


1. Introduction
The stochastical nature of its results is known to confine the applica-

bility of the Monte Carlo method (M; method) in solving particle transport
problems. The statistical situation may become especially a precarious

one if‘the difference of individual results is of the actual interest ;s it
is, for exgﬁple, in investigation of the dependence of a detector respomse on
variat#ons of a given arrangement. The applicability of the MC:method is en-
tirely callea in.question if the effect to be calculated goes down to the
order of the statisticel errors of the single results. For example, if it is yet
possible to calculate with an acceptable expense the detector responses in
two different states of the system with a desired accuracy uf n%, then, in
statistically independent calculations,already the dquble expense will be
necessary to estimate only the slgn oF the dlfference wlth the same rellabl-
lity if it 15 1tae1f in the order uf n%. Un the uther hand there is a po-
tent131 1nterest to utlllze the MC methud in such cases, too, because often
Just the details in geometry and‘xn the behav1nur_of cross-sections
must.be taken into cunsideratiop to such a degree wvhich, at least at present,
is attainable vithouf too much effort by the MC method only.

The MC method was particularly used and developed for the calculation aof

small effects 1n the field of reactor phyalcs. But there the calculat1ons are
rendered more complicated because, in general, variations of the exgenvalue

of a homogeneous trangport Eroblem are of interesﬁ. In this paper we diste-
gard that complication and look at difference calculations fur inhomogeneous
problems, i.e.,in particle flelds with a conatant outer source. However, it
should be noted that the variance problems 1n both cases are quite similar
and conclusions drawn in this paper may be immediately transferred to the re—

actor physical calculations.



The main point in reducing the variances of difference estimates is

the introduction of a poesitive correlation between the individual estimates.
This is given to a high degree in the "weighting method". There, particle
histories are simuiated only'in one state of the system, let call it the
“zero" state. By an appropriate weighting according to the gerieral biasing
scheme /1-5/ these histories are simultaneously taken as randemly selected

set of histories in the other state - the "one" state - of the system, This
‘Weighting method" is applicable without approximations only then if the set

of all possible particle histories in the "zero" state incluges the entire

set of possible histories in the "une" state. This condition considerably con-
fines the applicability of this method. But it may be successfully utilizea,
for exaﬁple, if the cross sections of the materials differ dnly slightly by
small density variations in both system states. For more substaptial cross
section variations approximations may become necessary and it losses in effec
tiveness, especially, if material zones are voided. In those cases two other
-methods are mostly used. The practically simplest method is the “cerrelated
sampling", where by an appropriate management of the starting random num-
bers the same histories are initialized in both systém states. In that way all
those histories which do not partake in the effect are the same in both cal-
culations. The statistical fluctuations of the difference estimates, therefore,
result only from those sets of histories which separate in both calculations in
consequence of the differences in the system states; i.e., they result only from
the effective histories whi.c.h Just cause the effect. Contrary to the “"weighting
method" no'approximations for any cross section changes are necessary because
all effective histories are separately realized in their own system states.
Un the other hand,we have a.loss in correlation just between the sets of ef-
fective histories. Certainly, this method could be further improved, e.g.,by
keeping the effective h;stories in the "one" state so close as possible to

those of the "zero" state. However, that will be strongly confined because

the joint histories are actually to reslize in different system states.
Favourable possibilities to correlate the sets of effective histories

seem to provide the so-called perturbation scurce method (PSM). Here the



caleulation of the effect is not based on twe psrallel, but on two sequen-
tial transport calculations each of them in one state of the system. In the
first calculation the variations (perturbations+) of the system cause the ge-
neration of tuo types of source particles {perturbation particles) for the se-
cond calculation. Both types of perturbation particles then give estimates of
opposite signs. The common generation process and the foliowing random walk
of the perturbation particles in the same state of the system are the featu-
res of the PSH which should give good possibilities for introducing positive
correlation between the substracting estimates.

Though, all the methods are widely usec in practice there is na general
analysis of their efficiencies in the literature. COf course, a rigorcus com-
parison of the methods requires the analysis as of variences as of computati-

onal expenses. This should be an attractive task for future investigations.

In this paper a general variance analysis of the PSM in inhomogeneous tinear
particle transport problems is performed. This is done by an adequate exten-
sion of the adjoint integral formalism presented by Coveyou et al. for repre-
senting the variances of the event point estimatér in analog ang biased solu-
tions of opoinary particle transport problems /3/. The received results enable
as the understanding of the general variance peculiarities of the PSM as to

draw direct practical conclusions with respect to its improvement.

