
$2406 / 2-81$

сообщения объединенного института ядериых исследований дубна

E11-81-88

G.Zschornack, G.Müller, G.Musiol

GEOMC - A MONTE-CARLO PROGRAM FOR CALCULATING GEOMETRICAL aberrations
IN CURVED-CRYSTAL SPECTROMETERS

1. INTRODUCTION

In recent years the technical and methodical progress on several technical fields and physics understanding has contributed to an increase in the accuracy of curved-crystal diffraction spectrometers and has excluded a series of aberrations typical for spectrometer operation. Essentially, most of aberrations which might occur with a curved-crystal spectrometer can be negligible by a careful construction, alignment and operation of the spectrometer. However, it should be known the types of aberrations which can occur and their relative magnitudes. Some aberrations produce a line shift, others contribute only to broadening the line. Line shifts could affect in systematic errors in measurements of the wavelengths or energies. Especially, this problem takes a leading part at the absolute determination of the wavelengths or energies.

In this paper we describe a Monte-Carlo program GEOMC to investigate centroid shifts and shape alterations of the diffraction line due to the finite size of source and crystal, i.e., the effect of geometrical aberrations for the Lave and for the Bragg case. This problem was approached for transmission spectrometers (Laue case) by Schwitz et al./1/ and also, it was taken into consideration by Schult ${ }^{1 / 2 /}$ and Reidy ${ }^{13 /}$. For the Bragg case, this problem was discussed, for instance, by Meisel et al..$^{\prime}$ and Zschornack et al. ${ }^{/ 5 /}$. The present program doesn't take into consideration crystal structure effects, radiation absorption and extinction, and the effects, originated in errors of the crystal bending.
2. THE MATHEMATICAL TREATMENT

2.1. The Laue Case

For transmission geometry the mathematical treatment was worked out by Schwitz et al. ${ }^{/ 1 /}$. The geometry of the problem is shown schematically in projection in fig.1. The coordinates of an arbitrary emission point $Q(x, y, z)$ of the source are defined from the point T at the focal circle; and these coordinates of any diffraction point $B(r, t, h)$ of the crystal, from the point S of the same circle. The latter point lies opposite to the intersection K of the axis of curvature, z and h

Fig. 1. Schematic geometry of a curved Laue crystal spectrometer in Du Mond version. T source reference point on the focal circle; Q - projection of an arbitrary source point (coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$) on the drawing plane; K intersection of the axis - of curvature with the drawing plane; S crystal reference point on the focal circle; B - projection of an
 arbitrary diffraction point (coordinates r, t, h) on the drawing plane; θ-measured spectrometer angle between the direction of a photon emitted in T and diffracted in S and the crystal plane through S; $\theta_{i}-$ projection of the effective diffraction angle of a photon emitted in Q and diffracted in $B ; R-c r y s t a l$ radius of curva-
ture.
are perpendicular to the plane, which contain the focal circle. The angle between the ray from T to S and the crystal plane through S is denoted as θ. The angle between the line joining the arbitrary points Q and B and the crystal through B is denoted as θ_{i}. From the geometry in fig. 1 we derive the quantities

$$
\begin{equation*}
\mathrm{a}=\mathrm{R} \cos \theta, \tag{1}
\end{equation*}
$$

$\mathrm{b}=\mathrm{R} \sin \theta$,
$\mathrm{v}=\mathrm{e} \sin \delta$,

$$
\begin{equation*}
\mathrm{w}=\mathrm{e} \cos \delta . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\tau=\mathrm{t} / \mathrm{R}, \tag{4}
\end{equation*}
$$

