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1 Main model

Boson stars are gravitationally bound macroscopic quantum states made up of scalar
bosons [19,24,6,141. They differ from the usual fermionic stars in that they are only
prevented from collapsing gravitationally by the Heisenberg uncertainty principle. For
self-interacting boson field the mass of the boson star, even for small values of the
coupling constant, turns out to he of the order of Chandrasekhar's mass when the boson
mass is similar to a proton mass. Thus, the boson stars arise as possible candidates for
non-baryonic dark matter in the universe and consequently as a possible solution of the
one of the outstanding problems in modern astrophysics - the problem of nonluminous
matter in the universe. Most of the stars are of primordial origin being formed from
an original gas of fermions and bosorns in the early universe. That is why it should
be expected that most stars are a mixture of both, fermions and bosons in different
proportions.

Boson-fermion stars are also a good model for learning more about the nature of strong
gravitational fields not only in general relativity but also in the other theories of gravity.

The most natural and promnising generalizations of general relativity are the scalar-
tensor theories of gravity 4,9,30,8]. In these theories gravity is mediated not only by
a tensor field (the metric of space-time) but also by a scalar field (the dilaton). These
dilatonic theories of gravity contain arbitrary functions of the scalar field that determine
the gravitational "constant' as a dynamical variable and the strength of the coupling
between the scalar field and matter. It should be stressed that specific scalar-tensor the-
ories of gravity arise naturally as low energy limit of the string theory (15,5,12,25,21 .201,
which is the most promising modern model of unification of all fundamental physical
interactions.

Boson stars in scalar-tensor theories of gravity with massless dilaton have been widely
investigated recently both numerically and analytically 26,16,27,28,7), 2,31]. Mixed
boson-fermion stars in scalar tensor theories of gravity, however, have not been inves-
tigated so far in contrast to the general relativistic case, in which boson-fermion stars
have been investigated 17].

In the present paper we consider boson-fermon stars in the most genera] scalar-tensor
theory of gravity with massive dilaton.

In the Einstein frame the field equations in the presence of fermion and boson matter
are:
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where V_, is the Levi-Civita connection with respect to the metric g, (I , (1 0.3,
7i = 0.,3, n = 0, ..., 3). The constant rc. is given by K = 8rG,, where G. is the bare
Newtonian gravitational constant. The physical gravitational "constant" is G.A2 (~p),
where A(,) is a function of the dilaton field ~o depending on the concrete scalar-tensor
theory of gravity. W(IPfIT) is the potential of the boson field. The dilaton potential
U(p) can be written in the form U(~p) m n'V(~o), where inD is the dilaton mass and
V(p) is a given dimensionless function of ~o.

The function cl(~o) = [In A(~o)[ /D9~o determines the strength of the coupling between
B F

the dilaton field po and the matter. The functions T and T are correspondingly the trace
F B

of the energy-momentumn tensor of the fermionic matter TZ and bosonic matter TZ.
Their explicit forms are:

"B 1 /~,

2

2 A2(o [a,9i'l-a'qi - 2A (oWIII) " (2)

F
T'= ( + p) umu'-p6'. (3)

Here P is a complex scalar field, describing the bosonic matter, while 'IJ' is its complex
conjugated function. The energy dnsity and the pressure of the fermionic fluid in the
Einstein frame are E -~ A4~p)P and p A4 p) P, where and are the physical energy
density and pressure. Instead of giving the equation of state of the fermionic matter in
the form (?,it is more convenient to write it in a parametric form

P 4io( fs) 5= f (A), (4)

where o is a properly chosen dimensional constant and pi is the dimensionless Fermi
momentum.