2. Outline of the Perturbation Source Method

Let us have a time independent particle distribution which is described
in the phase space by a nonnegative event density Eo(x). The particle field

is feeded by a given first event source So(x) which may be assumed toc be nor-

fSL@*)a(r =1. W

Eo(x) is given as the solution of the Fredholm integral eguation

malized

* Wwe emphasize that the term "perturbation™ in the notation of the PSM general-
1y is not related to an approximation in the sense of the approximative
perturbation theory.



E6) = Si6) + [KGH0bmd, o

where Kn(x-y )} is the nonnegative transition kernel describing the transport
process of the particles in energy, flight direction and in the volume of the
given system. We assume KD to be nonmultiplying, i.e..its normalization con-

stant

6 ()= //(,, (e x") ol 5" o

to fulfil

(4)
0 < G,(x) ¢ 4.
An installed detector with the response function D(x) gives the counting rate

to = [ DGO £.6 . “

The adjoint preblem belonging to the particle transport problem 522), (5)} is

given by the eguationg

WoGe) = D) + [KlemIWibddet |
do =[S0 W@,

vhere wo(x) is called the value function of the particie problem {(2),(5)}/3/.

Now we change the system according to

K,x>q) = K, (x~3) @

and wait for the new equilibrium event density El(x) which is given as

the solution of

E4{"‘) = S(X‘) * f/(d("‘"”‘)ﬁ;()do/*’. )

The kernel Kl is also assumed to be nonmultiplying., The new counting rate of

the detector is

Ay = f@(x)é; 6«)_ odx, (10)
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We are interested in the Monte Larlo calculations of the effect

Ay - do - (1)

Performing two parallel calculations with the estimaters 7. of &, res=
i

pectively,we have with

T = 2 w

the estimator {per particle pair) of A . Its variance Var{mp ) is given by
A g

Vaf(z) %”(2) 2[0\/{?“?4) (13)

vhere the variances Uar(z,._') and the covariance Cou(?,,?i) are defined as
usually /6/. Good estimates of A wve may expect if the variances of the esti-
mators Z: are sufficiently small and if they are positive correlated. The
latter is the speciality of difference calculations.

The starting point of the PSM is now the interpretation of the effect A
as integral A - f@(x_)[ﬁr) d‘r (14}

of the uifference event density

E—(X‘) = é; 6‘) -—56{‘) (15)

ang the derivation of an equation for it. Subtracting equations (9) and (2)

we get

Ele) = Poo) + //(l(g»:x)g(xm' "

wvith the sc-galled perturbation source

Pr) —”/(/((Y—W) /((X—»Y))[(r)/r (17}

e point cut that equation {147 may also be rewritben with K instead of K and
defining the perturbation source with El instead of [0. Thig fact is unimpor-
tant with respect to our general derivation of the variance expression for the

©SM estimator in the next chapter, but it must be taken into consideration in

practical applications.



Assuming that possible analytical subtractions or conversions in the dif-

ference of the kernels KD and Kl have been carried out so that

Kle=g) =K, (eog) = Blesg) = B »g) ()

with nonnegative remaining transition kernels Pi(x-*-y) ve see that E(x) is

£6) =66 -£6)

wvhere the E:(x) are the solutions of

/-'—f@ = P,(“) +//(1ﬁ‘5ax)£2»7a/x' , (=64, @

with the Pi(x) as the constituents of the perturbation source

Px) = R(x) - Bix), S

also given by

?&)E/?@'—W)E(Aﬂcﬁ") r‘—_—ﬁ,.{. | (22)

Therefore, A may also be calculated as the difference

A=A - A @

of the counting rates

¥ ¥ .
A= (Do) EEdr =04 e
From equations (2} and (20) through (24} follows the general osutline of the
Monte Carlo procedure of the PSM(for details see echapter 3}:
1) Simulete the histories of basic particles in the "zero" state
of the system according to the source and transition kernel

[BD’KQJ *

2) Generate two types of new, so-called perturbation psrticles

according to the definitions (22) of both perturbation source
constituents during the basic histories.
*
3) Estimate A by estimating the a; during the transport game

of the perturbation particles in the "one" state of the system.



