) is completely determined by its
mean velue M[?(x)] (see egquation (38)), but the second by its varianca
Van{ F(x)). The first part decresses when M{F (x)] —» 0 whereas th.e second

“
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goes to a limit determined by M[?'(x)] 2 0. Obviously, this fact has mis-

chievous consequences for the PSM in the tendency of decreasing effect by

decreasing M[f(x)] . Thus, in dependence of the diatribution of this variable
Fx) the PSM may show‘quite different efficiencies in cases with the same

order of the effect A .

Two further general propertiea of the PSM are worth to note. The first concernea
the dependence of the variance on the transport games chosen for the basic
particles and for the perturbatons. As in ordinary transport problems with
nonmultiplying transition kernels the EV-bissing game among all survival bia-
sing yames leads to the smallest variance /3/. Its applicstion in the transport
of the perturbatons minimizes the M[?f(x)] . from equation (35) snd by that
the variance function Var( ¥ (x)) in the second term of equation (23). The
EV-biasing in the basic game minimizes Fo(x) from equation (24) snd in that

wvay both parts of the second moment M[z“']. Though, the basic gsme influences
both terms, in prsctice we are kept to handle very carefully the application
of the EV-biaaing gsme because the prolongation of the baaic histories increa-
ses the number of generated perturbatons and by that considerably the entire
expense, Doubtless we have to seek for appropriate procedures for selecting

real generation events from all possible ones of a basic history. The other
general property to be pointed out is the asymmetry between both system states
with respect to the variance of the PSM estimator, i.e.,an interchange of the
states for the basic and the perturbaton trangport games (see /1/), in general,
will result in a different variance. It seems to be difficult but paying to
deduce recommendations on the disposition of the system states to the basic and

perturbaton game. Model investigations should help to enlighten this problem.

Furthermore, it ahould be noted that a calculation of —A instead of A with

the same disposition of the syatem states gives the same variance.

We want yet to hint at the application of a general variance reduction method,

the importance function method (IF-method), in the PSHM*. In ordinary particle

+: A detailed discussion will be given in another paper.
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transport problems the IF - method is known to be one of the most powerful

means in variance reduction. It even allows to construct two direct zero-variance
solutions in the apecial case if the value function is used as the importance
function /3,4,5/. Therefore, it is of great interest to ask for the efficiency

of thia variance reduction method in the case of the PSM.,

At first let us consider the effect of ita application on the generation pro-
cess and transport geme of the perturbstons. We assume to know the value func-
tion W,(x) of the state K, end the normslization functions MRj(x)] of the
modified generation kernels PJ.(x —y) Nl(y), respectively. Keeping on the bia-
sing technique used in the analysis of the generation process snd denoting all
biasing entities involved for this special case by tildes, we would have to use

§l~t) = Bo-DMGMGR] | 81 oo

in the generation procedures (A) or (B) for the case (53)% .

Mie] M6l BsInGilde',  j=04. o

Both, with the value function Nl(x) modified perturbaton transport games

Hence,

correspondiﬁg to the zero-variance solutions mentioned previously are chsrac-

terized by a deterministic variable gl(x)=M[?‘l(X)] =N1(x). Thus,

M[‘ff:&)] = Me[g@ﬂ ) 7= g{4

%r(f&)) .= J (61)

Of course, this result is in accordance with the degenersted csse a) of the

and therefore

PSM discussed above. The proper utilization of the knowvledge of Ul(x) and

M [?J.(x)] (j=0,1) allows to zero the variance part caused by generstion pro-

- +: Of courae, mean values remain the same, e.g., M[fj(x)] = M[?J.(x)} .
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cesa and perturbaton transport game. Here is the deciding fact that both types
of perturbatona have the asme value function Hl(x) becauae they live in the
seme ayatem state and are counted by the aame detector. In that way the gene-
ral usefulneas of the application of the IF - method in this part of the PSM

is demonstrated.