The physical four-velocity of the fluid is denoted by u The potential for the boson

1In the present article we consider frm ionic matter only in macroscopic approximation, i.e.,
after averaging quantum fluctuations of the corresponding fermnion fields. Thus, we actually
consider standard classical relativistic matter.
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field has the form:

WOP4 'IJ) 2 4
The field equations together with the Bianchi identities lead to the local conservation
law of the energy-momentum of matter

F F
V,~~ T~~'= a ko) T 0_~~~~O (5)

We will consider a static and spherically symmetric mixed boson-ferrnion star i asymup-
totic fat space-time. This means that the metric g, has the form

ds 2 exp [v(R)] dt' - exp [A(R)] dR2
_ R

2 (dO2 + sin2 d V2) (6)

where R. 9, iV are usual spherical coordinates. The field configuration is static when the
boson field satisfies the relationship:

TI = &(R) exp(iwt).

Here w) is a real number and &(R) is a real function. Taking into account the assumption
that has been made the system of the field equation is reduced to a system of ordinary
differential equations (ODEs). Before we explicitly write the system, we are going to
introduce a dimensionless radial coordinate by r mBR, where ?B is the mass of
the bosons. From now on, a prime will denote a differentiation with respect to the
dimensionless radial coordinate r. After introducing the dimensionless quantities

QW = V1r' a A- =T mD 

and defining the dimensionless energy-momentumn tensors as T_ -~jT_, the comn-
ponents of the (limensionless energy-momentum tensor of the fermionic and bosonic
matter become correspondingly:

F F
7'0= b A' (~) g(p), TIt bA' p) f (ji),

B 'A2(d ) 2

2o -A(' 'r -~v') + y-)expl-AMr) A' (p) W (ao

T1 --A 2 (~) + 2)eP[2 -Ad()Wr2

2 ' -A r) exp[- v(r)j kd epA(,r)lj A ~)W()

Here, the parameter = K.~O/M2 describes the relation between the Compton length
of dilaton and the usual radius of neutron star in general relativity.

B F
The functions T and T, describing the trace of energy-momnentum tensor, have the form:

B 2 L-) 22 x 'do \27' A() (r x[vr- I- exp[-A\(rl 4A'(w)W(a) ,
jLU~r~exPL(dr)
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T= b A4(,) g~jt) - 3 f(p)]
For the independent dimensionless radial coordinate 7r we have

7r E 0, R,[ U JR,, oo),

where 0 < ft < oc is the unknown radius of the fermionic part of the mixed boson-
fermlionl star.

With all definitions we have given, the main system of differential equations governing
thle structure of static andl spherically symmetric boson-fermionl stars can e presented
in the following form:

1. In te interior of the ferinionic part of the star (the functions in this domain are
subscribed by i)

d F1, - exrA ± , exp(A) {TI! + B0 + II
2 V~O) + dP2

= P2., - -r 2]~~TI, TO 

dr 7'~~ I drd

d v= F2, i - exp(A) F ep() ( + 7) +1_ 2V() , (7)

d 2~ = 3, 2d + (F-F~j d 
=, 77T +r 2.) 2d pyj

-a exp(A) [Q x(-7+4cA() ()
- 2~) fTF+ 7) [! 2V, ±

paaetr Hain imd the phs2 a assmptons wehvd osle h qain

(7) under the following boundary conditions:

A () d, 0)= (0) = U, aT(0) = 0,., /I(O) =i.,(8)

dr dr

p(R~) = (9)

where a, and p, re te values of density of, respectively, the bosonic and fermnionic
matter at the star's center. The first BC in (8) ensures the existence of local Loreitziazi
system in sonic vicinity of the star's center. The second and third conditions in (8)
guarantee te nonsingularity of the dilaton field and the boson matter at the star's
center. As for the quantities or,. and /L, in the last two B3Cs (8) they must be given. At
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last the quantity R in (9) is the radius of the fermionic part of the star, where te
pressure of the fermionic matter vanishes (for more physical details see 31).