. . * . . . *
Denoting with ?; the astimators {(per basic particle) of the A; the

PSHM estimator is given by

¥
=0, % e

and its variance

Var{g*) = 2 Var[z_? —Japv/?; ?:)‘ (26)

The resulting variance Var( Z¥) will be determined bys
1)the transport game of the basic particies;
2)the generation procedure of the perturbation particles;
3}the transport game of the perturbation particles;

4)the estimators used for estimating the Ar .

What may we expect from the approach of the PSM in general? We note
that the specific of the difference of two estimates is not overcome, but on-
1y transformed by the perturbation source. Obviously, we may expect a con-
siderable improvement in the statistic of the A -estimpate, if the perturba-
ticn source becomes a nonalternate distribution. But also in the genersl case
when the resulting perturbation source forms a difference of nonalternate
distributicns the FSM should be quite promising because its formulation
is especially focused to the causze of the effect R .

What in particular do our hopes found on? Let-us lock at the estimatiocn
of A by performing two parallel calculations each of them in one state of

-

the system. Positive correlztion may be introduced by an appropriate mana-
gement of the random numbers initializing the histories in both calculakbions.
In that way the common part of histéries in both states of the system may be
kept identical and only those histories,teking part in the effect wil}, in
general, differ after the entry in a region which was changed by the modifi-
cation {(B). This means that we have an undesirable loss in correlation just
in the significant histories.Contrary to that the PSH seems to provide a
good means to stréngthen the correlation between those histories. As in the
previcus methed one complete caleulation must also be performed: the trans-

port game of the basic particles. fhe generation and the transport game of



both types of perturbation purticles then correspond to that part of histories
which separate in both system slates und contribute to the same effect A .
The yeneration process of both types of perturbaticn particles and their
following random walk in the sume state of the systen seem to represent fa-
vourable possibilities for introducing positive correlation between the two
subtracting estimators Zf and, therefore, speak in favour of this method.
That they in fact take the decisive parts in the PSM we shall demonstrate

in the discussion of the derived results which will be published

in the next paper.

3. Variances of the Perturbation Source Method

In this chapter we derive yeneral expressions for the variances of the
PSK estimater in different versions of the method. For it we want to use the
easy adjeint integral formalism of Coveyou et al. /3-5/ for calculating the
second moments of the estimator. Therefore, we raise some formally simplifying
out generally nonrestricting suppositions.First, as estimators Qf'we shall
use event point estimators /4/ which are based on the event chains of all per-
turbation particles of the type i generated during the lifetime of a basic
particle. Lenoting with x| (1=0,1,...,L) the event points of the basic par-
ticle and with %ni (n=0,1,...,N) the event points of a generated "i" per-

turbation particle the estimators may be represented

L N
¥ =T . .
Z; =Z, 2‘. Wn‘&u.*‘u"')xﬁ Xoi 1 Xais ""x”JmﬂJ y =04
=0 n=t

Here is wi(xo,...,xl;xli,..., xni)ii 0 the statistical weight of an "i"
perturbation particle at its event point Xoi wvhich was generated in consequence
of the basic event at X§ and after that has passed the event points xoi’xli,
s X As contribution function the estimators contain the detector response
D{x}. Second, all the transitions in the phase space are to be considered as
nonfactorized transitions, i.e.,those are not devided in flights and collisi-
ons as we really do in applications /5/.

Many different simulations of a given transitional kernel T(k ~ y) with

the normalization constant



tx) f]r(*””'y Ax’ (28)

may be used. In the general biasing scheme we use another nonmuttiplying, but

otherwise widely arbitrary kernel T(x—sy) normalized by

Z:(X) E/T"(xiwyp()(“. (29)

Toe yuarantee an Lnbiased simulation of T{x -~ y) it is necessary that T(x-y)40
for all (x,y),where T{x-sy) # 0. Then,at an event pointx the biasing simulation
procedure of T(x--y) is the Féllowing:
1) With probability (1-E{x)) there is no next event point,
the history is terminated.
2} with probability t(x) the particle survives the event.
The next event point is chesen from T(x-=y)/t(x). The sta-
tistical weight of the particle is multiplied by Tix—wy}/T{nwy)
after the event at x .
With respect to the transport games especially two simulations are of interest.
Those are the analoy and the EV-bjasing simulations. Both are included in the

more general survival-bissing,where

TGyg) = &) « Tlomg)/ H0) oo

is useu with T(x) as arbitrary survival probability. The special choices
T(x} = t(x} ana T{x) = 1 give the analog and the EV-biasing simulations,
respectively. Therefore, we shall derive all the formulas for the whole class
of survival-biasing games and only in the discussion extract the
special cases. In the EV-biasing transport game a history must be suitably ter-
minated, e.g.,by & Russian Roulette procedure after the statistical weight
was Fallen down unger a given minimum amount /4/. Contrary to the transport
games the generation process accerding to the transition kernels Pi(x—-y}
will be dealt with in the general biasing technique.