$\sin \delta=\frac{1}{\mathrm{e}}[(\mathrm{b}-\mathrm{y}) \cos (\theta-\tau)-\mathrm{x} \sin (\theta-\tau)]$,
$\cos \delta=\frac{1}{e}[(b-y) \sin (\theta-r)+x \cos (\theta-r)]$.
The insertion of eqs. (6) and (7) in eqs. (3) and (4) yields:

$$
\begin{align*}
& \mathrm{v}=(\mathrm{b}-\mathrm{y}) \cos (\theta-\tau)-\mathrm{x} \sin (\theta-\tau) \tag{8}\\
& \mathrm{w}=(\mathrm{b}-\mathrm{y}) \sin (\theta-r)+\mathrm{x} \cos (\theta-\tau) .
\end{align*}
$$

The segment length u can be expressed as:

$$
\begin{equation*}
u^{2}=(R+r-w)^{2}+v^{2}+(h-z)^{2} . \tag{10}
\end{equation*}
$$

To take into consideration the triangle $\mathrm{QBH}, \sin \theta_{\mathrm{i}}$ has the form

$$
\begin{equation*}
\sin \theta_{i}=\frac{v}{u}=\frac{v}{\left[(R+r-w)^{2}+v^{2}+(h-z)^{2}\right]^{1 / 2}} \tag{11}
\end{equation*}
$$

Due to the crystal curvature, the lattice spacing changes across the plate as a function of the coordinates r :

$$
\begin{equation*}
\mathrm{d}_{\mathrm{i}}=\left(1+\frac{\mathrm{r}}{\mathrm{R}}\right) \mathrm{d}, \tag{12}
\end{equation*}
$$

where d is the unstrained crystal interplanar spacing distance. The Bragg law valid for each individual ray can be written:

$$
\begin{equation*}
2 d_{i} \sin \theta_{i}=2 d\left(1+\frac{r}{R}\right) \sin \theta_{i}=m \lambda, \tag{13}
\end{equation*}
$$

where λ is the wavelength of the diffracted ray and m is the order of diffraction. Thus, we define the quantity:

$$
\begin{equation*}
\left(\sin \theta_{i}\right)_{e f f}=\left(1+\frac{r}{R}\right) \sin \theta_{i}=\frac{\left(1+\frac{r}{R}\right) \cdot \frac{v}{R}}{\left[\left(1+\frac{r}{R}-\frac{w}{R}\right)^{2}+\left(\frac{v}{R}\right)^{2}+\left(\frac{h-z}{R}\right)^{2}\right]^{1 / 2}} . \tag{14}
\end{equation*}
$$

We use formula (14) as a starting point for the treatment of the Laue case in the Monte-Carlo program.

2.2. The Bragg Case

For the reflection case the mathematical treatment was worked out by Schwitz et al. ${ }^{1 /}$. The geometry of the problem is shown as the analogous one to the Laue case in fig. 2 .

By analogy with this, we derive the quantities

$$
\begin{align*}
& \mathrm{a}=\mathrm{R} \sin \theta \tag{15}\\
& \mathrm{~b}=\mathrm{R} \cos \theta \tag{16}
\end{align*}
$$

We note, that the quantity R^{\prime} in fig. 2 is equal to R for the description of Johann ${ }^{6 /}$ spectrometers, but has the form Rcosr for Johansson ${ }^{17 /}$ spectrometers.

The eqs. (3), (4) and (5) don't change their forms, so that we get

$$
\begin{align*}
& v=(b-y) \sin (\theta+\tau)-x \cos (\theta+r), \tag{17}\\
& w=(b-y) \cos (\theta+r)+x \sin (\theta+\tau), \tag{18}
\end{align*}
$$

$\sin \theta_{\mathrm{i}}$ has then the form:

$$
\begin{equation*}
\sin \theta_{i}=\frac{R^{\prime}+r-w}{u}=\frac{R^{\prime}+r-w}{\left[\left(R^{\prime}+r-w\right)^{2}+v^{2}+(h-z)^{2}\right]^{1 / 2}} \tag{19}
\end{equation*}
$$

e.g.,

$$
\begin{equation*}
\left(\sin \theta_{i}\right)_{e f f}=\frac{\frac{R^{\prime}}{R}+\frac{r}{R}-\frac{W}{R}}{\left[\left(\frac{R^{\prime}}{R}+\frac{r}{R}-\frac{W}{R}\right)^{2}+\left(\frac{V}{R}\right)^{2}+\left(\frac{h-Z}{R}\right)^{2}\right]^{1 / 2}} . \tag{20}
\end{equation*}
$$

Formula (20) is the starting point for the treatment of the Bragg case in the Monte-Carlo program.