2. In the external domain (subscribed by ) there is no fermionic matter. ie.it canl
be formally supposed that the function p(r) _=0 if > R_ The ferniionii part of te
energy-momentum tensor also vanishes identically and, thus, the differential equations
with respect to the rest four unknown functions (r), v(r), 'P(r), and oa(r) are:

dA 1- xp(A) B I '

=Fl, r + C, {exp(A) T +_Y2 VQ~) +

d-= - exp(A) ) B [T 1l-y2V(;O)] - d)

= 2, p + 1 (F,- 2
F~ r dr 2 ' dr

1 F~O B 1 2V',i
exp(A) ~a~)T +-- 2 (y (0

d F4r -d + (,- 2,) -2c()j
rdr +2 dF1 Tr

-aexp(A) _q exp( Y)+472~)~a]

As it is required by the asymptotic flatness of space-time (see 3]), the boundary con-
ditions (Cs) at the infinity are:

v(CX-) = 0, ~P(0) = 0, CO() 0()

where we denote ()(w) =lin_()7.

We seek for a solution A(r), v(r), (r), a(r), g(r),R., PI subjected to the nonlinear
ODEs (7) and (10), satisfying the BCs (8), (9), and (1 1). At that we assume the function
p(r) is continuous in the interval [0, RJ, while the functions \(r), v('r) are continuous
and the functions ~o(r), a('r) are smooth in the whole interval [0, oc), including the
unknown internal boundary r = R,.

The so-posed boundary value problem (BVP) represents a nonlinear two-parametric
eigenvalue problem with respect to the quantities R, and P.

Let us emphasize that a number of methods for solving the free-boundary problems are
considered in detail in [29,22].

Here, we aim at applying the new solving method to the above-formulated problem.
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2 Method of solution

At first we scale the variable r using the Landau transformation [291 and, in this way,
we obtain a fixed computational domain. Namely,

For our further considerations, it is convenient to present the systems (7) and (10) in
the following equivalent forms as systems of first order ODEs:

ye' +R F(R,xye, 9) =0 (12b)

with respect to the unknown vector functions

and right hand sides Fj = (Fl, F2 ,, F3, 7 ,F4 , F5)T , F, - (FI, F2,, F3wi, F4)T , where
(.)' stands for differentiation towards the new variable .

For given values of the parameters R and Q, the independent solving of the inter-
nal system (12a) requires seven BCs. At the same time we have at disposal only six
conditions of the kind (8) and (9). In order to complete the problem, we set addition-
ally one more parametric condition (the value of someone from among the functions
A(x), L'(x), p(x), ~(x), a(x), or 71(x)) at the point x = 1). Let us set for example:

pdl () = ~0, (13)

where yp., is a parameter. Then, the boundary conditions (8), (9), and (13) of the internal
BVP can be presented in the form:_

Bo,j y (0) - Do,j = 0 , Bj,j y (1) - Dj1 j(p5,) = 0. (14)

Here, the matrices B0, = diag(l, 0, 0, 1,1, 1,1), D0, = diag(0, 0, 0, 0, or,, 0, ti,), B1,j -
diag(0, 0, 1, 0, 0,0, 1), Dj,j =dihag(0, 0, c,,0, 0, 0,0).

Obviously, the solution in the internal domain x e- 0, 1 depends not only on the variable
x, but it also is a function of the three parameters R,, Q, ~o, i.e., y. = yi(x, (1, R8 , ~p).

In the external domain x > 1 the vector of solutions

is 6D. Thereupon, six BCs are indispensable for solving the equation (12b). At the
same time only the three BCs (11) are known. Let us consider that the solution y(x)
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in the internal domain x [0, 11 is known. Then, we postulate the rest three deficient
conditions to be the continuity conditions at the point x = 1. The first of them is
similar to the condition (13) and the other two we assign to two arbitrary functions
from among \~(x), v(x),~(x), or(x), and (x); for example:

It is convenient to present the BCs in the external domain in matrix form again:

Biey (1) Di, (p,) 0, B., ye(oo) 0, (15)

where the matrices
B,,, diag(l, 0, 1, 0, 1,0) ,

D,= diag(A\j(1), 0, po,0,oi(l) .0,)

