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1. INTRODUCTION 

In recent years the technical and methodical progress on 

several technical fields and physics understanding has contri­

buted to an increase in the accuracy of curved-crystal diffrac­

tion spectrometers and has excluded a series of aberrations 

typical for spectrometer operation. Essentially, most of aber­

rations which might occur with a curved-crystal spectrometer 

can be negligible by a careful construction, alignment and 

operation of the spectrometer. However, it should be known 

the types of aberrations which can occur and their relative 

magnitudes. Some aberrations produce a line shift, others 

contribute only to broadening the line. Line shifts could 

affect in systematic errors in measurements of the wavelengths 

or energies. Especially, this problem takes a leading part 

at the absolute determination of the wavelengths or energies. 

In this paper we describe a Monte-Carlo program GEOMC to 

investigate centroid shifts and shape alterations of the diff­

raction line due to the finite size of source and crystal, 

i.e., the effect of geometrical aberrations for the Laue and 

for the Bragg case. This problem was approached for transmis­

sion spectrometers (Laue case) by Schwi tz et al /11 and also, 

it was taken into consideration by Schult ~1 and Reidy 1:3/. For 

the Bragg case! this problem was discussed, for instance, by 

Meise 1 et al !4 and Zschornack et al.151. The present program 

doesn't take into consideration crystal structure effects, ra­

diation absorption and extinction, and the effects, originated 

in errors of the crystal bending. 

2. THE MATHEMATICAL TREATMENT 

2.1. The Laue Case 

For transmission geometry the mathematical treatment was 

worked out by Schwitz et al.l11. The geometry of the problem 

is shown schematically in projection -in fig. I. The coordinates 

of an arbitrary emission point Q(x,y,z) of the source are de­

fined from the point T at the focal circle; and these coordi­

nates of any diffraction point B(r,t,h) of the crystal, from 

the point S of the same circle. The latter point lies opposite 

to the intersection K of the axis of curvature, z and h 
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~· Schematic geomet­
ry of a c~rved Laue 
crystal spectrometer in 
Du Mood version. T 
source reference point 
on the focal circle; 
Q - projection of an 
arbitrary source point 
(coordinates x,y,z) on 
the drawing plane; K -
intersection of the axis 

·of curvature with the 
drawing plane; S 
crystal reference point 
on the focal circle; 
B - projection of an 
arbitrary diffraction 
point (coordinates r,t,h) on the drawing plane; 8- measured spectro~eter angle between the direction of a photon emitted in T and diffracted inS and the crystal plane through S; 8i­projection of the effective diffraction angle of a photon emitted in Q and diffracted in B; R- crystal radius of curva-ture. 

are perpendicular to the plane, which contain the focal circle. The angle between the ray from T to S and the crystal plane thro~ghS is denoted as e. The angle between the line joining the arbitrary points Q and B and the crystal through B is de­noted as ei. From the geometry in fig.l we derive the quantities 
a =R cosO, 

b ~ R sine, 

V=esin8, 

W= e cosO , 

r = t;R, 

sin8~ .L[(b-y)cos(B-,)-x sin( B-dl. e 
cos8 ~ l..[(b-y) sin(B-') + x cos(B-,)1. e 

The insertion of eqs. (6) and (7) in 
v ~ (b-y)cos(B-,)-xsin(B-' ), 

w ~(b-y) sin(B-') + x cos(B-' ). 
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eqs, (3) and (4) yields: 
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The segment length u can be expressed as: 

2 2 2 2 
u ~ (R+r- w) + v + (h-z) (1 0) 

To take into consideration the triangle QBH, sin @i 

form 
has the 

------
l (R+r-wf + v2 + (h-zf ]112 

v (]1) 

Due to the crystal curvature, the lattice spacing changes ac­
ross the plate as a function of the coordinates r: 

r 
ct,~C1+R"lct. ( 12) 

where d is the unstrained crystal interplanar spacing distance. 
The Bragg law valid for each individual ray can be written: 

2di sinfJi ,2d(l+{r)sin01 ::o:m-\, ( 13) 

where A is the wavelength of the diffracted ray and m is the 
order of diffraction. Thus, we define the quantity: 

(1+ !... ) • ..Y. 
(sinOi)eff = (1+ !__)sin0.=-------1L-.1L-------

R 'rc1+R'-.:!!.{+C..::_)2+(h-z)2Ju2 · 
R R R 

( 14) 

We use formula (14) as a starting point for the treatment of 
the Laue case in the Monte-Carlo program. 

