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I . INTRODUCTION 

In a previous paperlt/ we described an algorithm which 

generates a polynomial family whose members are orthonormal 
over a finite real one-dimensional discrete point set. No 
limitation on the spacing of points in the set was imposed. 
Some applications of such polynomials to the problem of data 
fitting in physics are discussed in ref./2/. The present 
study aims at presenting a generalization of the technique 
referred to in the case of generating sets in a space of more 

than one dimension. 
The following section 2 gives the basic definition and the 

mathematical foundations of the method. Section 3 presents an 

algorithm of numerical generation of orthonormal polyriomials. 
Specific considerations on the algorithm implementation in 
two dimensions are given in section 4. In section 5 a package 

of five FORTRAN-IV codes is described which carry out all the 

steps of the above-mentioned two-dimensional algorithm. 
A numerical example and some results from using the codes are 
described in the last section 6. 

2. DEFINITIONS, NOTATIONS AND PROOFS 

2.1. It appears opportune to start by citing an entire ex­
cerpt from M.Weisfeld's paper/3/ which we endorse in full: 

uLet D be a set bearing a non-negative measure /1. • Given 

two mappings f and g of D into the reals, their scalar 

product (f,g) is defined to be r fgd~ • where (fg)(x)-f(x)g(x) 
D 

for all x €· D. A set of real valued mappings of D is ortho­

gonal if and only if (f. g) = 0 for each f and g , "£Til", 
in the set, and independent if and only if no nontrivial 
finite linear combination of elements in the set is zero al­

most everywhere. Let <I>= l¢j 1 j <;:OJ I be an ordered independent 

square-integrable set of real-valued mappings of D . An ortho­

gonalization of <I> is an ordered orthogonal set W=I~Jii~ 
of real-valued mappings of D such that for each i ~·J , ifJi 
can be written as a finite linear combination of elements of 

the set l¢,1k E J.k~il. 
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We consider the case of D being a subset of Rn , the 
Cartesian product of n real lines, J being the set of n­
tuplets of non-negative integers; and ~ , the set on monomials 
in the co-ordinate variables; that is, if j"" (j 1 • o;;,j n ) and 

• j1j2 jn x 1, .. o,Xn represent coord1nates, r:/>j=<=x 1 x 2 ... xn • Define 

u(il•h + .. ;+in • Order J as follows: i < j if and only if 
(a) u(i) < u (j) or (b) u(i) •u(j) and for some k,;; n 
ik + ... +in.< jk + ,;0 + j n . This induces an order in ¢>" o 

In addition, we shall call an orthogonalization 11' nor­
malized if and only if (.,Vj • .,Vj) •1 for each i E' J • According­
ly, the polynomials 1/FE 11' will be termed orthonormal. 

Throughout this paper D will be supposed to be both finite 
and discrete, i.e., consisting of distinct ordered points 
Pi €·D, i =1,2, .. ·o,M o • The measure IL is manifested by attri-
buting to each point Pi a finite positive weight wi • Hence, 
the scalar product is expressed as 

M 
(f .g) • f fg d" = ~ f (P, )w, g (P ). 

D i•1 t I t 

and the relation of orthonormalization takes the form 
M 

~ </!, (P,) W, 1/!k (P) •8,k • i=1 J 1 l l J 

Obviously, the co-ordinates of Pi are (x (i) 
I 

(i) (i) ,x2 , ... ,xn 

(2.1) 

(2.2) 

). 

Note that the order induced in ~ is unique, i.e., there 
exists a single-valued positive integer function N of n 
integer arguments j 1 .... ; jn . Thus, at given None can cal­
culate the distribution of degrees over the variables x1, ... ,Xn 
and vice versa (see 3.2). The integer u (j) will be fur­
ther referred to as overall degree of the respective mono­
mials. 

2o2. Supposing that the generating set D , the number func­
tion N(j 1 ·····in ) and its inverse (j 1,. .. ,j 0 ) = J(L) are 
known, an orthonormalization of $ can be built as follows: 

(a) Introduce formally 

(2.3) 

and 

(2.4) 
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as in I 4! and It/ </Jo does not belong to the orthonormalized set 

(in particular, it cannot be normalized) and is only needed 

for starting up a recurrency (see below). 