Let the solutions y = y(x, Q, R3, ~a) and y, = y,(x, Q, R, , ) be supposed known.
Generally speaking, for given arbitrary values of the parameters R, Q, and ~0 the
continuity conditions with respect to the functions v'(x), ~(x), and 71(x) at the point
x = 1 are not satisfied. We choose the parameters R_~ Q, and ~9, in such manner that
the continuity conditions for the functions v(x), ~(x), and 71(x) are held, i.e.,

v, (1, I?,, (2, Ps) - vi( 1, R_, (, p,)=0,

tG(1. R8, Q, ,.) - qi(1, 1?, 2, p,) 0.6

These conditions should be interpreted as three nonlinear algebraic equations in regard
to the unknown quantities R,, (2, and ~a,. The usual way for solving the above-mentioned
kind of equations (16) is by means of various iteration methods, for example Newton's
methods. The traditional technology similar to methods like shutting 33], requires
separate treatment of the BVPs and the algebraic continuity equations and brings itself
to additional linear ODEs for elements of the corresponding to (16) Jacobi matrix.
These elements are functions of the variable and they have to be known actually
only at the point x = 1. The solving of both the nonlinear BVPs (12a), (14) and (12b),
(15), and the attached linear equations is another hard enough task.

In the present work, using the Continuous Analogue of Newton Method (CANM) 13]
(see the comprehensive reviews 18], [231) we propose a common treatment of both
differential and algebraic problems.

We suppose that the nonlinear spectral problem (12a), (14), (12b), (15), and (16) has a
"well separated" [18] exact solution. Let the functions y,,o(x), y,,o(x) and the parameters
R 0, (2o, ~po be initial approximations of this solution. CANM leads to the following
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iteration lroces:

Y,,l(:U) =Y,k(X) + kZx,k(X), (17a)
Y,.k I GOx - Y,,k.x) + TkZek(X), (17b)

RAl~ I?,.~ + TA. (17c)

~0-i-i I .~0,A ± Tk~k. (17e)

Here -m (0, 1 is a parameter, which canl rule the convergence of iteration process.
The incremnts Z(X), Z,k(.r). Pk, Wk, aid Ok = 0, 1, 2, ... satisfy the linear ODEs
(fur sake of simpllicity we wvill heiicefortl oit the number of iterations k):

0 F / D F\DFC9

In the aove two enationis all coefficients and right-hand sides as well are known
fiiictioiis of the arguimients xr, R_, Q by ineans of the solution froiii the orevious iteration.
We seek for the unknowns z(r) of equation (18a) and z, (r) of equation (18h) as linear
Combinations with coefficients p, w) and 0:

Z,(.E) =si(.,) -4 p uj(.) + wvj(.) + Ow,(r) ( 19a)
z, (.r) s,(x) ± p u, (r) + &v, (r) + Ow, () (19b)

Here s (v), u (;), v x), w, (.r) and s (x) , u,(x) , v,.(x), w, (x) are niew nknown fniic-
tions, which are tdefined in either, internal o external domains. Sbstituting for the
decomposition (19a) into equation (18a) after reduction we ohtaimi:

-Si + Q,(x) 5,i y,' R , F,

-i' ± Qi(x) ui (Fi +RO )

-i,+ Qi (x7) w, 0

wher e Q, (.r) -=R, O Fi (R.,r, yi, Q) /O yj stands for a square matrix (7 'X 7), which
consists of die Frecli~t derivatives of olperator F, at the point {y&O(.r) I }

Similarly, applying CANM to the BCs (14) and taking into account the (1e1)eiience of

mnatrix DI1 j on te parameter ~o, yields:

Bo, iz, ()=Do - BoiydO(), B1, z,(l) Dj1 i - B, yil) - D~ O

By ineans of the representation ( 19a) we ohtain te following eight BCs (four left +
four right) fr te equations (2):
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Boj s () =Do,j - Boj y () , B1 ,j sj(1) = D,- Bj,j yi(l),
Bo,j ui(0) =0, B1 ,j uj(I) = 0, (20)
Bo,j vi(0) =0, B1, v () = 0,
Bo,, w (O) =0, B1,j w () = -,'g)

Let us now substitute for- decomposition (19b)) into the linear equations for external
domain (18b). As a result, we obtain the following four vector equations with regard to
the unknown functions s(x), ue(x), v,(rL), ad w,(x) with eight BC's (four left four
right):

-s, 'i Q, X) s,~ y, R, F-

U,+ Q () Ve~ F= -H, aF(1

OQI
-W, -i Qx) W, = 0.

