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1 Introduction
In recent paper [lj theoretical analysis of the dissociative ionization of Hj by fast
electrons was carried out. As mentioned in this paper, the crucial point of calculating
the cross-section of such processes is that no closed exact analytical wave functions
of the continuum states exist. As consequence, the final-state wave function of the
ejected electron was constructed like a product of the two Coulomb functions of the
continuous spectrum of hydrogen atom that is an approximation of the scattering
electron two-center wavefunction. To improve the calculation one can need to ob-
tain these functions as the numerical solutions of the continuous spectrum of the
two-center Coulomb problem. It leads to a cumbersome procedure of calculating
multi-dimensional integrals with the functions presented numerically that requires
huge computer facilities and may cause additional computational problems. The
representation of the above integrals considered in [2] leads to the simplification
of the such calculations even the numerically constructed functions are applied.
Here we proposed a numerical algorithm for the calculation of such functions of
separated variables based on the representation of the scattering problem as a para-
metric eigenvalue problem similar to [3] which is realized here with the help of the
modified Newton iteration scheme [4].

The structure of this paper is following. In section 1 the formulation of the
two-center problem is given briefly. In sections 2,3 the statements of the eigen-
value problems for quasiangle and quasiradial equations are presented in sections.
In section 4 the method of solution and the corresponded iteration and numerical
schemes are considered in details. The numerical results of the separation constants,
the phase shifts together with dependence of the parameters of the grids and the
wavefunctions are shown in tables and pictures.

2 Two-center problem
The wavefunction of the two-center problem with charges Za and Zb separated by a
distance R can be factored into the form [5].
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where the £, 77 and yj are the prolate spheroidal coordinates. We put the charge Za

in the left focus (£ = 1,77 = -1) and the charge Zb in the right focus (£ = 1,77 = .1).
Functions n(£) and 2(77) are solutions of the eigenvalue problem for system of the
equations

(i)



where Z+ = Za + Zj and Z_ — Z^ — Za, E is an energy, v4 is a separation constant,
A = -A - ^-.E, where A is the standard separation constant. We supposed that

+00, |S(±1)| < +00.

The asymptotic behaviour of the function FI(£) take a form

£ -> +00, (3)

where 5 is the phaseshift of the radial function, Nml is normalization coefficient,
c = ^Y~, a = R(Za + Zf>) and I is the orbital quantum number.

3 Quasiangle equation

It is useful to make the next transformation [4]

The problem transforms to the following one

- 1 < 7? < 1 (4)

with the new boundary conditions

Due to Dirichlet boundary conditions the normalization condition take a form

I

'y^dr,-1 = 0. (6)
- 1

At given value of energy E we can find the value of the separated constant A. The
problem (4-6) is the eigenvalue problem for the quasiangle function Y(rj) and the
separated constant A. We solve it with the help of the continuous analog of Newton
method and the finite-difference scheme of 4th order. The results of calculation are
presented in Table 1. For convenience of comparison the dependence of the separated
constant A from the momentum of the electron k is shown. The connection A with
A and k with E take the form

All calculations were performed for Za = Zb = 1 and R = 2.



4 Quasiradial equation

In quasiradial equation we make the following transformation [4]

The problem for new function X(£,) take a form

(«• - 4 " * ! + ̂  - Î T + ̂ T ^
1 < £ < +oc (7)

with the new boundary condition

A"(l) = 0 (8)

and asymptotics

^ ( 0 - > J V m i s i n ( c f + ^ l n ( 2 c e ) - y + <j), £ -> +oo. (9)

Using modified analog of Newton method [3] we look for such £max that X(£max) =
0,(max ^> 1- The phase S is calculated by the formula

where the integer number j is chosen to lead the phase 6 to the interval [0, TT).
Taking into account the asymptotic correction A6