A FOHTRAN-like outline of the PSM procedure as it will be considered
in this paper is set forth in Fig.l through fig.5. Fig.3 through Fig.5 show

different generation procedures at an event point x of a basic particle having



(START)

(1}

(2}

AR

Choose x from So(x).

w=l

| Generation procedure at x . —l

Transport game of all the generated perturbation

particles including the summations of the Yz:‘ .

With probability (1 - G;(x)), go to (2).

u:wnG’g(x)/@o(x)

Choose y from K _(x -+ y)/ G (x}.
xzy

Go to (1)

*

AR

Fig. 1. The PSM procedure

First event points %; and starting weights w, (i=0,1)

i

are given from the generation procedure at x.

{START} i=D

(1)
¥3

(2

if wi=0' go to (3).
* *
’li = 7i+wi* D(xi)
With probability (1- Ei(xi)), go to (3).
vt G'l(xi)/ G'J(KiJ
Chaose y; from K,(x, —~y,}/ G'l(xi).
XYy
Go to (2).
If i=z1, STOP.
izi+l

Go to (1}

Fig. 2. The perturbation trénsport game including the event point

estimation,
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(5TART) 1i=0
(1) wi=U
With probability (l—ﬁi(x)), go to (2).
Choose x, from ﬁi(x-,xi).
wy=w* Py (x*xi)/(ﬁi(x);ﬁi(x-xi)J
{2) 1If i=i, STOP.

izi+l
Go to (1).

Fig. 3. Generation procedure (A}

{START) WU:W1=U
With probability (1-Bix}}, STOP.
i=0
(1} Choose x5 from pi(x -xi).
;= Pi(x —-xi)/(p(x)- pi(x ——xi))
If i=1, STOP.
i=iel

Go to {1).

Fig. 4. Generation procedure (B)

(START) wo:\ul.—.(]
With probability {1-B{x)}, STOP.
Choose 3 fFram pix '-xi)‘
vpzus (P (x —=x)=flx —x 3/ (F{x)« Blx —=x, )}

Fig. 5. Generation procedure (C)

the weight w. They will be explained in more detail in the further derivation,
it is of importance to point out that we explicitly consider only statistical-
1y indepencgent transport games of the perturbation particles. The possibili-

ties of correlated games should be investigated for the future. Their doubt-

less usefulness, however, becomes evident in our results.

Let us start with the analysis of the event point estimation carried
out during a survival-biasing transport game in the "ome” state of the sys-

tem. For that we define g;(x) to be a rancom variable whose value is the
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total centribution to the estimate,present and future, made by a particle
of unit weight experiencing an event in ox near x /3/. At such am event
point we have the following balance:

Balance (I)

Event and probability Value of i(x)

1} With prebability (i- 6_1("” the
history is terminated. Dix)
) With probability G« KL(M;)JVGJ*)
the particle survives and has
the next event in dy near y. D) + S_,,(H)* Gyx) G_&)

From this balance we find for the expected value M[&((}J the equation

M Ew] = Dix) + ﬁéé—*x‘?[‘?fﬁ&ﬂjp{r'. G

This function

W, (x) = M[ji&)] (32)

is the value function of a particle transport problem in a system K.I. with a
detector L{x) /3,4/.

Next, quite similarly we prepare the statistical analysis of the basic
game in the system state Ku ineluding a generation process of perturbation
particles whose histories then contribute to the estimate. Let us define fé‘)
to be a random variable whose value is, for each possible basic particle
of unit weight experiencing an event in dx near x, the total comtribution
to the estimate, present and future, resulting from the particle during its
further random walk in the system KU by generating perturbation particles
which then directly contribute to the estimate. Furthermore, let ?(’t’)
be a random variable whose value is the contribution to the estimate, made
by a perturbation particle which is possibly generated in consequence of an

event of a basic particle with unit weight in dx near x. Hence, for an event
point of a basic particle with unit weight in dx near x we may set up the

following balance for X,(x):