Fig. 2. Schematic geometry of a curved Bragg crystal spectrometer in Johann version. For notations see the text under fig. 1. R^{\prime} equal R for Johann spectrometers and equal R cost for Johansson spectrometers; R/2 - crystal grinding radius (in the Johansson case).

2.3. The Mathematical Procedure

The present treatment is limited to the aberrations produced by the finite size of the source and the crystal on the reflex profile. In our calculations we consider an idealized homogeneous crystal. At each point the diffraction pattern $f\left(\theta_{i}\right)$ will depend only on the effective angle θ_{i} between the incident photon direction and the reflecting planes. Thereby we assume that the photon emission from each point of the source occurs with the same probability and radiation absorption and extinction doesn't occur.

The used strategy is based on the same principle as applied by Schwitz et al. 1%. We specify the diffraction pattern $f\left(\theta_{\mathrm{i}}\right)$ by a Gaussion function:

$$
\begin{equation*}
\mathbf{f}\left(\theta_{\mathrm{i}}\right)=\exp \left[-\frac{\left(\theta_{\mathrm{i}}-\theta_{\mathrm{B}}\right)^{2}}{2 \sigma^{2}}\right] \tag{21}
\end{equation*}
$$

where θ_{B} denotes the Bragg angle corresponding to the wavelength of the incident photon, σ is a free parameter depending on the mosaic spread in the crystal. Further on, we assume that the radiation is strongly monochromatic and that the spectrometer setting angle θ is closed to the corresponding Bragg angle θ_{B}. The observed reflex is given by

$$
\begin{equation*}
F(\theta)=\frac{1}{v} \int_{v} \exp \left[-\frac{\left(\theta_{\mathrm{i}}(\theta, x)-\theta_{\mathrm{B}}\right)^{2}}{2 \sigma^{2}}\right] d v \tag{22}
\end{equation*}
$$

with $\theta_{i}=$ effective diffraction angle and $\theta_{i}(\theta, \vec{x})=\theta_{i}(\theta, x, y, z, r, t, h)=$ $=\theta_{i}, v=6$-dimensional source-crystal volume.

To obtain the value of the integral (22) for any geometrical condition we define a distribution function $D(\hat{\theta}-\theta)$ as Schwitz et al. $1 \prime^{\prime}$ and Schult $/ 2^{\prime \prime}$ did independently of the diffraction pattern.

$$
\begin{equation*}
\mathrm{D}(\hat{\theta}-\theta)=\frac{1}{\mathrm{v}} \int_{\mathrm{v}} \delta[\sin (\theta, \overrightarrow{\mathrm{x}})-\sin \hat{\theta}] \mathrm{dv}, \tag{23}
\end{equation*}
$$

where δ is the Dirac δ-function and $\hat{\theta}$ is an arbitrary effective diffraction angle. To understand the significance of D, we note that v. $D(\theta-\theta) d \hat{\theta}$ represents the part of the 6 -dimensional source-crystal volume for which the effective diffraction angle ranges between $\hat{\theta}$ and $\hat{\theta}+\mathrm{d} \hat{\theta}$. Then we have:

$$
\begin{equation*}
\mathrm{F}(\theta)=\frac{\mathrm{I}}{\hat{\theta}} \mathrm{D}(\hat{\theta}-\theta) \mathrm{f}(\hat{\theta}) \mathrm{d} \hat{\theta} . \tag{24}
\end{equation*}
$$

3. THE PROGRAM GEOMC

To obtain practical results, we have developed the program GEOMC, which calculates the problem by the Monte-Carlo method.