2.2. The Bragg Case 

For the reflection case the mathematical treatment was wor­
ked out by Schwitz et al/11. The geometry of the problem is 
shown as the analogous one to the Laue case in fig.2. 

By analogy with this, we derive the quantities 

(15) 

b = R cose . (]6) 

We note, that the quantity R# in fig.2 is equal to R for the 
description of Johann~/ spectrometers, but has the form Rcosr 

for Johansson 171 spectrometers. 
The eqs. (3), (4) and (5) don't change their forms, so that 

we get 
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v ~(b-y) sin(e +r)- xcos(e +r ), (I 7) 

w ~ (i>--y)cos(O+r)+ x sin(O+r), ( 18) 

sin@i has then the form: 

sin f) i R'+r-w R' + r-w ~ ---- = -------------
u [(R'+r-w) 2+ v 2 + (h-z)2 ( 2 

(I 9) 

R' r w -+---
e. g.' 

R R R 

[ (
R' r w )2 ( v--:-2--:(--:h---Z-Jl-]1-/2-R +if - if + "'r1+ T 1 

(20) 

Formula (20) is the starting point for the treatment of the 
Bragg case in the Monte-Carlo program. 

Fig.2. Schematic geo­
metry of a curved Bragg 
crystal spectrometer 

D 

in Johann version. ', __ 
For notations see the ~~---\~.<·· 
text under fig. J.R'- ~k-~~F=~==~====_J·~------~}2~~~+.Jl equal R for Johann 
spectrometers and equ­
al R cosr for Johans­
son spectrometers; 
R/2 - crystal grind­
ing radius(in the Jo­
hansson case). 

2.3. The Mathematical Procedure 

The present treatment is limited to the aberrations produced by the finite size of the source and the crystal on the reflex profile. In our calculations we consider an idealized homogene­ous crystal. At each point the diffraction pattern f(Oi) will depend only on the effective angle ei between the incident photon direction and the reflecting planes. Thereby we assume that the photon emission from each point of the source occurs with the same probability and radiation absorption and extinc­tion doesn't occur. 
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The used strategy is 
by Schwitz et al/11. T\fe 
by a Gaussian function: 

based on the same principle as applied 

specify the diffraction pattern f(().) 
' 

f(O )~ exp [ _ (Bi__::!lBf_J (21) 
J 2a 2 

where eB denotes the Bragg angle corresponding to the wave­

length of the incident photon, o is a free parameter depend­

ing on the mosaic spread in the crystal. Further on, we assume 

that the radiation is strongly monochromatic and that the 

spectrometer setting angle 0 is closed to the corresponding 

Bragg angle OB • The observed reflex is given by 

F(e) - j_ f (8i (& 'x)- Ga )2 ',.22) 
- exp [ - --------] dv 

v v 2a 2 

with fJ; =effective diffraction angle and fJ. (().X)= O.(O,x,y,z,r,t,h)= 
• . • l l 

'"" e i , v = 6-d1mens1onal source-crystal volume. 

To obtain the value of the integral (22) for any geometri­

cal condition we define a distribution function D(8-e) as 

Schwitz et al. 11/ and Schult 12! did independently of the diff­

raction pattern. 

D ( 0-0 ) " ~- f o [ sin ( e , x)- sin 0] dv, (23) 

v 

where 0 is the Dirac 0 -function and e is an arbitrary effec­

tive diffraction angle. To understand the significance of D, 

we note that v. D(0-0)d0 represents the part of the 6-di.men­

sional source-crystal volume for which the effective diffrac­

tion angle ranges between(} and ri+d(}, Then we have: 

F(ll) ~ I Dce-o)!(O)dO. 
e 

(24) 

3. THE PROGRA!I GEOJIC 

To obtain practical results, we have developed the program 

GEO'tC, which calculates the problem by the Honte-Carlo method. 

3. I. The !lain Program GEOI!C 

The main program prepares all the data for the following 

data processing. The data input stream has the form (data 

cards): 

I. A(I) (IOA8) 

A(I) - heading text to characterize the problem 

2. NTYPI, NTYP2 (215) 
NTYPI - selection of the diffraction case 
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NTYPZ 

=1 for the Bragg case 
=2 for the Laue case 

- characterize the type of the curved Bragg 
spectrometer 
=I for a Johann spectrometer 
=2 for a Johansson spectrometer 

3. N, NSPEK, Nl;, EIIASMC, EIIASD (3110, ZFIO.O) 
N - number of events at one meshpoint for integ-

NSPEK 

m; 

EIIASMC 

E!IASD 

rating eqs. (20) or (14) to get the average 
value of sin!9i 

- number of meshpoints for the integration of 
eqs. (ZO)or (14) 

- number of meshpoints for the generation of the 
distribution function D($-e) 

- step width between the single meshpoints in 
the integration of eqs. (20) or (14) in arcsec 

- step width between the meshpoints at the 
construction of the distribution function 
D(e-e) in arcsec. 