(b) Define 

N(O,O, ••• ,Q). 1 (2.5) 

and 

(2.6) 

(c) For each L;;, 2 define the degree distribution 

(jl' .. ;,jn) •J(L) (2.7) 

and compute 

"L""'j +j +····+·j 
1 2 n 

(2.8) 

(d) Define from (2.7) and (2.8) a unique k such that 

and 

jk+i····•jn,.,.· 

Evidently, 

1Sk ;$, n • 

(e) Calculate 

K-N(jl'j 2 , ... ,jk-1• jk+l , .. cc,jn) 

and 

I:N(aL -2,0, ... ,0). 

Note that for L-2, .. c,n+1 "L- 2·-1 

I= 0 • 

(f) Define 

L-1 m 
- /3L-1 )</j.- :£ aL ifJ ]. 

m=I m 
m,{k 

(2.9) 

(2. 10) 

(2. II) 

(2.12) 

(2. 13) 

and, accordingly, 

(2. 14) 
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where 

and 

q=O 

llz=Q.-2 

~· Fraction of a polynomial pyramide. Ordinary 
numbers are given within squares each representing 
a polynomial (monomial). A recursion family is 
framed; the grand-daughter term o/Q is otside the 
frame. 

2 -~ ) l 0 

(2 0 15) 

(2o 16) 

(2 0 17) 

The scalar product of the two sides of (2ol4) reveals the 
useful relation 

k 
cL-1/aQ, (2ol8) 
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where 

(2. 19) 

When the construction of the orthonormal set 

'I'L max =I 1/.rL I L= 1, . .-.,Lmax I has been carried out up to a certain 
Lmax we can totally ignore the assumption made in (a) above. 
Due to the mode of building 'I'L each lj!L E 'PL contains max max 

a leading term proportional to ~L E: ~L , all the remain-
max 

ing terms being of the type ¢e , e.< L , i.e., t/1 L are ordered 
in accordance with their leading terms. 

2. 3. The orthogonality of the set '~'Lmax is proved by 

Weisfeld/s/ in slightly different notations for the case 
cL- 1, L = 1,2, ... ,L max • As this proof is based on the 

implicit assumption that all lj!LE 'PL have nonZero finite 
max 

norms and these, in turn, ensure the computability of cL , we 
do not deem it necessary to repeat the proof here. 

The normalization of the set ~Lmax can be checked by sub-

stituting (2. 17) into (2.14) and by calculating the scalar 
product of the right-hand side. Again, the computability of 
cL, i.e., the requirement that inequality. 

2 
L-1 

( xk.pk • xk.pk )-fl L-1 m~l 
m,IK 

2 
(a~) > 0 

holds for all L € [ l,Lmax ] is a conditio sine qua non. 
The maximum number L max of orthonormal polynomials 

(2.20) 

.PL E- 'PL is related to the spacing of points Pi ED 
max 

i = 1,2, ... , M . When these points lie on no algebraic hyper-
surface of order q,;;;: M , then Lmax•M , since the deter­
minant of the matrix 

<i>t(PI), </>2(P1) .... ; 

<I> I (P 2 ), </>2(P 2 ) ... .. (2.21) 

differs from zero and an orthogonalization o.f ~M •I ¢ il i.;S.M l 
is possible (see/5/, chapter 21). If, however, detA=O , 
then Lmax coincides with the number of linearly independent 



columns in (2.21) counted from left to right. The position 
of these columns is stressed as the procedure of building 
the orthogonal set WL is based on (2.14) and, therefore, max 
breaks at the first apparence of linear dependence in A 
rather than when reaching its rank. In a numerical implemen­
tation inequality (2.20) can constitute a practical guide of 
~-v-hether or not the orthogonalization is to be continued 
towards higher numbers L • 

The completeness of lJIL max. with respect to the class of 
functions f(P) which are non-singular at all the points 
PiE D and have no. more than L max different values at 
these points may be proved in a way similar to that used 
inlil, and a repetition does not seem justified. 

3. ALGORITHM OF NUMERICAL GENERATION 

3.1. To implement numerically the orthonorrnalization 
described we need a closer look at the relationship among 
members of WI • As ell L and lJI 1 are isomorphous, we ... max max 'max 
can base our discussion on either of them. 