3.1. The Main Program GEOMC

The main program prepares all the data for the following data processing. The data input stream has the form (data cards):

1. $\mathrm{A}(\mathrm{I})(1 \mathrm{OA} 8)$

A(I) - heading text to characterize the problem
2. NTYP1, NTYP2 (215)

NYYP1 - selection of the diffraction case
$=1$ for the Bragg case
$=2$ for the Laue case
NTYP2

- characterize the type of the curved Bragg spectrometer
$=1$ for a Johann spectrometer
$=2$ for a Johansson spectrometer

3. N, NSPEK, NW, EMASMC, EMASD (3I10, 2F10.0)
$\mathrm{N} \quad-$ number of events at one meshpoint for integrating eqs. (20) or (14) to get the average value of $\sin \theta_{i}$
NSPEK - number of meshpoints for the integration of eqs. (20) or (14)
$\mathrm{NW} \quad$ - number of meshpoints for the generation of the distribution function $\mathrm{D}(\hat{\theta}-\theta)$
EMASMC - step width between the single meshpoints in the integration of eqs. (20) or (14) in arcsec
EMASD - step width between the meshpoints at the construction of the distribution function $D(\hat{\theta}-\theta)$ in arcsec.
4. R, SIG1, TB1, TSTEU (4 F 10.0)
$\mathrm{R} \quad$ - Diameter of the Rowland circle in mm
SIGI - Variance, depending on the mosaic spread in the crystal in arcsec
TBl - Bragg diffraction angle in degrees
TSTEU - Control parameter. If TSTEU set to 0 , no integration of eqs. (20) or (14) occurs. Only the distribution function $\mathrm{D}(\hat{\theta}-\theta)$ is generated. If TSTEU is not equal to 0 , both the integration of eqs. (20) or (14) are performed and the distribution $D(\hat{\theta}-\theta)$ is calculated.
5. $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{ZI}, \mathrm{Z} 2(6 \mathrm{~F} 10.0)$

X1, X2 - coordinates of the source depth limits in mm
Y1, Y2 - coordinates of the source width limits in mm
Z1, Z2 - coordinates of the source height limits in mm
6. R1, R2, T1, T2, H1, H2 (6 F 10.0)

R1, R2 - coordinates of the crystal depth limits in
T1, T2
H1, H2

- coordinates of the crystal width limits in mm

To in mm
To start a new calculation, one must repeat the new input data in form of the cards 1 to 6 . To end the calculations,
one have to add three blank cards. In the common block $C R$ the array X is used to store the results of the calculated reflex or the distribution function $\mathrm{D}(\hat{\theta}-\theta)$. In CR the parameters EMASMC, EMASD, SIG1, NTYP1 and NTYP2 are already specified above. The array $F(I)$ contains a Gaussian shaped standard peak with the variance σ for the determination of the reflex profile by the convolution with the function $\mathrm{D}(\hat{\theta}-\theta)$.

The printed output contains all the information about the input data and characterizes the geometry in which the calculations are performed. If TSTEU is not equal to 0 , the reflex profile generated from subroutine MONT 1 is printed. After these results the distribution function $\mathrm{D}(\hat{\theta}-\theta)$ and the result of the convolution from $\mathrm{D}(\hat{\theta}-\theta)$ with a Gaussian shaped peak is plotted. After the output of the reflex profile from MONT 1, the distribution function and the reflex profile from the convolution procedure are printed out. Each time the peak shifts, σ and corresponding full width at half maximum of a symmetric Gaussian peak are plotted.

