


1. INTRODUCTION

The analysis of latent expoments is a problem which occurs
often in processing of experimental data, e.g., those from
measurements of neutron flux in absorbing media, from activi-
ty measurements of isotope mixtures, etc. In all such cases
a particular problem arises which belongs to the class of la-
tent-regularity analysis /1. The present paper aims at giv—
ing full account on the mathematical and programming means
needed for the latent-exponent analysis when using relatively
limited hardware: a small computer and without recurring to
double-precision computations.

The next section 2 deals with the mathematical formulation
of the problem to be solved. In section 3 the iteration
scheme applied is described. The extraction of initial guesses
from previcusly marked characteristic points of the input da-
ta is the subject of section 4, Section 5 considers the pro-
cedure of automatic scaling which ensures an equilibrated
iteration-step matrix. The numerical results from processing
some test and real experlmental data by means of the technique
described are presented in section 6.

2. THE PROBLEM TO SOLVE

Let the physical quantity Y be marked at m fixed values
of the independent variable q, and let us have at our disposal
an evaluation of the measuring accuracy AY, i,e., let the
sets L

RCTRERE SO RS A i=1,2..m (z.1)

be given. Let a plausible model of the phenomenon studied
lead to the representation

k
Y(q)=,2-1Ajexp(?\jq)+B(q), (2.2)
.I=
where the amplitudes A. and the decrements A. as well as the

background function B(4} are unknown. The latter can be ex-
pressed in the form



BQ =3 P, - 2.3)

where P (q) are polynomials orthonormal over the point set
fg; } of (2.1) which are numerically built according to”2’.
If we now substitute each pair of Yqi and q; from (2.1) in

(2.2} taking into account (2.3), the following nonlinear si-
multaneous equations are obtained:

k 5
Y = % A}. exp(qui)JrrE,oarPr(qi), i=1,2,...,m. (2.4

1 j=1

Clearly, the number of unknows is
n=2+s+1. {2.5)

As usually m exceeds n,the system (2.4) is overdetermined and,
therefore, approximate. Note that in actual measurements it
may happen that k itself is also unknown; in the case (2.4)
is said to represent a full problem of the analysis of la-
tent exponents /17, As to the maximum degree of background poly-
nomi/%}s s, it may be defined according to statistical crite-
ria "3,

Each equation of (2.4) is assigned a statistical weight

w, =1/(AY )® . (2.8)
9

If the quantities measured are counts which follow Poisson’s

distribution, then AY are evaluated as +/Y, and the statis-

tical weights take the form

W, mI/Yqi . 2.7
Let us introduce the notatiomns
. . . . n
x-_col(hl,AI,,...,Ak,Ak,ao.al,...,ar) & R, {(2.8)
Y=col(Y ,Y¥ ,... Y )ecR™, (2.9
9y 92 I
then (2.4) can be written as
Y=‘Fx’ (2010)

where F is the nonlinear operator of the right-hand side of
{2.4). Moreover, denoting

Fx-Y =fx £2.11)



we compress (2.4) into

fx=0. (2.12)

As there is no exact solution of (2.12) it is a usual practice
to look for its solution ¥ in the sense of the least squares
where ¥ 1is such as to minimize the weighted Euclidean norm

TxWEx
9—\/-'*5'_-_*;;—'-, (2.13}
which is, in addition, normalized to the number of degrees of
freedom m-n. The overscore in (2.13) denotes transposition
and

Wzdiag(wi,wg, ""wm)' (2.14)
Thus, the problem to be solved when (2.1) are given con-
sists of finding those components of (2.8) which approximate-

1y satisfy (2.12) and minimize (2.13). In certain cases the
number of terms under the first sum of (2.4) can also be un~
known and is to be determined.

3. THE ITERATION SCHEME

There exist well=known difficulties encountered when one
attempts a numerical solution of the problem just posed’®5/.
Since it is a nonlinear one, the application of an iteration
procedure is indispensable whose steps are, as a rule, ill-
conditioned. To improve the situation and to achieve conver-
gence regularization is applied - either is a specific two-
step linearizing app;oach/5£/ or, more generally, when using
authoregularization . We renounced the former while hard-
ware limitations did not allow for the latter; therefore,
another way ought to be sought for. Qur choice fell on the te~
gularized Gauss-Newton method with an expenentially-decreasing
regularizer/iﬁ/, There are at least two reasons to justify it:
{i) the method performs quite well when applied to the analy-
518 of latent Gaussians and (ii} it may be implemented on
a small computer without double-precision options ‘811, Since
in a previous paper 9/ we described this method in detail,
ouly the basic iteration formulae are repeated here,

x% x 0 ootV ) ra YT fa YWER Y, (3.1)
Vixt) = 2 (xWe(zt ), (3.2)
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(e, =or " yox ), (3.3)

atmaoe—n_+am , : (3.4)
B
o 107 it 6% <0
a = 8 , (3.5)
g 0 mex it 0x°) > 6,
where x° is the vector of initial guesses; T 18 a unit matrix