All the monomials ¢L (and, accordingly, all the poly­
nomials 1/JL classified by their leading terms) may be 
thought of as co-nstituting a pyramide-like structure (Fig.l) 
resembling the Pasquale triangle. The top of the pyrarn~ consists of ¢ 1 , the next floor of n monomials ¢ 2,<J,

3
, ••. ,ch 

0+ 1 each of overall degree a = 1, etc. Generally, the q -th row 
contains all the monomials of overall degree a= q-1 in the 
appropriate order, the numbering going from top to bottom 
and, along the rows, from left to right. Combinatorial consi-
derations/51 (chapter 21) yield that the first (Q+1) rows 
contain the total of 

B; : (n.::_q)! 
n! q! (J. I) 

independent monomials, while the amount of members in the 
( Q+ 1) -th row only is 

_(D+!!,.-1) 1 

(n-1)! q! 

where n is as before the number of dimensions in Rn . 
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It can be seen that the recurrency (2.14) encompasses 
(a) all the terms on the left of oft L in the same row and 
(b) all the terms in the two adjacent rows above that of .PL 
All these may be said to represent a recurrence family where 

~L is the daughter-term, Wk is the mother term, and the 
remaining ones are relative-terms. The grand-daughter term 
~Q, although not a member of the family, is also related to 

it through the normalizing coefficient of (2.18). The leading 

terms of polynomials ~k , WL and t/lg are of the same degree 
in all variables but x wherein their degrees are j k--1 , j k 

and j k + 1 , respectively. These considerations may 
contribute to a better understanding of the algorithm 

described in 3.4. 
It can be seen that each mother-term ~k gives rise to 

n-k +1 new members of the orthonormal set through variables 

xk····· x 0 • Hence, the first polynomial in a row with 
degrees (q,O, ...• O) generates n new polynomials in the 

next row while the last polynomial in the same row with 
degrees (O,O, •. ;,q) generates only one. 

3.2. In a numerical implementation it is essential to have 

either an analytical expression for L = N(j' 1 , •..• j 0
) and its 

inverse (j 1 ,. .. ,jn ) = J(L) or combinatorial algorithms for 
their computation. The former may be rather cumbersome and 
even non-existent for n ~5; the latter, as we shall show 
below, are always feasible. 

(a) Let us note that due to the very way of ordering 
introduced in 2.1. the polynomials in the (q+~th row of 
!..!.a:...!_ are arranged with respect to variables x2 , ...• x n 
exactly as polynomials of n -1 variables should be ordered. 
This means that 

Nn(it•""·•in)=Bnq-1 +Nn-l(j2'""jn ), 
(3.3) 

where N0 and N0 _ 1 are the number functions for n and n-1 

dimensions respectively, and q = j 1 + ••. + j n . This relation 
suggests a recursive approach to computing N0 • Indeed, since 

we can compute Nn for as many dimensions as necessary. 

(b) An analogous approach may also be used to compute the 

inverse J(L).(j1, ... ;jnl The problem here is slightly less 

transparent as both q and (j 1, ... ,j 0 ) are unknown initially. 

Nevertheless, q is easily defined as the only integer satis­

fying the inequality 
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(3.5) 
n Now, the difference L -Bq-l is clearly the ordinary number of our polynomial in the (q+l)th row, i.e., 

n-1 n n-1 B, +l.:L-B 1:;B. q -1 q- q 

where q" ... j 2+.: •. + j
0 

and, accordingly, 

il=q-q: 

Repeating (3.5)-(3.7) n-1 times we find ip···•in-l 

jn = q-j 1-,.,..;..j n-1 

(3. 6) 

(3. 7) 

whereupon 

(3.8) 

(c) The method described is in principle suitable to any n . In two dimensions, however, the use of simple analytical expressions (see 4) may prove faster and more convenient. 

3.3. Before describing the generating algorithm we should formulate clearly its goal. Ascher and Forsythe pointed cutis/ that "to find a polynomial" (or, in our case, a set of poly­nomials) may be given at least three meanings: 
- to find the values of all the coefficients involved; 
- to have a sufficiently large and detailed table of poly-

nomial values for various arguments; 
- to set the constants in a computer code capable of com­

puting the values of polynomials for any set of admis­
sible arguments. 

We shall adhere to the latter definition; in other words, our 
algorithm aims at calculating the recurrence factors in 
(2.14) and the normalizing factors (2. 17). Then, using the 
recurrency, we can compute any polynomial q,L e.•L at any 

max 
point P . Note that when cL, 13L-l and a~ are known the polynomials ¢L are defined everywhere in Rn, although the 
orthonormalization holds in D only. 