3.2. The Subprogram MONT 1

The subroutine MONT 1 (RR , SIGM, X1, XD, Y1, YD, $\mathrm{Z1}, \mathrm{ZD}$, $\mathrm{RI}, \mathrm{RD}, \mathrm{T}, \mathrm{TD}, \mathrm{HI}, \mathrm{HD}, \mathrm{TB}, \mathrm{TK}, \mathrm{N}, \mathrm{NSPEK}$) is written to calculate the reflex profile $F\left(\theta_{i}\right)$. Thereby, $\sin \theta_{i}$ is calculated from formula (14) for the Laue case and from formula(20) for the Bragg case.

The parameter list contains the following new notations:
RR - diameter of the Rowland circle
SIGM - two times of σ^{2} in arcsec
TK - conversion factor for the conversion degrees to $\operatorname{arcsec}\left(T K=\pi / 6.48 \cdot 10^{5}\right)$
The quantities

$\mathrm{XD}=\mathrm{X} 2-\mathrm{X} 1$	$\mathrm{RD}=\mathrm{R} 2-\mathrm{R1}$
$\mathrm{YD}=\mathrm{Y} 2-\mathrm{Y} 1$	$\mathrm{TD}=\mathrm{T} 2-\mathrm{T} 1$
$\mathrm{ZD}=\mathrm{Z} 2-\mathrm{Z} 1$	$\mathrm{HD}=\mathrm{H} 2-\mathrm{H} 1$

denote the integration interval for the 6-dimensional volume. To generate random coordinates for the integration of eqs.
(14) or (20), we use the generator RANF to generate equipartitioned random numbers. For instance, the random coordinate x we construct by

$$
\begin{equation*}
\mathrm{x}=\mathrm{X} 1+\mathrm{XD} \cdot \operatorname{RANF} \tag{26}
\end{equation*}
$$

A11 the other coordinates we construct by analogy with formula (26).

3.3. The Subprogram WEIGHT

The subroutine WEIGHT (PI, TB, X1, XD, Y1, YD, $\mathrm{Z1}, \mathrm{ZD}, \mathrm{R1}$, $\mathrm{RD}, \mathrm{Tl}, \mathrm{TD}, \mathrm{Hl}, \mathrm{HD}, \mathrm{RR}, \mathrm{Nl}$) generates the distribution function $\mathrm{D}(\hat{\theta}-\theta)$ after formula (23). The generation of random coordinates and the computation of $\sin \theta_{i}$ occurs by analogy to the procedure used in MONT 1. N1 is mapped to the quantity NW. The calculation results are stored in the array $\mathrm{X}(\mathrm{I})$.

3.4. The Subprogram FALT

The subroutine FALT (A, B, C, S1, N) provides the convolution of a Gaussian shaped standard peak with the distribution function $\mathrm{D}(\hat{\theta}-\theta)$. The parameter list includes the following notations:

A - Distribution function $D(\hat{\theta}-\theta)$.
B - Gaussian shaped standard peak.
C - Result of the convolution, e.g., the profile of the diffracted line.
S1- The peak area of the diffraction profile.
N - Field length for the convolution procedure.
We note that the results from the subroutine MONT1 are the same as from WEIGHT with following convolution with a Gaussian shaped standard peak. Using the subprogram MONT1, one can fix the statistics for each meshpoint, but on using WEIGHT one can determine the integral number of events under the diffraction profile.

To get a sufficient accuracy, one must take into account, that the error $\tilde{\sigma}_{\mathrm{I}}$ of the Monte-Carlo-integration falls only as the following one

$$
\begin{equation*}
\bar{\sigma}_{1} \approx \mathrm{~N}^{-1 / 2}, \tag{27}
\end{equation*}
$$

where N is the number of the calculated function values.

3.5. The Subprogram VERT

The subroutine VERT (ZE, S1, S2, S3, K, L) serves only, for a first view, to value the obtained results. In the array ZE the diffraction profile is stored and S1, S2 and S3 denote the peak area, peak shift and the standard variance σ, respectively. For asymmetric problems the computation of σ is not accurate and it is recommendable to use a more perfect processing routine. In our case the reflex processing occurs by using the moment method.