Here, Q,(x) =-~ RO0F, R,x, y,(x), Q /y,, is a square matrix (6 x 6) whose eemieits
are Frechdt's derivatives of the operator F, at the point y'(X). I?,, Q}.

The corresponding linear BCs are obtained in the same way as (20) and they become:

B1 ,s, (1) = Di,- Bj y(, B.,,, e(oo) - B, y,()

B1, v,(1) = 0. B-,,V, () 0, (22)

B,1 , w, ( ) = - D 1 , '~O). B_ w,(oc) 0.

I n the e id, t o comnp ute t e i ncr emei it s pw p o f paramne t ers R_, a~ and ;.), wc i s t 
three continuity conditions (16).

Let the solutions of linear BVPs (2), (20) ad (21), (22) at the kth iteration stage lbe
assumed as known. For simplicity, wre introd uce the vector ~'(x) =-(v(x), (I). 71(x))T.
For two arbitrary functions h(x) and ftlr), defined in left and rigilt vicinity of the
point = 1. we set Ah --he(1) - h(1). Then, applying CANM to the equations 16)
anid having in mind the decompositions (19a). 19b). we attain the vector equation:

zA P + A ' W +'A C70= - ('-t- A) , (23)

which represents an algebraic systetn consisting of three linear scalar equations with
respect to the three unknowns p, Li, and o.

The general sequence of the algorithm can be recapitulated in the following way. Let
us assume that the functions Y~,k(X). Y,.k(y). and parameters Rk Q, P0,,k are given
for k > 0. We solve the linear BVPs (2), (20) and, thus, we compute the functions
Si,k(X), Uik(X), Vk(X), -ik(X) in the internal domain x E [0, 1]. Then, we solve the
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linear VPs (21),(22) in the external domain x [1, co] and compute the functions
S,,k(X), U,,k(X), V,.k(:E), and W,,k(X).

Next, to obtain the increments Pk, Wk, and Ok we solve the linear algebraic system (23).
Using the decompositions 19a, 19b and then the formulae (17a) (17e), we calculate
the functions y,,A.., (x), y,,k.. i(3), the radius of the stat R,,k~i, the frequency Qk1 and
the parameter (,,,k~j as well at the new iteration stage k + 1.

At the eovery, iteration k an optimal time step T,, is determinated in accordance to
the ErmakovkKalitkin formula [10] rt ~A 6(0)/ 6(0) ± 6(l)], where the residual 6(-)
is calculated as follows

S(rT.) max f, (R, ± rFkPk)2, (Qk + ThW-I~k)2 , ((O, -I Tk~k )2

and 6 is thn Euclideari residual of the right-hand sides of the first equations in the
systems (2). (20), and (21), (22).

The criterion for termination of the iterations is 6(mT,,t) < , where -O 10 10-12 for
some k.

Trakinig into account the smoothness of sought solutions, wve solve the linear BVIs
(2), (20), and (21, 22, employing spline collocation scheme of fourth order of approx-
iniation 32]. A that, we utilize essentially the important fature that each of the
above-mientioned two groups vector BVPs (ternal ad exterual) has one and the same
left-baud side.

0,4 Parameters: A 10 IO .1, b I

.. 0,3-

0 2-

a-l 

0 2 4 6 8 10
Relative Coordinate x

Fig. 1. The function a(x) for oa. = 0.4; it, 1.2.