3.4. Suppose that the co-ordinates x~) , ... , x ~t) of all 
PiED are given together with the positive weights I w1 I , 
i = 1.2, ... , M . Without loss of generality we can assume that 
-1.$: x)i> ~+1 holds for all admissible i and j • Suppose 

also that the number function N(j 1, ... ,jn ) and its inverse 
J(L) are known. Then the algorithm computing cL, f3L-l and 
a~ consists of the following steps: 

(a) Set Lmax ~ M 

e 



and 

and 

(a) Set L max .$.M 

(b) Calculate 

(c) Calculate 

{J 1 = (x 1 o/1 1 ' o/1 1 ), 

o/1
2 

• c
2

[x
1
-{J

1 
]o/f

1 
• 

(d) Set L=3 and k·2 

(e) Calculate 

{JL-1 • (Xko/11, o/11) 

m •2,3, .. .-,L-1, 

L-1 

o/JL-cL[(xk-{JL-1)</11-'..:z"~ o/Jm ], 

(f) Set L·L+1 and k·k+ 1 . 

(g) If L,;;, n + 1 return to (e); else go to next step (h). 

(h) Define: 

(j 1 , .. ,;j n ) = J(L), 

a .... j 1+ .;.+ j n 

k such that 

u=jl+ .. ."+jk 

jk+l •.. ;,,..jn = 0• 
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and 

and 

and 

(n) 

and 

10 

I= N(a- 2,0, .... 0). 

(i) Compute: 

flL-1 ~ (xk fk,.;,k) 

m 

' 
u 4 

Fig.2. Relationship 
among members of set ':1' 
in the case of n • 2 . 
Each square represents 
a polynomial t/JL, the 
ordinary number L and 
the (x,y) -degrees 
being given within it. 
The x variable is x 
when arrows point to 
the left and y when 
they point to the right. 

aL=(xkif-k • .;.m). m=l •.... L-1, m,ik 

-2 
(j) If c L > 0 continue to next step (k); else skip to 

(k) Compute 
-2 Jh 

CL=(CL ) 

L-1 
1;\L = cL[(xk -flL-1 )fk- ~ 

m=l 
m~K 

m 
aL';,mJ. 



(l) Set L=L+l 

(m) If L,; L max return to (h); else skip to (o). 

(n) Modify Lmax = L -1 
value of L max • 

Print a warning and the new 

(o) Stop. The recurrence and normalizing factors are ready 
to use. 

4. CASE OF TWO DIMENSIONS 

In this section n = 2 ; we renounce the notations (x 1, ... ,x 
0

) 

and (j 1 , ... ,jn ) in favour of the usual ( x, y) and (j x ,j y ) 
respectively. The pyramide-like structure of ~ becomes 
much simpler (Fig.2) and contains in its q-th row exactly q 
members of the orthonormal set W , each of them of overall 
degree q-1 • Formulae (3.1) and (3.2) yield respectively 

s!~<q+l)(q+2)/2 (4.1) 

and 

h 
2 

I q = q + . ( 4. 2) 

Therefore, the number function N(jx ,j y) takes the form 

N(
. . (jx+j\')(jx+jv + 1) . 
J X ,J )" ) = ---· ---·-~~---- .._ 1 + J 2 y 

(4. 3) 

where the first two terms correspond to the number of the 
first polynomial in the (q+l) throw of Fig.2, provided that 
.ix+.iv"" q 

TO derive the inverse (jx,jy)=J(L) we proceed as follows: 

(a) The substitution of (4. I) into (3.5) leads to the 
inequality chain 

,, 2 ( ) I q "+ q + 2) /2 .:: L ::; ( q + 3 q + 2) I 2. 4. 4 

(b) This, in turn, 
2 

q + q + 2(1-L) = 0 

2 
q +3q+2(1-L)=0 

gives rise to two limiting equations 

(4. 5) 

(4. 6) 
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whose positive roots are respectively 

and 

q 2-v2L+1/4 -a12. 

while (4.4) takes the form 

(4. 7) 

(4. 8) 

(4. 9) 

(c) An elementary investigation shows that both q 
1 

and Q 
2 are real for each L = 1, 2 ,... ; ·moreover 

(4. 10) 

and 

(4. II) 