4. R, SIGI, TBI, TSTEU (4 F 10,0) 

5. 

6. 

R 
SIGI 

TBI 
TSTEU 

XI, X2, 

XI, xz 
Yl, YZ 
Zl, zz 

Rl, R2, 

Rl, RZ 

Tl, T2 

HI, H2 

Yl, 

Tl, 

- Diameter of the Rowland circle in mm 
Variance, depending on the mosaic spread in 
the crystal in arcsec 

- Bragg diffr~ction angle in degrees 
-Control parameter. If TSTEU set to 0, no in-

tegration of eqs. (20) or (14) occurs. Only 
the distribution function D(ti-8) is generat­
ed. If TSTEU is not equal to 0, both the in­
tegration of eqs. (20) or (14) are performed 
and the distribution D(8-e) is calculated. 

YZ, Zl, zz (6 F 10.0) 
- coordinates of the source depth limits in rmn 
- coordinates of the source width limits in mm - coordinates of the source height limits in rom 

T2, HI, HZ (6 F 10.0) 

coordinates of the crystal depth limits in mm 
coordinates of the crystal width limits 1n 
mm 

- coordinates of the crystal height limits 
in I!liD 

To start a new calculation, one must repeat the new input data in form of the cards 1 to 6. To end the calculations, 
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one have to add three blank cards. In the common block CR the 

array X is used to store the results of the calculated reflex 

or the distribution function D(0-8). In CR the parameters 

EMASMC, EMASD, SIGI, NTYPI and NTYP2 are already specified above. 

The array F(I) contains a Gaussian shaped standard peak with 

the variance a· for the determination of the reflex profile by 

the convolution with the function D(6-8). 
The printed output contains all the information about the 

input data and characterizes the geometry in which the calcu­

lations are performed. If TSTEU is not equal to 0, the ref-

lex profile generated from subroutine MONT 1 is printed. 

After these results the distribution function D(e-&) and 

the result of the convolution from D(0-8) with a Gaussian 

shaped peak is plotted. After the output of the reflex pro­

file from MONT 1, the distribution function and the reflex 

profile from the convolution procedure are printed out. Each 

time the peak shifts, a and corresponding full width at half 

maximum of a symmetric Gaussian peak are plotted. 

3.2. The Subprogram MONT I 

The subroutine MONT 1 (RR, SIGU, XJ, XD, Y1, YD, Zl, ZD, 

Rl, RD, Tl, TD, HI, HD, TB, TK, N, NSPEK) is written to calcu-

late the reflex profile F(8i). Thereby, sin8i is calcu-

lated from formula (14) for the Laue case and from formula(ZO) 

for the Bragg case. 
The parameter list contains the following new notations: 

RR - diameter of the Rowland circle 
SIGM two times of u2 in arcsec 
TK - conversion factor for the conversion degrees to 

arcsec (TK=rr/6.48·10 6 ) 

The quantities 

XD X2 - XI 
YD = Y2 - Yl 
ZD = Z2 - Zl 

RD R2 - Rl 
TD T2 - Tl 
liD = HZ - HI 

(25) 

denote the integration interval for the 6-dimensional volume. 

To generate random coordinates for the integration of eqs. 

(14) or (20), we use the generator RANF to generate equipar­

titioned random numbers. For instance, the random coordinate 

x we cons true t by 

x =XI+ XD· RANF, 
(26) 

All the other coordinates we construct by analogy with for­

mula (26). 
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3.3. The Subprogram WEIGHT 

The subroutine WEIGHT (PI, TB, XI, XD, Yl, YD, Zl, ZD, R1, 
RD, TJ, ~TD, HI, HD, RR, Nl) generates the distribution func­
tion D(B-B) after formula (23). The generation of random co-
ordinates and the computation of sinOi occurs by analogy 
to the procedure used in MONT 1 . Nl is mapped to the quantity 
NW. The calculation results are stored in the array X(I). 