of rankm I, @, Ty and 4 are experimentally~chosen cons—
tants ” max

4. THE INITTAL-GUESS VECTOR

Both the convergence itself and the number of iterations t
required to reach the solution X depend on the suitable choice
of the initial-guess vector x0.We suppose that the raw experi-
mental data have been pre-processed in a man"machlne dialogue
carried out by means of a graphical display 12,18/ Apart from
formattlng and sectioning, the main purpose of the dialogue
is to point out three characteristic points for each exponent
present or suspected in the input data. Let the characteris~
tic points for the i'® exponent be(ql,YIL (gg, Yy ) and (g4, Y4)
respectively, the i -subscript being omltted for the sake of
brevity. Then the initial values of A and AO can be com—
puted aceordlng to the second- dlfference formulae reported

n/t2/1f, in addition, we request that the abscisses %Y G
and qg be equldlstant, a more precmse evaluation is easily
obtained:

Y -y,
4m%4£u%qy (4.1)
and
2 Al
LIETA Y RN R Y (4.2)

Each couple of values AO and Ag vields also an evaluation
of the background

20 (4.3)
B _ o Aray
By=Y,-Ale



and these, in turm, lead to

ag= __E_ B., (4.4)

where at given values of {2.1) P, is calculated according to’?]

11 the remaining initial guesses ag,u” ag are taken to be

zeroes.
Note that when the inmput data contain one exponent on

a2 constant background {4.1)-(4.4) are as accurate as are the
measurements, i.e., the formulae are not based on simplifying
assumptions. Hence, in such cases the solution ¥ can be reach—
ed in a very limited number {1 to 3) of iteratioms. Our prac-—
tice of processing data from measurements of non-statiomary
neutrom transport confirms largely this conclusion.

5. THE AUTCMATIC SCALING PROCEDURE

As in’?, we shall take advantage of scaling in R" to achi-

eve an eguilibrated iteration-step matrix V with a possibly
lower condition number cond V. Let z & R® and

x=Cz, (5.1)
where
C =tﬁag(cl,02,.",c ). (5.2)

The iteration process (3.1)}-(3.3) can now easily be re-written
with respect to the new variable =z, obviously the step mat-
rix V=V(z!) will take the form

v’ =CVC, (5.3

and the elements of C should be suitably selected. Wote that
both V and V’ are symmetric and positively-defined. Turther-
fore, from the non-negative weights w, and from the Cauchy-~
Schwarz inequality it follows that for any couple of subscripts
i and j

v, v >(v. )%, (5.4)
S T Il A

This inequality holds for both V and V'. Therefore, if we are
able to make the V’ diagonal elements equal to unity, equlib-
ration of V' would be accomplished.

&1



Now, combining (3.2), (3.3) and (5.3), we obtain

v = E c w (f7 )2 ) (5.5).
31 j=1 j 1

or, taklng also into account (2.7),

v = o® 3 (¢ )2/Y . : : (5.6)
i J =1 G L
The values of the diagonal elements vi, ‘are supposed to be made
as close to unity as possible by means of suitably chosen c;
The direct calculation of the sum in. (5.6) for each 1tera“
tion is a time-consuming procedure which should - and can -
be simplified; moreover, we request that v;:“'l rather than
the precise equality vi y'=1. Hence, in case our initial guesses
are of the same order of magnitude as the components of the
solution vector %, we can scale once only, at iteratiom num—
ber t=0; then

e, =6NH7*, . .7)

where SD stands for the sum in (5.6) at the imitial values
of the unknown parameters. To compute approximately S the
following steps are carried out:
- summatlon is replaced by integration over dg from qy
to g
- erlvatlves are obtained according to (2,4);
‘- instead of the precise denominator Y, q; the i-th exponen—

tial term of (2.4) is substltutpd while the background is neg~
lected. |
With these assumptions one obtains analytlcally:

5.1, For the decrement scaling coefficients —

1 .
L=ToDa%e 1M io1ek, (5.8)
where
L ug 2 .

fi:e s -2 +2)-e (uy ~2u, +2) (5.9)
with

um=)\oiqm (5.1
and

u, =alq (5.11)
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5.2. For the amplitude scaling coefficients -

e, =12 alE e NH L o120k C(5.12)

5.3. Note that when i> 2 the corresponding matrix ele-
ments of V are equal to unity by their very conmstruction 72/,
Therefore, no scaling of the background coefficients is need-
ed,

5.4, And, last but not least, to avoid additional round-
off errors in the scaling-~descaling transforms we use mnot the
values computed according to (5.8) and (5.12) but the nearest
to them integer degrees of the base 2, i,e,, these transforms
affect the binary expoments rather than the respective man-
tissas.