Nov we turn to the application of the importance function method in the tran-
sport game of the basic particles having in view the reduction of the first
variance portion Var( 2'8) in equation (44). At first we consider the degenera-
ted case a) and assume a nonnegative function M{F(x)] *. Then, knowing not on-
ly H[?(x)] as in a), but alac W(x) and A ve are able to construct both
modified zero-variance aolutiona of the ordinary particle transport problem.
if M{#(x)] is an alternating function then, in general, it is W(x) too and

a zero-variance solution for A could only be constructed as a difference of
the two zero-variance solutions for A: , both modified with the nonnegative
constituents Hg(x) of W(x), respectively. Similarly, in the apecial case of
twvo separate PSM calculations each of them containing only a aingle gsneration
process for the estimation of the A: we could also conatruct a zero-variance
solution of /\ . Fozl thst we would have to modify both basic transport gamea
with the importance functions Ng(x)/ A:, but the transport gamea of the pertur-
batons with Nl(x) and using the normalization functions M[?j(x)] in the ge-
neration processes for js0,1, respectively. The principle of such a modified
zero-variance solution for the l\: is that the weight of each basic pa;:ticle
is fully transfered to the perturbatons generated during its lifetime and then
fully converted by them into the eatimate. In general, thia zero-variance
principle cannot be realized in the true PSM procedure with one basic. transport
for both generation processes. Thia is only possible in the csse of a nonnega-
tive function M[f(x)] and using the single generation procedure (C) for the
modified generation process, i.e., if we unite both generation proceases in an

analytical way. For that we would have to use W(x)/A as the importance function

+: The case of a nonpositive function M[?(x)] may be reduced to that case.

16



in the basic game and Ul(x) in the perturbaton game. Here ia of importance that
the single, nonnegetive generation process involves the appearence of only

one value function W(x) for the basic particles wheress two generation proces-
see result in two different value functions wg(x) wvhich demand different mo-

dified basic games.

The fact that the true PSM has lost the ideal zero-variance solutions of the
IF - method should not be taken too seriously. In practical applicationa the
use of this variance reduction method both in the basic and in the perturbaton
game will doubtless yield a substantial ;mprovemgnt of the PSM. However, the
efficiency of the IF - method in the PSM ahould be investigated in more de-

tail by model calculations.

Last we outline an epproximative version (bin-version) of the PSM which should
turn out to be quite favourable in practical applications. We have not yet
taken trouble to show the improvements By this version, but some "phyaical"
-arguments ssem doubtless to apeak in its favour. We start from the adjoint

x
representations of the counting rates A‘j from equations (6)

R V1 S Y

Let ua suppose the phase spacs of the system to be devided in G subregions

(bins). In this grained phase space the integrals (62) may be repreaented as

sums + ’ ’ s
"i =;§ W"f'g =04, @

where we have defined
e}g 26‘)0( X / = IZ 1
and bin mean values 7

W = WEROAR, 81

If the bins are sufficiently small and properly chosen so.that in a bin g

the mean values N? jfor Jj=0,1 are approximately of the same magnitude N?, i.e.,
. ’
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# § § $
quM ) WM =1 W4 ) }:{,.?,,,.16’,_(66)

then A may be calculateq from
B CE
-
A complete Monte-Carlo calculation of ) on the baaia of equation (67) would
look as follows:
At the first event pointa of the genersted "j" perturbatons the Pg are
eatimated by summing up the particle weighta for all bins g snd per-
turbaton types j. The following transport gamea of all perturbatona
starting in a bin g would give the eatimates of the w9 uaing the

1
event point eatimator D(x) as the contribution function.

Likewiae a@s in the PSM variant b) with the known value function Hl(x) the
variance reducing featuras of this spproximative bin-method consists in the
circumatance that here all "zero" end "one" particles having their first
evente in the same bin ¢ would heve the same contribution H? to the estimate.
The applicability of thia spproximetive PSM version should be tested in

practice. -

As a next atep, with the halp of the theoreticel foundation presented in thie
paper, we intend to investigate the variance behaviour of different PSM ver-

sions in simple but practical models.
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