3.4. The Subprogram FALT 

The subroutine FALT (A, B, C, Sl, N) provides the convolution 
of a Gaussian shaped standard peak with the distribution func­
tion ncO-e). The parameter list includes the-following nota­
tions: 

A- Distribution function D(8-&). 
B - Gaussian shaped standard peak. 
C- Result of the convolution, e.g., the profile of the 

diffracted line. 
S1- The peak area of the diffraction profile. 
N - Field length for the convolution procedure. 
We note that the results from the subroutine MONTI are the 

same as from l~IGHT with following convolution with a Gaussian 
shaped standard peak. Using the subprogram HONTI, one can fix 
the statistics for each meshpoint, but on using WEIGHT one can 
determine the integral number of events under the diffraction 
profile. 

To get a sufficient accuracy, one must take into account, 
that the error a1 of the Monte-Carlo-integration falls only 
as the following one 

-112 
u 1 : N , (27) 

where N is the number of the calculated function values. 

3.5. The Subprogram VERT 

The subroutine VERT (ZE, 51, 52, 53, K, L) serves only, for 
a first view, to value the obtained results. In the array ZE 
the diffraction profile is stored and S I·' S2 and 53 denote 
the peak area, peak shift and the standard variance a. respec­
tively. For asymmetric problems the computation of a is not 
accurate and it is recommendable to use a more perfect pro­
cessing routine. In our case the reflex processing occurs by 
using the moment method. 
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Fig.4.Reflex profile, 
following after the 
convolution from Gaus­
sian shaped diffraction 
pattern (maximum ·am­
plitude I) with the 
distribution functions 
0(0 8-0) as shown in 
Fig.3. The reflex am­
plitude (in percent) 
is related to the ma­
ximum amplitude of the 
diffraction pattern. 

4. NUMERICAL EXAIIPLES 

H/% 

50 

~. • J mm 
Yo 'ODSmm 
~ = J2mm 
r0 = 3 mm 
10 = 50mm 
h0 =50mm 

R =5000 mrn 

6.' \27" 

Fig.3. Distribution 
function D($s-O) in ar­
bitrary units for the 
Laue case. 

~-"8/arcsec 

For demonstration we have carried out calculations for two 
concrete geometries in the Bragg and Laue case. For the Laue 
case we have assumed a geometry, typically for the Du Hont 
spectro~eter from the University of Fribourg~/. 

"o~ 3 mm ro = 3 mm R = 5000 mm 

Yo= 0.05 mm to"" 50 l!1l11 a=1.27" 

zo = 32 mm h = 50 mm. 
0 
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For the Bragg case we assume 

xo = 3nnn ro = 0 lllil1 R ~648 nnn 

Yo~ 0.1 lllil1 t ~ 40 
0 

lllil1 "s 5" 

zo= 10 mm h
0

= 10 lllil1 

In both cases a symmetric position of crystal and source is 
suggested. 

Figure 3 shows the calculated distribution function D(8-e) 
and fig.4 computed reflex profiles for the Laue case, using 
the values given above. Figures 5 and 6 show the reflex profi­
les for the Bragg case 1n Johann and JOhansson geometry. 

HI% 

"•' .,. 
~ , ' , , 'o' ) mm , y, 0., 

J, , .. 
20 to' 1 0 mm 

.1,' "' ' ' 
'• · 0 mm 
10 • 4 ~ "'"' 

!.···. \ ~.' l 0 "'"' 
i ... \ 

l \ ; 
15 -~ \ \ G. ' ~ • 

10 

5 

.., \1 
il ~ 1 

: I : 1 

....... / 1\ 
/ I \\ 

// / \\ 
: / \\ 

/ I \ \ 

... ·· ,// ·· .. ', .. ' 
-50 0 50 

Fig.6. Reflex profile, 
following after the 
convolution from Gaus­
sian shaped diffraction 
pattern (maximum ampli­
tude 1) with the distri­
butioh function D(OB-6) 
for the Bragg case (Jo­
hansson speGtrometer). 
The reflex amplitude 
(in percent) is related 
to the maximum amplitude 
of the diffraction pat­
tern. 

10 

HI% 

25 

20 

15 

10 

5 

0 
-90 

Fig.S. Reflex profile, 
following after the con­
volution from Gaussian 
shaped diffraction pat­
tern (maximum amplitude 
I) with the distribution 
function D(Oa-il) for 
the Bragg case (Johann 
spectrometer). The ref­
lex amplitude (in per­
cent) is related to the 
maximum amplitude of 
the diffraction pattern . 
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5. THE PROGRAM GEOMC 

The following text contains a complete listing of the Mon­
te-Carlo program GEOMC. This program can be used on several 
computers. ~Ve use only (from the computer program library) 
a program RANF for the generation of equipartitioned random 
numbers. If such a program is not available from the computer 
library, one should add a function procedure for the computa­
tion of the random numbers. 