(d) It follows from (4.9)-(4. II) that the closed interval 
[q2 , q 1 ] contains a single integer, i.e., the overall degree 
Q. is uniquely defined as the larger of the two integers 
obtained when trunkating the fractions of Q 1 and q 2 • 

(e) Once the q has been found we may solve .(4.3) with 
respect to j y 

j ~L-q(q+l)-1 
y 2 (4. 12) 

and, finally, 

(4. 13) 

The procedure outlined is programmed in a FORTRAN-IV 
subroutine DEG2; formula (4.3) is implemented in an integer 
function NUMB2. 

Clearly, the number of normalizing factors cL and that of 
recurrence factors {3 L-l are directly linked to Lmax • Alpha­
type recurrence factors are more numerous, and knowledge of 
their precise quantity may be of help in allocating the 
memory available. Direct computation yields: 

- a single polynomial 1/.!L of overall degree q =jx+ j Y needs 

AL. 2(q-1)+ j y 

alphas; 

12 
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- all the polynomials of overall degree q need 

alphas; 

- all the polynomials of overall degrees 0:;;; q :; J 

2 
AJ~ (J-1)( ~_;:_~+6) 

6 

recurrence factors of the alpha-type. 

(4. 15) 

need 

(4. 16) 

Naturally, both (4.15) and (4.16) give precise integer values. 

5. FORTRAN-IV IMPLEMENTATION 

The algorithm described in section 3 has been implemented 
with n -2 as in 4. The full FORTRAN-IV texts of the codes 
are available from the author. In this section a brief des­
cription of the package is given and certain details of its 
usage are reported. 

The pa-ckage consists of five codes: two principal sub­
routines 0RTHN2 and PRERF2, two auxiliary ones DEG2 and ERR2, 
and an integer function NUMB2.· The principal subroutines 
contain a named C0MM0N /LINKS/ where the recurrence factors 
and some auxiliary variables are recorded; this must also be 
declared in any calling program which makes use of the 
package. The present size of /LINKS/ allows for overall 
degrees as high as 16 and for Lmax - (16+ 1)(16 + 2)/2 - 153 

Computational needs and/or current memory restrictions may 
impose changes of the array dimensions in /LINKS/. 

5.1. Subroutine ~RTHN2(NUMBNX,X,Y,POLY) computes the 
values of all the polynomials 1/tL(x,y) , where 1~. L <£ Lr. The 
list of formal arguments includes: 
NUMBMX - the value of L r ; 

X andY- the co-ordinates of point P(x,y) , where if;L are 
calculated; this point is not bound to belong to D 
however both x and y undergo the same linear 
transform which maps D onto ( -1, + 1] square; 

P0LY - one-dimensional array of results; at the exit from 
~RTHN2 P~LY(1) contains <fr 1, etc., up to P~LY 
(NUMBMX) which contains 0Lr. Core allocation for 
P~LY should be ensured by the main (calling) prog­
ram. 
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5.2. Subroutine PRERF2(M,MAXD,X,Y,P~LY) computes the 
recurrence factors in a single call which, accordingly, must 
precede any working call of 0RTHN2. The arguments have the 
following meaning: 
M - the number of points Pi E· D ; 

MAXD the maximum overall degree for which recurrence 
factors are computed .• The actual number Lmax is 
defined from (4. I) with q = MAXD; 

X and Y - two one-dimensional arrays containing the co­
ordinates of points Pi E D . Again, co-ordinates 
are given in their natural (physical) units and 
mapped internally onto a -1 , + 1 -square. 

P~LY - the same as in 0RTHN2, used here as scratch-pad 
storage. 

The output from PREPF2 goes to the /LINKS/-common block. Core 
allocation for X,Y and P~LY should be ensured by the calling 
program. When computing f3L-t, a~ and c L PRERF2 makes 
successive recursive calls to 0RTHN2 with NUMBMX = L-1, then 
L is incremented, etc., - until L max is reached. 