It is worth noting that the algebraic systems of linear equations and the system (23) as
well become ill-posed in the vicinity of the exact" solution, i.e., for sufficiently small
residuals 6. That is why for small 6, for example if 6 < 10-3 (then r,, -. usually), it
is expedient to use the Newton-Rantorovich method when the respective matrices are
fixed for some 6 > 10-3.
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0,00

-0.04

LE -0,08
C

g-0,12

016 Parameters: A ItO, y=0. 1, b I

0 4 8 1'2 1'6 20

Relative Coordinate x

Fig. 2. The function ,,c(x) for a, = 0.4; =1.2.

3 Some numerical results

For the purpose of illustrating we will shortly discuss some results obtained from nu-
merical experiments.

In the present article, we consider concrete scalar-tensor model characterized by the
functions (see Section 1):

A () = exp (),V(~ [ A2(p,)] 2 ,

gUp) [(6p + 3) V + -+3lIn( /7?+ 1'+ IL)

W(U) Orj2+ 1Ac')

The quantities b, A are given parameters. For completeness, we note that in the concrete
case the functions f(p) and g(li) represent the equation of state of noninteracting
neutron gas in parametric form, while the function V(cr) describes the boson field with
quadratic self-interaction.

The calculated eigenfunctions (x), p(x), v(x), and /1(x) are plotted correspondingly
in Fig. 1, 2, 3, and 4 for the values of the parameters -y 0.1, A 10 and b = 1. The
behaviour of the mentioned functions is typical for a wider range of the parameters not
only for those values presented in the figures. The function a(x) decreases rapidly from
its central value a, = 0.4 (in the case under consideration) to zero, at that when di-
nmensionless coordinate x > 6, the function does not exceed 0'. Similarly the function
v(x) has the largest derivative for x (0,9). After that it approaches slowly zero at
infinity like l/x. For example, when x r: 9 the derivative v'(x) ;:510', while for x > 27
we have v' (X) < 10-4, ise., the asyniptotical behavior of calculated grid function and its

12



c-0,8-

Parameters: A IO 10. 

0 4 8 12 16 20

Relative Coordinate x

Fig. 3. The function Lv(x) for a, = 0.4; j'c 1.2.

derivative agrecs very well with the theoretical prediction (see [3]). The function p(x)
increases rapidly for x < 4; besides that it trends asymptotically to zero. Obviously, the
quantitative behavior of W(x) for central value , = 0.4 is determinated by the domi-

B F
nance of the term T over the term T (see [3]). At last the function ji(x) is nontrivial
in the internal domain x [0, 1], i.e. inside the star. Here, it varies monotonously and
continuously from its central value (in the case under consideration) p,=1.2 until zero
at 1, corresponding to the radius of the star.

.~1,2 Paaeters: A 10 - .. , b=I

0

0,6-

'~0,3.

o0,0
0,0 0,2 0,4 0,6 0,8 1,0

Relative Coordinate x

Fig. 4. The function t(x) for a, = 0.4; t, =1.2.

The computed grid funetions cr(x), ~p(x), v.(x) are compared with their theoretical
predictions whets x - o

I / 'y"O
ep(x RV1 - - , ,o-(x)=-1-exp I - x R,

-x/ xR, 2

xR,
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-67 Asymptotic Behaviour of the Sol uti on p (x)
0, ~~~~~at the Infttnity

0

,e
0

-8~~~~~~~0

0

32 40 4 8 56 6
Scaled Coordinate x

Fig. 5. The calculated function ~p(x) compared with its asymptotical behaviour.

where Al is the star mass (see below). The following results are obtained:

la~x) - c,,(x)l 0 within 10-7;

In I~p(x) - ~rj= Cx ± D, where the constants C < 0, D > 0 (Fig. 5);1

lx)- v.,(x)l v.o. In the case of the solution tinder consideration the constant v0 :-
4.03 x 104

From physical point of view, it is important to know the mass of the boson-fermion star
and the total number of particles (bosons and fermions) making up the star.