6, IMPLEMENTATION AND NUMERICAL RESULTS

6.1, The method described was implemented in a FORTRAN v
computer code:EXP@N which is being run on IZ@T-0310, a machine
compatible with PDP~8 at instruction level. The computer uses
23-bit mantissa and does not possess double-precision options,.
Implementation is based on the KATUK-F modules /1°:11/ and on
the subroutine packagefz/ which builds numerically a polyno-—
mial family orthogonal over a point set. EXP@N consists of
the total of 19 modules:

(1) ' KUBGK (main)
(ii) KAT@K '
(iii) FLSTK

{(iv) THETL

{v) ALPHA

(vi) ALFO

(vii) GRAPH

(viii) EXP@N

(ix) . PORTHN

(x) INVKA

(x1) INGUT

(xii) INGUI

(xiii) INGU2

(xiv) INGU3

(xv) IN@US

(xvi) INGUG

(xvii) IN@U7

(xviii) @RTHPN

(xix) ER@PRTH



whose role is exactly as described in refs. ‘1% pdules
ii - vii, ix - x, xii, xv and xvii - xix have been borrowed
without modifications; module x1ii contains insignificant
FORMAT changes concernlng the output headers; the text of
modules 1, viii, x1, x1v and xvi is available from the author.

The actual valles of constants used in (3.4) and (3.5) have
been experimentally set to

T = 0.5,

a_ = 0.00001,

1 =0.0125,
]

@ nax = 240

Note that by inverting the order of cycles in computing the
V-matrix it became possible to drop the largest array FIXT
(100,40) in all C¥MMPNs which leads to core economy and al~
lows for loading the whole code into 28K 12-bit memory with-
out recurring to overlay.

+ 6.2. To test the entire package we composed an artificial
problem with three exponents where the background is constant

Y, = 40000 o 29 | 20000619 4 100007959 5600

are calculated Y for ¢=0,1,2,...99 up to the tenth decimal
digit, These values rounded to the nearest integer (to simu-
late pulse counts as in real measurements) represent the in-
put and are shown in Table 1. The last four rows in the table
are the co-~ordinates of the same number of characteristic-—
point groups, i.e., we suppose the number of exponents to be
unknown and presume them not to exceed four.

These characteristic points yield according to (4.1)~(4.4)

A = ~.169008 A% =61935.2 B, = 13064.8

AS = -.084993 A% = 35061.5 B, = 5587.75
B=7169.25

A = -.05618] A% = 15438.1 By= 5017.55

Al = -.053949 A% = 13671.0 B, = 5006.86

Afrer the third iteration the program drops the forth exponent
as insignificant and starts the process anew with three expo-
nents only. The significance test is continuously carried out
but no other superfluous component is detected. Solution is

g



Tahle 1

Input data of artificial test Problem with three
exponents and constant background

{q —values from O to 99 follow in groups of ten along each
row}

75000 65356 §723%6 S0376 44567 39634 35432 31842 28766 26120
23836 21859 20141 18642 17330 16178 15162 14263 13465 12754
12118 11548 11076 10574 10155 <776 9431 9417 8830 8567
8326 81C5 7901 7713 7539 7378 7229 709t 6963 6844
6733 6630 6533 6444 6360 6281 6208 6139 6074 6014
5957 59C4 5854 5807 5763 35722 5683 5646 5611 5578
5548 5519 5491 5465 5441 5418 5396 5376 5356 5338
5320 5304 5288 5273 5259 5246 5234 5222 5211 5200
5190 5180 5171 5163 5154 5147 5139 5132 5126 5120
5114 5108 510% 5097 5093 5088 5084 5080 5076 5072

0 75000 2 57236 4 44567

25 9776 30 8326 5 7318

60 5548 70 5320 80 5190

70 5320 84 5154 98 5076

reached at the 35th iteration with 6°°=.0037 which cannot be
further lowered because of the round-off errors present in
the input. The solution vector restores the input counts
within less than *.5 units at each point which corresponds
to the accuracy of data processed. At point ¢g=93 only the
approximation differs by .6 units which can be attributed
to disadvantageous rounding before input and/or to piling
of round-off errors during the last iteration. The output
values of parameters are

Ay = -.2001:0,001 A = 3990168
Ay = -.1004+,0003 A, = 19989£25 B = 5000.36%.25
Ag = -.05024,0001  Ag= 10109361,

i.e., the agreement is very good - both as absolute figures
and as accuracy estimation.

6.3. The EXP@N program is currently being used for pro-
cessing data from measurements of non~stationary neutron trans—
port in various media’!4/So far some ten series of measure-
ments have been carried out and over 100 time-spectra proces—
sed., Divergence of the iteration process described was never
observed; moreover, since a typical spectrum contains one ex-—
ponent on a constant background, the display-assisted preli-
minary processing ‘13’ ensures good initial guesses and a ve-
ry limited number of iterations (1-3) is usually needed to
reach the solution,



7. CONCLUSIONS

Latent-exponent analysis leads to ill-conditioned itera-
tion-step matrices which can be numerically inverted if -
and only if - special care is taken for improving their con-
dition, Such care includes both prccess regularization and
suitable scaling. None of these two measures taken separate-
ly is able tc ensure convergence in single-precision compu-
tations, When combined, however, they allow for performing
the analysis aimed at on small computers with limited memory
and relatively slow floating point operations, i.e., on mini~
machines which are usually at hand in any physical laborato-
TV.
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