, = 2 Z

where u>i are the coefficients of the expansion of the potential V* (^) [6]

f 2 _ 1
+

f 2 _ 1
+
 2 ^ _ 1 + ( e 2

in power series, we obtain the value of the phase

6 = <*(U«)

The results of calculations are presented in Table 2. Some quasiradial function
X{£) are shown in Figs.la.lb for case Za = Zb - 1,R = 2. The final value of the
normalization coefficient corresponds to the normalization of the unit flow

2/2"
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5 Method of solution

In quasiangle equation it is convenient to rewrite the equation (4) into the form

$(L) = QY _ AY = 0,

where Q i* the differential operators of second order

The boundary and normalization conditions of the function Y(rf) take the form

I

$<2> = F ( - l ) = 0, $(3) = 7(1) = 0, $(4> = J Y2{r])dr) - I - 0.
- i

This eigenvalue problem is solved by the continuous analog of Newton method [4]

where u(t) = {Y(t),A(t}} the unknown variable and «o is initial approximation
from a vicinity of the solution u,. <&„ is Freshet derivative of the vector function

The next designations are introduced

,_dY_ _dA
<P~ dt' a-~Tf

The Newton method takes a form

Q> - A4> - aY = -(QY - AY)

- l

We use the decomposition
<j> = <t>i + a<f>2

To find <l>i,4>2 it is required to solve the next linear differential equations

- AY), ^ ( - i ) = _ y ( - i ) , ^ ( i ) =

y) &(- ! ) = 0, ^ ( l ) = 0 (10)



It is obviously that tf>i = -Y, therefore we have

(11)

Thus, using Y^k\A^ we calculate </4 solving (10). The relation (11) give us
a^k\ The increment for wavefunction is

The next approximation calculates by the formula

y(*+i) = y(*) + T<f>W, A^+V = A™ + Ta

where r is the step by the parameter t calculating by

T - 6(0)+ 8(1)

6(t) = 6{Y™ + t^k\A^ + taW) =\\ $(r(fc) + t^k\ A™ + to,™) \\c2

The iteration process is finished when 8 < e, e is the given number.
The initial approximation of the function Y(rj) was taken

where P™ is the Legendre polynomial. The examples of the solutions and initial
approximations of the states with quantum numbers m = 0,1 — 6, m = 0,1 = 8
and m = 0,1 = 10 at R — 2, k •= 1 are presented by means of solid and dashed
lines respectively on fig.2 for case Za — Zb = 1,R = 2. The solutions and the
initial approximations almost coincide. The initial values of the separated constant
is calculated by the formula

4(0) = _ 2 . , , , M U

where b = R(Zb- Za).
The linear systems are solved with 4th order approximation by step of uniform

grid by means of finite-difference formula

J/2 = ]^ i ( 1 O y i - 1 5 ^ - 4J/3 + 14y4 - %5 + ys) + O(hA)

2/2 = i ^ ( - 3 V i - 1 0 ^ + 182/3 - 6y4 + Jfe) 4



The matrix of linear system is reduced to five-diagonal form and we solve the above
algebraic problems with the help of LU-decomposition for the band matrixes. The
integrals in equation (11) is calculated by the Simpson method.

Let us rewrite the quasiradial equation into the form

= 0,

where

First we fixed the point £^[x and require that X(^'ax) = 0 for value of the energy
E which is different from the given value E* > 0. Thus we obtain the system

To close the system we introduce the normalization condition

: 1. (13)

The eigenvalue problem (12-13) is solved similarly the problem of the angle equation.
When we find the value of energy E corresponded t,$ax the next approximation is
calculated by the formula

— ARC"') '

where AE^ = E^ - E*. Then the problem (12-13) is solved again. The iteration
process is stopped when \E — E*\ < e, e is the given number. So we find such
Cmoi that X(£max) = 0. Using values of the phase shift at different values £moi we
can find the extrapolated value of the phase 5ext corresponded tmax ~* +oo. The
example of the dependence of the phase shift from the value of E,max is presented in
Table 3 for the case k = 1, m = 0,1 = 0 .