Fig. 4. Reflex profile, following after the convolution from Gausconvolution from Gaus-
sian shaped diffraction pattern (maximum amplitude 1) with the distribution functions $\mathrm{D}\left(\theta_{\mathrm{B}^{-}} \theta\right)$ as shown in Fig. 3. The reflex amplitude (in percent) is related to the maximum amplitude of the diffraction pattern.

Fig. 3. Distribution function $\mathrm{D}\left(\theta_{B}-\theta\right)$ in arbitrary units for the Lave case.

4. NUMERICAL EXAMPLES

For demonstration we have carried out calculations for two concrete geometries in the Bragg and Lave case. For the Lave case we have assumed a geometry, typically for the Du Mont spectrometer from the University of Fribourg ${ }^{8 /}$:

$$
\begin{array}{lll}
\mathrm{x}_{0}=3 \mathrm{~mm} & \mathrm{r}_{0}=3 \mathrm{~mm} & \mathrm{R}=5000 \mathrm{~mm} \\
\mathrm{y}_{0}=0.05 \mathrm{~mm} & \mathrm{t}_{0}=50 \mathrm{~mm} & \sigma=1.27^{\prime \prime} \\
\mathrm{z}_{0}=32 \mathrm{~mm} & \mathrm{~h}_{0}=50 \mathrm{~mm} . &
\end{array}
$$

For the Bragg case we assume

$$
\begin{array}{lll}
\mathrm{x}_{0}=3 \mathrm{~mm} & \mathrm{r}_{0}=0 \mathrm{~mm} & \mathrm{R}=648 \mathrm{~mm} \\
\mathrm{y}_{0}=0.1 \mathrm{~mm} & \mathrm{t}_{0}=40 \mathrm{~mm} & \sigma=5^{\prime \prime} \\
\mathrm{z}_{0}=10 \mathrm{~mm} & \mathrm{~h}_{0}=10 \mathrm{~mm} &
\end{array}
$$

In both cases a symmetric position of crystal and source is suggested.

Figure 3 shows the calculated distribution function $\mathrm{D}(\hat{\theta}-\theta)$ and fig. 4 computed reflex profiles for the Laue case, using the values given above. Figures 5 and 6 show the reflex profiles for the Bragg case in Johann and Johansson geometry.

Fig. 5. Reflex profile, following after the convolution from Gaussian shaped diffraction pattern (maximum amplitude 1) with the distribution function $\mathrm{D}\left(\theta_{\mathrm{B}}-\theta\right)$ for the Bragg case (Johann spectrometer). The reflex amplitude (in percent) is related to the maximum amplitude of the diffraction pattern.

Fig.6. Reflex profile, following after the convolution from Gaussian shaped diffraction pattern (maximum amplitude 1) with the distributión function $\mathrm{D}\left(\theta_{\mathrm{B}}-\theta\right)$ for the Bragg case (Johansson spectrometer). The reflex amplitude (in percent) is related to the maximum amplitude of the diffraction pattern.

5. THE PROGRAM GEOMC

The following text contains a complete listing of the Mon-te-Carlo program GEOMC. This program can be used on several computers. We use only (from the computer program library) a program RANF for the generation of equipartitioned random numbers. If such a program is not available from the computer library, one should add a function procedure for the computation of the random numbers.

PROGRAM GEOMC (INPUT, OUTPUT)
A PROSRAV TO GALCULATE GEOMETRY EFFECTS IN CURVED CRYSTAL DIEFRACIICN SOECTROMETERS
ALL FRCZLEMS ARE SOLVES GY USING A MONTE-CARLO TECHNIDUE
COMMON/CO/ X $\{1$ JJQ : EMASMC, EMASD,SIG1, NTYP1, NTYPZ
OIMENSTON A (1JI,C(1030), F(1000)
$0=A T A N(1) *$.4 .