Balance (11)

12



Event and probability Valug of -f,_(x)

1) With probability (1- G (x)) the
history is termintated. g?*)
2) With probubility &)« K,(r-.,)dg/ea(r)
the basic particle survives and has —
the next event in dy near y, 52&‘)-#- f(’)*&(\'/@o(’()
The next relation wve have to find is that between i%k) and §Z(X).
It is determined by the simulation procedure of the generation process. Only
For a little while, we digress now from the original PSM and assume, for

sonvenience, instead of equation (21) a single nonnegative generation process,

Pi) = f Pr=x) £ () dx’. (33)

Here P(x-»y) is to be a nonnegative transition kernel describing the generation

i.e.,

of perturbation particles caused by an event of a basic particle at x and
the transition to its first event point y. P{x-»y) is simulated according to
the general bissing technique vhere we explicitly write the biasing kernel
F(xa»y) as the product of a generation probability p{x) and a normalized

prabability density function p(x-=y)

Ple=g) = Pe) s plx=y).

Balance (II1)

Event and probability Value of  $(x)

1) With probability (i-p(x)} no perturbation

particle is generated. 0'
2) With probability F(r)«-ﬁ(x‘-y)al?'

a perturbation particle is generated

and experiences its first event in

g Le2el

1 7 fﬂﬁ)kiﬂﬁuﬂ?)
dy near y.

Hence, for the expected value

W) = MLEe)
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W(e) = M[F] + [k (ear i)

and, furthermore, with definition (32)
& /
M[Fe] = [ Prewe) Wale) e’ on
The expected value of the event point estimator Z’r is given by

M[f] :ﬂ; (Y)M[f(xjp/r. (36)

It is not hard to see that

MLy'] = f MITff o) de
= R6) WyC) dlx o9)

=/(D(5f)£—[r)ﬂ(z\‘ =A |

i.e.,that FZ* is an unbiased estimator of A .

Mow we direct our attention to the variance

Var(g*) -:"-M[g*e] - r\a R 40y

C %
where M[?"J is the second moment and is given by

M[?*f/ "ﬁ,w M/ngq](/f . (41)

From balance ( II) we find the equation for M[f éJ

MGG = Tl Vo) S Bl

where ve have defined a nonnegative variance Function of ff(;t)

Vaf"(fﬁf)) = M[f?‘sj = M ‘?3%0] . (43)

: -
With the -help of a new distribution fumction F@’)"aas solution of

F(’f‘) S 6) + f_ﬁj/((“’f\”)F()(')‘;{r (44)

14



Nfg ] may be represented in a closed form
M = - e+,

Note that for the anglog basic game Fo(x)EED(x).
The second moment MB%")J is easily calculated from balance (III)
2
fx‘* Z e !
[f(z"‘— A XMgé") ¥ (46}
Fe J Fx>xt) 1 :
and From balance (1) we find the equation for M[f%‘)]

Mf5e] = s yout-e) + 29 [ for e o

Now we peturn to the actual PSM with the double generation process. For its
variance analysis let us define ?o(x) (:_f'ix)) to be a random variable whose
value is the contribution to the estimate, made by a "zero" {"one'} particle

w hich is possibly generated in cansequence,of an event of a basic particle with

unit weight in dx near x.Fhe relation of both variables to f(x) from the basic

game is alse given by balance (11) but with the redefinition

o) = S - H&. , (48)

» as before we have

M[fj’i/&é") W&)ﬁ(x (49)

but now W(x) is the sclution of equation (36) with the source term
M) = Mzel - M[Ze] -
Likevise equation (37), the double generation procedure must guarantee that
_ [ ,
MEe] - [ Plo=r)W(r)de' | i=61. o

Taking into account the redefinition (48) resulting in the modification
(50) with equations (51) the second moment ef the PSH estimator {25) is

also given by eguations (41), (42) or (45), The quantity, which yet has to
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be newly calculated is the variance function Uar(j(x)). Now we shall do

this for the double generatiocn procedures shown in Fig.3 through Fig.5.

Generation procedure (A)

The "i" particles are statistically independent generated using the

generation probabilities pi(x) and transfer functions 'j:?i(x--y'). We find the
following balance:

Balance (IV)

Value of
Event and prebability .f(x) ﬁ@)
1} With probability (1—El(x)) no “one"
particle is generated. - Q9
1.1) With probability {1-p (x)) no
"zero" particle is generated. 1]

1.2) With probability B (x)up (x--%)dy
a "zero" particle is generated
and has its first event in dy, 7),’(),,%4})
near y .
2) With probability El(x)w'ﬁl(x-byl)uyl
the "one" particle is generated and

experiences its first event in dyl W
Et)x
near y, .