The Runge relation a for the quasiangle equation is presented in Table 4. It is
proved 4th order of the finite-difference scheme. In Tables 5a, 5b, 5c the convergence
of calculating method for the quasiradial equation is shown.



6 Mat r ix elements

If we have the solution in the case of continuous spectrum that using the solution
in the case of discrete spectrum [7] it is possible to calculate the matrix elements
between continuous and discrete spectrum. Don't forget that the functions of the
continuous spectrum are connected with the solution X(£), Y{rj) by the next formula

The quasiradial function is normalized on the unit flow

n ( £ ) f i ( < + £ l ( 2 O + *) Cf ( £ y ), C -» +oc, Nnll = | ^ | .

The real normalization condition for quasiangle function is

i

J B!i(n)dri = 1.
- 1

Let us introduce the next designations:

where n c(£) , S<;(r^) is the solutions in the continuous spectrum corresponded to the
momentum of electron K = y ' ^ and the quantum numbers /<•., mc; n d(£) , Sd(Tj)
is the solutions in the discrete spectrum corresponded to the quantum numbers
Nd, idyT'-d- We calculate the matrix elements

..<*\ 1 f dr , „ „ „ > . ,

DKl,,mc,Ndl<tmd -17
/L J

p3 + o ° '

=^ f Jie-rft
The dependences of//^Uin)0(/?) and QK^O^IOI-^-)

 a r e represented on Fig.3ab.
In Table 6 4th order of calculation scheme is confirmed. The values of matrix

elements #100,100 a n t ' Q 110,10a a r e presented.



Table 1. The separated constant A (Za = Zb = 1, R = 2).

k

0.1

1.0

4.0

m
1
1
1
1
1
1
1
1
1

1
1
2
3
1
2
3
1
2
3

A
-0.0066681477
1.9959993142
5.9952391097
-0.68099994486
1.59308457997
5.5334718005
-12.8279325778
-6.1940561590
-0.6937000038

k

0.1

1.0

4.0

m
1
1
1
1
1
1
1
1
1

1
1
2
3
1
2
3
1
2
3

A
1.9919995429
5.99428532557
11.99466680302
1.1955483554
5.4246991437
11.4679153304

-11.60040693284
-4.0512806162
3.4652605398

Table 2. The phase 5 (Za = Zb = 1, R = 2)

k

0.1

1.0

4.0

m
0
0
0
0
0
0
0
0
0

1
0
1
2
0
1
2
0
1
2

5
2.1702
2.2763
0.5832

1.9002491
2.2627836
1.4528653
2.4723507
2.655815
2.8655007

k

0.1

1.0

4.0

m
1
1
1
1
1
1
1
1
1

1
1
2
3
1
2
3
1
2
3

6
1.2901
0.36896
2.07349
1.435894
1.171195
0.601453
2.444128
2.537655
2.560437

7 Conclusion
In this paper the efficiency of the proposed algorithm of the calculation of the
Coulomb two-center wavefunctions and the phase shifts is shown. One can see
that the achieved accuracy of the calculations of the phase shifts of order 10~6

for the electron momentum k > 1 ( E > 506^ ) will be sufficient for application of
such functions for numerical simulating the above mentioned problem of dissociative
ionization of Hj" by fast electrons. The matrix elements between the continuous and
discrete spectrum are calculated.