6
$C K=9 I / 6.485+05$
$006 I=1,1390$
$F(1)=5$
$\mathrm{X}(I)=0$.

RAO $88, \mathrm{~N}:$ NSPEK,NH,EMASMC, EMASO
A
NTYP1
HEADING CARO TEXT

NTYP2
NSPEK
NUMGERUF 2 FVOR A JOHANSSEN SPECTOOMETEO

EMASMC
DISTRIPUTICA FUMITION D SNTERRATION
SGALING PARAMFTEO FOD THE MESH NETWORK OF TME
BOTHPAR
3ISTOIOHTISH FUNCTIDN D

R DTAMERER OF THE ROWLAND CIRCLE
STG1 SIGHA CF THC CPYSTAL YCSAIC SEQEAD
TS=TB1*PI/1880d

TSLSIN=SIN(TSL)
SDE=(TB-T3L)**2/STっッ4
TF(JDE
9
G(IMFEXD


```
            T1G:TB*F:OAT (NH)*TK
            SSTAO=SIN(T1Q)
            CCTO=COS(T1G)
            XS=0.
            05 3 J=4.1'
            XX=X14XD*0ANF (0.)
            Y=Y1+YO= OA`|F(E:)
            Z=Z1 +ZO*口ANF(I.)
            R=Pi+RD+ \ेA:IF(S.)
            T=TI+TO#RANF{J:}
            H=H:&HO*?ANE{3.}
                    XO=X 
                    YR=Y/RR
                    QRR=R/RQ
                    TR=T/RQ
                    HZ只=(H-フ)/P员
                    RD2=1.+200
                    ST19=SIN(T19-%%)
                            CT1B=COS(T13-TG)
V=(SSI{3-YT)* CT1, -XO*ST1B
```



```
SI=QRこ*V/SつマT ((702**)**2+V**2+HZR**2)
```



```
YK\YSg&Y:-2.13:1 fOTO4
YK=xDCYS
CONTIMUS
XS=XS4YY
CONIINU=
XS=XS/FLOAT (TH:
X(I)=XS
PRINT II,I.XS
    CONTINUE
    GoTjs
* ***GONTINUE
0G:2 I=1:NSOSK
NH=I-NSO3
T19=TG+FLOAT (NH)*TK
SST18ESIM(T19)
CCT1E=COS(T13)
    XS=j
    00 13 J=1,N
    XX=X1+XO*OANE19.)
    Y=Y1+YD* RANF (I.)
    Z=Zi+ZC= TANF(J.)
    R=RI+RD*SANF(O:)
    T=T1+TD* 3ANE (T0.)
    H=H1+HC*RANF(j.)
    YR=Y/RQ
    XR=XX/OR
    RQR=R/RQ
    HZP=(H-7)/RQ
    IF(NTYP2.En.2) CTP=COS(TR)
    CT19=COS(T13+FR)
    ST&B=SIN(T13+FR)
    V = (CCT13-Y0)*ST19-XQ*CT19
    H=(CCT19-YP)*OT13+XO*ST1B
    RR2=1.+ROQ-H
    IF(MTYq2,言准 2O2=CTO+ ROR-W
```



```
    IF(YS.LT.-2jgd) YK三).
    YK=EXP(YS')
14
    XS=XS+Y:
3
        ONTINUE
    XS=XS<Fi
    PPINT 11,I,XS
CONTINU年
TK=TK/JEVASMC
```



```
RETUPN
```

```
    SUBROUTINE HEIGHTYOI,TB,X1,XO,Y1,YD,Z1,ZO,P1,OO,T1,TO,M1,HO,OD,N1'
                            GENEPATIJN OF THE OISTRIGUTION FUNCTION D QY THE MONTE-CARLO METHCS
                            COMMON/CZ/ X(1030), EMASMC.EMASD,SIG1,NTYO1,NTYPZ
    1
    X(I)=0.
        #}=
        EPI=PI*EMASO
```



```
    2 SITB=SINTTG
    I=I+1
```



```
    Y=Y14Y0*TAME().)
    Z=Z&+TCF?A*IF(T:)
    T=T1+TD=OA:TF(J.)
    H=H1+HO= \ATLF(O.)
    XP=X M/RQ
    YR=Y/RR
    RRR=R/RR
    TR=T/OQ
    HZR=(H-2)/OR
    STBTR=SIN(TJ-TG)
    CTSTP=COS(T3-TR)
```



```
    H=(SIIB-YD)*SFOTR4XO*CTATD
    RR2=1.4 +20?
    SI=RO2*V/SRRT(1RO2-H)**2+V**2+HZO**2)
    AY=ASIN(SI)
    ATD=(TQ-AT)*5.4.4E+35/EOI
    J=IFIX(253.5+ATI)
        IF(J.L =.0.JR.J.TT.1200) J=1030
        X(j)=x(j);1.
        IF(I.LT.'I!) GOTO 2
        GOTO 5
    CONTINUS
    Cots=ccs(t3)
    12 I=I+1
```



```
    Y=Y{+YD#OANF{J.)
    Z=ZI+ZN*SA:MF(J.)
```



```
    T=TI+TC=?A'FF(J.)
    H=H1+4D*RANF(J.)
    YR=Y/RD
    xq=xX/RO
    TP=T/RD
    RQP=R/RQ
    HZQ= (M- \)/OR
    IF(NTYO?:C2,2] OTD=COS(TQ)
    STBTR=CS\(Y (3+YQ)
    STEIP=COJRT3+TO)
    RR2=1.4QOD-H
    IF(NTYFZ.E2.2) POV=CTR&RRO-W
```



```
    AT=ASIN(S゙)
    ATO=(TE-AT)*6:49E+35/EPI
    I=IFIX(25j.5+ATJ)
    F(J.LT}:J) j=
    IF(J.GT:=j:j) J=1JJJ
    x(J)=x(J)4:.
    IF(I-1T N1) GOTO 12
    6 CONTINU
    PRI:G 7 EMASO
    poINT4, N1
```



```
    1510,1/1/
    FORMAT (IX,1]FIS.2)
    FORMAT(I/I, ix, ONE CHANNEL COPRESPONOS TO *,F10.4,2X,*ARESEC*/11
    END
```