Since the computation of recurrence factors may be time 
consuming, PRERF2 provides for their recording on a 
peripheral device (tape or disk) in binary form and for 
reading of prerecorded recurrence factors in case of 
repetitive use of generated polynomials. This is controlled 
by means of IRP (Integer Regime Parameter) which is entered 
in I1 format and may have values within the range 0 to 7 
(IRP >'7 will be accepted but actually its modulo 7 will be 
used). IRP is treated by PRERF2 as an octal with the follow­
ing meaning of bits: 

- high bit 1 compute recurrence factors; 
0 read prerecorded binary values; 

- middle bit write on a spare file binary values 
computed of read; 

0 skip binary writing; 
- low bit I control print of values computed or 

read; 
0 skip control printing. 

5.3. Subroutine DEG2(N,J,JX,JY) calculates at given poly­
nomial number N the overall degree of the leading term J, the 
degree in x -variable JX and that in y -variable JY. To avoid 
round-off errors when computing the roots (4.7) and (4.8) 
these are complemented with a small ·additive (Jo- 5 ) before 
·truncating the fractions. 
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5.4. The integer function NUMB2(JX,JY) returns at given JX 
and JY the ordinary number of polynomial with that particular 
structure of the leading term. 

5.5. Subroutine ERR2(KE) prints out error messages in case 
of necessity. The argument KE is the message number and is 
set by PRERF2 and 0RTHN2; messages may appear after irregular 
calls and are self explaining. 

6. EXAMPLES OF USE 

6. 1. We shall consider first as a simple illustration the 
case of an eight-point generating set for which all the com­
putations may be checked analytically. Let M = 8 and the 
point co-ordinates be 

x, -I' I, -1/2, I /2, -1/2, I /2, -I' I; 

Y; I, I' I /2, I /2, -I /2, -1/2, -I' -1; 

with respective weights 

w. = 1/9, 2/9, I /9, 1/9, 1/9, 1/9, I /9, 1/9. 
' 

These points lay on a surface formed by a rotating parabola 
and we cannot expect to reach Lmax"" 8 when generating the 
orthonormal set. Indeed, matrix (2.21) takes the form 

-I 

-I /2 1/2 

1/2 I /2 
A. 

-I /2 -1/2 

I/2 -1/2 

-I -I 

-! 

-I -j 

1/4 -1/4 1/4 -1/8 1/8 

J/11 1/4 1/4 1/8 1/8 

1/4 1/4 1/4 -1/8 -1/8 

1/4 -1/4 1/4 1/8 -1/8 

-I -1 

-1 -1 

where the fourth column (corresponding to x 2) is repeated 
also in the sixth position (corresponding to y2 ). Hence, 
five orthonormal polynomials may only be generated. These are 

t/1 1 = 1. 

<i' • 
1 

(9x-1) 2 y53 
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3 
</; = (53y-8x-5), 3 v' 16165 . 

2 _[ 61(477X+26)(9x-1) -243(53y -sx-5)-171349], 
4293v'. 20 13 

2 
-· [ (9x-1)( 47223y-9540x-6856)-81(53y-8x-5)+ 14201]. 

4293v' 21153 

The sixth member of the set comes proportional to y 2-x 2 and, 
having eight zeroes at the generating-set points, cannot be 
normalized. Numerical execution of these,calculations yields 
the same results within the limits of machine accuracy (Jo-7-
1 o-6 in our case). 

6.2. We use the codes described and the technique 
explained in detail in/2/ for approximating data on crystal 
orientation measured at various temperatures ( x) and layer 
thickness ( y), Over a D-set of 334 points 55 orthonormal 
polynomials were generated (MAXD = 9), Optimum length of fit­
ting series fell on L = 38 which was selected according to 
the minimum x 2 per degree of freedom. Smooth fitting surface 
was obtained for the entire range of X and y involved. 

6.3. The same codes are presently being used for fitting 
the distortion residuals when comp~ting the parameters of a 
large optical system. Gratifying results are being obtained 
when the selection of optimum fitting length is based on 
smoothness criteria which turns out more suitable in this 
particular case. 

7. CONCLUSIONS 

The algorithm described can be implemented within limited 
hardware resources and does not require double-precision com­
putations. In combination with the technique reported in/2/ 
it is a powerfull tool of data fitting when multidimensional 
polynomial models suit the phenomena studied. The recursive 
approach to orthonormalization renders it more universal and 
more economic than direct matrix diagonalization/ 7 L Moreover, 
the discrete orthogonality relation and the normalization to 
unity help to avoid matrix inversion at all which cJnnot be 
done under different conditions as, e.g., in ref./s • 
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