Table 3. The dependence of phase 5 from the maximal value of variable f for the
quantum numbers m = 0,/ = 0, Nf is the number of points on the interval [l,£mM:]

Smax
199.7394749582
399.4195210394
599.6700960262
800.1558628525
1000.7707687768

20001
40001
60001
80001
100001

8
1.900261211
1.900252114
1.900250411
1.900249820
1.900249553

$ext

1.900249131

Table 4. Runge relation
_ A - A/2

A/2 — A/4

The impulse of electron k — 1, the distance between charges R = 2, the step of the
uniform grid on interval T] € [—1; 1] h = 0.01

I

y(-o.8)
y(-o.6)
y(-o.4)
y(-o.8)

y(o.2)
y(o.4)
y(o.e)
y(o.8)

16.743221
19.868391
12.298477
14.469839
12.426774
13.912054
10.841275
17.796659
16.397187

15.995529

Z = 4,™ = 4

15.866189
15.937843
15.959770
15.925757
15.943446
15.946564
15.949665
15.934301
15.845237

15.969777

1 = 5, m = 2

18.741457
18.020318
16.223387
11.608296
16.875422
16.812849
15.483128
15.842029
16.732263

15.804448



Table 5a. Relation
(5;'2JV

The impulse of electron k = 1, the distance between charges R = 2, the initial value
of Cmoz in iteration process ^\x = 501, the number of grid points N = 10001. Using
this parameters the phase shifts SN, 62N, <W are calculated.

ml

00

01

02

SN

1.900303852846468
1.900252079960914
1.900249050450859
2.262824889452540
2.262785720437930
2.262783466670075
1.452880046424015
1.452865945099130
1.452864997511752

a

17.0895

17.3793

14.8813

ml

11

12

13

6N

1.435913469016245
1.435895298283555
1.435894146445816
1.171214283432231
1.171196082815751
1.171194931143834
0.6014718091072850
0.6014537415575438
0.6014526104608190

a

15.7754

15.8036

15.9734

Table 5b. k = 4, R = 2, = 501, TV = 10001.

ml

00

01

02

2.472377922423183
2.472352684920623
2.472351108559252
2.655837514839573
2.655816372711427
2.655815081159464
2.865517109608426
2.865501687166074
2.865500704711682

a

16.0099

16.3695

15.6978

ml

11

12

13

t
2.444146710509758
2.444129857022201
2.444128807968534
2.537672912052000
2.537656396425598
2.537655333577429
2.560454959120510
2.560438257167399
2.560437209558018

a

16.0654

15.5390

15.9429

10



Table 5c. k = 0.1, R = 2.

z = 5001> N = 100001 = 2 0 0 0 1> N = 20001

ml

00

01

02

(5/v
52N
SIN

2.170397206002768
2.170382727918684
2.170381890357920
2.286966519816308
2.277245282111599
2.276543038544585
0.582398748351524
0.583294364469660
0.583347862324392

a

17.2860

13.8431

16.7411

ml

11

12

13

SN
S2N
StN

1.488165578085649
1.296986110214245
1.290173229380229
0.3575882275673924
0.3684133627865706
0.3690087260433970
2.080915474659997
2.074129500280666
2.073535702047295

a

28.0614

18.1824

11.4280

Table 6. Relation

o =
f(N,h)-f(2N,h/2)

f{2N,h/2)-f(4N,h/4)

The impulse of electron k = 1; the distance between charges R = 2; the initial value
of imax is ̂ ix = 501; the number of points on interval [l;£maz] is N = 10001; step
of uniform grids for /x, eta is h = h^ = hv = 0.05. The values #[00,100 and Qno'joo
are calculated.

H\• ( • )

100,100 QllO.lOO

f{N,h)
f(2N,h/2)
f(4N,h/4)

0.1678882687538151
0.1683145983625204
0.1683412035313158

a

16.0243

f(N,h)
f{2N,h/2)
f(4N,h/4)

-0.02861528026087824
-0.02822615078494821
-0.02820174267099179

a

15.9426

11
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Fig. la. The distribution of the quasiradial solution, R = 2.
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Fig.lb. The distribution of the quasiradial solution, R — 2.
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Fig.2. The distribution of the quasiangle solutions and the initial approximations,
R = 2.
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Fig.3a. The dependence f o r different K.
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Fig. 3b. The dependence )- for different
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