111 

6 

c c 
8 c 
g 
c c 
g 

~ 

c c c c c 
g 
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P~OGP.AM GEOHCtiNPUT,OUT?UTJ 
A PROGRA~ TQ CALCULATE G~C~ET~y ~~FSCTS IN CUPV€0 
CRYSTAL O!FFR~CT!GN SD~CTRG~~T~QS 
All FRC~LEMS 4Q~ S~LVED 8Y USING A MONTE-CARLO TECHN!OU: 
COMHON/C~/ XC1~J01 ,EMAS~C,E~ASO,SIG1,NTYP1,NTYP2 
OlH!::P\SI'Jtl A(1JJ,CI1!l:JOJ ,F(lOQOJ 
~I=ATANU.l•4 .. 
CONTINU~ 
TK=PI/6 .Lt!!E+OS 
00 6 I=1,1:J~(l 
FUJ":,l. 
XliJ=o. 
R:€A02 (At!), I=1,t'H 
R~AQ ~2, tiTYP!, NTYP2 
R~AO 88,N,NSP3K,NW,EHAS~C,~MASO 

A 
NTYP1 

NTYPZ 

N 
NSPEK 
NW 

READ~! ~~ SI~1, T~t. TSTEU 
· IFCR._o.J.) CHL EXIT 

R 
SIG1 
T91 

XD=X2-:<1 
Y0=Y2-Y1 
ZO=ZZ-Z1 
RD='U .. 1H 
TD=T2-T1 
HO:H:t:~l"1 

OIA~El~R Of TH~ ~OWLANO CI~Cl~ 
STGtlA CF T"S CQVSTAL ~CSAIC S~QEAD 
!3~AGG QIFFqACT ION ANGLE 

~IJIJ~C ~ ~ 
SIJTJq':::'! w 
S1U~c:. ~ 
':::RYSTll 
CR.YST~l 
CRYSTAl 

TH lH1!TS 
T~ LI~!TS 
";"IT lit-'ITS 
PT4 LI!"ITS 
'JTH liMPS 
IGHT LIMITS 
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1 z 
3 
4 

5 

7 
10 

15 

F _z 
&1 ez 
88 

c c c 

c 

1 

12 

SU~ROUTI~~ HONl1(R~,~IGH,X1,XO,Y1,YC,Zt,zO,R1tRO,Ti,TO,Ht,~O.T~,TK 
t,"l,USP!:I(J 

!JETERMINATION CF" THE MEAN SINITHElAJ P.Y MONTE-CARlO INTEGRATION 

COHMON/Cq/ Xft1JOJ,EH~S~C.~MASO,SIG1,NTYPt,NTYP2 
!JO 1 I=1,1JO'J 
Xl!)=J• 
PRINT 15, ~HA3~C 
TK=TK4 Et1A~'fC 
NSP2=NSDEI(/2 
IFtNTYPt.Ea,!J GOTO 1 

•••••• L.'\JE CA3E 
QO 2 I=t,fiSOE'< 
:-JH=l-NSoz 
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3 

7 c 

14 

13 

12 
8 

u 
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c g 
1 

c 
2 

5 c 

~ 

3 
7 
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c c c 

g 
c c 

SU9ROUTI~E VERTCZE,S1,S2,S3,~,t) 

PEAK PROC':SSING 
OIP1~NS I Ort ZE f1) 
S1= ... 
S2=0. 
Sl•O• 
0-:1 1 !:I(,L 
S1=S1•Z!:(!J 
S2=S2+Z~(IJ•FtCAT(tJ 
S3=S3+2':Cil•FUCATfl•I) 

1 CONTINUS 
S2=S2/S! 
S3=S:!/S1-S2•S2 
S3=SQRT fSJJ 
BE TURN 
:;.NO 

6 • FINAL REMARKS 

The described program enables one to estimate the influence 
of single geometrical dimensions of the reflex shape and po­
sition on curved crystal diffraction spectrometers. This may 
be advantageous for estimations of finding the optimum of the 
source and crystal dimensions at the construction of concrete 
diffraction spectrometers. The exact knowledge about geometri­
cal aberrations allows one to take these influencies into con­
sideration at the processing of the x-ray spectra. 
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