The dimensionless star mass can be calculated via the formula:

MzJ +]~ [ eB F /,\ ("' + '-V(; 1j r2
dr.

The dimensionless rest mass of the bosons (total number of bosons times the boson
mass) is given by

AtRB = Q1 A 2 ((p)exp (A V ii)2r
2 d r.

The dinsensionless rest mass of the fermions is correspondingly:

MRF = b A (o) exp (,- n)r 2 d'r
0

where n(pu) is the density of the fermions. In the case we consider we have n(y.) 

The dependencies of the star mass M and the rest mass of fermions MRF on the central
value p, of the function pi(x) are shown in a configuration diagram on Fig. 6 for A = 0,
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-y = 0.1, b = 1, and a,~ 0.002. It should be pointed that for such small central value
or, we have in practice "pure" fermionic star. On the figure, it is seen that from Small
values of it, to values near beyond the peak the rest mass is greater than the total mass
of the star, which means that the star is potentially stable.

Parameters: A = 0, y= 0.1,b = la =0.002
0,7-

0,65

0,4

Rest mass of fermions
0,3-

0 I 2 3 4 5
Central Density of the Fermionic Matter g.

Fig. 6. The star mass M and the rest fermion mass MJRF as functions of !s,,

On Fig. 7 the binding energy of the star E = - MfRB - MRF is drawn against
the rest mass of fermions MRF~ for A = 0, 'y = 0.1, = 1, and a, = 0.002. Fig. 7 is
actually a bifurcation diagram. By increasing the central value of the function ,tL(x) one
nteets a cusp. The appearance of a cusp shows that the stability of the star changes - a
perturbation mode develops instability. Beyond the cusp the star is unstable and may
collapse eventually forming a black hole. The corresponding physical results for pure
boson stars are considered in our recent paper [j.

In the case of a mixed boson-fermion star with approximately equal parts of bosons
and fermions, the total mass of the star is plotted on Fig. 8 as a function of the central

Parame ters: A =0.y0.l,. b =, , 0.002
0,00 

~-0,0l

-0,03 ~

-0,04 

0,2 0,3 0,4 0,5 0,'6 0,7
Rest Mass of Fermions MR,

Fig. 7. The binding energy E versus the rest fermion mass MRF
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Fig. 8. The star mass as a function of central values 1i. and oa,.

densities a, and ji, at the corresponding ranges of these parameters. The projection of
the mass surface on the appropriate plane gives, correspondingly, the pure fermionic
and bosonic case we have discussed above.

4 Concluding Remarks

In the present paper a two-parametric nonlinear BVP about spherically symmetric
mixed boson-fermion stars is solved. The computational domain is divided into two
parts, in which two systems of ODEs with different number of equations are considered
and treated numerically. Through CANM they are reduced to linear systems of seven
ODEs in the inner part (inside the star) and six ODEs in the outer part (outside the
star). In order to solve the internal system an additional parametric BC about one
of the sought function is introduced (say ~o(l) = p) Three BCs on the left side are
necessary to complete the outer BVP. To this end we choose the calculated values of two
functions ),(x) and c(x) at the point x 1, and ~p, as well. In this way the continuity
of the above quantities at the radius of star is ensured. Generally, the continuity of the
rest free functions *~), ~o'(x), and a'(x) in the point = 1 is not guarantied. The
continuity requirement for them leads to three algebraic equations, depending on the
parameters R,, Q, and ~o. Applying CANM to these nonlinear continuity conditions
we solve completely both the differential and the algebraic problems.

This implementation of the original BVP is more convenient and common with regard
to that presented in [3] because it does not depend on choice of the concrete model
of a fermionic matter (the functions f(r) and g(r)), and enables to avoid the separate
integration of the equation about fernionic matter p4r).

The uniform structure of matrices of the left-hand sides of linearized systems in both
domains, inside and outside the star, is the second principal advantage of the presented
numerical algorithm, which makes easier and accelerates its numerical treatment.
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