(f" 4
)
2.1) With probability (l-Eo(x))
no "zerc" particle is gene-
rated. g
2.2) With probability E)'D(x)rﬁo(x——yo)dyo

the "zero" particle is generated

and has its first event in dyo 31(30 f’—?o%i)

neur y .

W St [ Gt
- // Ps-x }Pﬁ'—-r '?M/j’@? £ &.ff C{I’ﬁ’{’ "
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With that the variance function (43) may be written
Var( f(ﬂ/) = Var(f@))} %zr( f@ '12 ch(f(*‘), f(x)) , (53

where

Var(£6) = M[fg’)] "M?%’J) =04
Cov(f(’f), 7)) =MEwse] —MEml5e)]

) (54}

(53)

with

27 A [ B pfED
W] - 2 | B WS, w0,

andi M[f{f)f(*_)] :ﬁ@..xﬂ Rlesx ‘QM[-?@O f@’?‘%'aﬁ” (57)

Generation procedure (B)

The perturbation particles are generated in pairs using a pair gene-
ration probability §(x) but after that they will be transferred.to their
first event points by statistically independent selecting from the distri-
bution functions Ei(x—-y). For this procedure we find the balance:
Balance(V)

Value of _.
Event and probability k) F,.0¢)

1) With probability (l-p{x)) no pair of
perturbation particles is generakted. ¢ 0

2

—

With probability p(x)&PD(x—bxg;pl(x-+yl)dyodyl
a pair of perturbation particles is
generated and they experience their

first events in dyo and dyl near y

SRt gplln

and Yy respectively. Rﬁ.},g(w) ﬁd"‘f’t“%)
Thea ve get
—. ! *
MR - A (BN, wa1, o
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and

Mo Tl 2 / Bie=s )R~V IMSerGaferten

Leneration procedure (() )

We may exteno the pair generation procedure (B) by using the same
aistribution P(x-+y) for selecting the First event points of both pertur-
bation particles. In that way we urrive at a siﬁgle generation procedure
where the one generated perturbation particle now directly represents the
difference of both perturbstion scurce terms. With regard to a comparison

vith the foregoing two-particle yenerations it is useful to deal with this
single generation procedure formally in the same framework, i.e.,so as
would we have two perturbation particles with different starting weights,
but with identical histories. Thus we may set up the following balance.
Balance (VI)

Value of —
Event and probability £ A

1) with probability {(1-F{x)) no pertur-
bation is generated. G 0

2) With probability p{xWwP{x-»y)dy the
periurbation particle is yenerated
and experiences its first event in

con BOy) g By
sy [l Fag) iy FeeheFieey)

dy near y.

From that we yet

M[‘f(i)] = ;:“f‘r) ;'(;%—;;?M[Eg"yc{l”) 1= 4 (e-‘uJ

and

: I~ﬂ£fhojza£z== 4 '//rlEéE::j:LZZQEEE:fi%/»ﬁKEEEQQZdﬁ".

}i%; Fx-x')

{61)

We point out yet the special case where wl(x) is known. Then the PSM proce-

dure may beé.terminzted at the first events of the perturbation particles.

18



This is easily to realize with the help of equations {20} through (24} and

(31}, (32) arriving at

R &

The representation of A by equation (62) makes clear its interpretation as
an ordinary functional of the total first event density of perturbation par-
ticles. Simulating the latter the event point estimators 2? must be used

with wl{xJ as the contribution function. The variance analysis of that case

is easily accomplished. For this end, in the balances of the generation pro-
cedures considered above instead of the random variable S;Q)we have to use
its mean value wl(y]. We find:

- for the gerneration procedure (A}

Y W) I
M[}@]" -?ﬂ MM@')C{“", i=0, 14, 63

pe=x)

Cav(f(#), f&‘)) =.

(64}

- for the generation procedure (B)

W[To] - —-/MW Y

FGE-x) 1T (e5)

Covlirze){ 2 - 1]

(66)
~ for the generation procedure )

2l A K>X) 1 190 1t :
L [, o,
7:%3‘*>r5) (;4.. )

W7oz = [ oy W !
(68)
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