1

6. FINAL REMARKS

The described program enables one to estimate the influence of single geometrical dimensions of the reflex shape and position on curved crystal diffraction spectrometers. This may be advantageous for estimations of finding the optimum of the source and crystal dimensions at the construction of concrete diffraction spectrometers. The exact knowledge about geometrical aberrations allows one to take these influencies into consideration at the processing of the x-ray spectra.

REFERENCES

1. Schwitz W., Kern J., Lanners R. Nucl.Instr. and Meth., 1978, 154, p. 105.
2. Schult I. Z.Phys., 1960, 158, p. 444.
3. Reidy J.J. In: The Electromagnetic Interaction in Nuclear Spectroscopy. North Holland, Amsterdam, 1975, p. 839.
4. Meisel A., Leonhard G., Szargan R. Röntgenspektren und chemische Bindung. Geest und Portig, Leipzig, 1977.
5. Zschornack G., Müller G., Musiol G. Geometrical Effects in Curved Crystal Bragg Spectrometers. In: Proc. of the x Int. Symp. on Selected Topics of the Interaction of Fast Neutrons and Heavy Ions with Atomic Nuclei, Gaussig, November 17-21, 1980, GDR.
6. Johann H.H. Z.Phys., 1931, 69, p. 185.
7. Johansson T. Z.Phys., 1933, 82, p. 507.
8. Piller 0., Kern J., Beer W. Nucl.Instr. and Meth., 1973, 107, p.61.
