


1 Introduction

In recent paper [1] theoretical analysis of the dissociative ionization of H by fast
electrons was carried out. As mentioned in this paper, the crucial point of calculating
the cross-section of such processes is that no closed exact analytical wave functions
of the continuum states exist. As consequence, the final-state wave function of the
ejected electron was constructed like a product of the two Coulomb functions of the
continuous spectrum of hydrogen atom that is an approximation of the scattering
electron two-center wavefunction. To improve the calculation one can need to ob-
tain these functions as the numerical solutions of the continuous spectrum of the
two-center Coulomb problem. It leads to a cumbersome procedure of calculating
multi-dimensional integrals with the functions presented numerically that requires
huge computer facilities and may cause additional computational problems. The
representation of the above integrals considered in [2] leads to the simplification
of the such calculations even the numerically constructed functions are applied.
Here we proposed a numerical algorithm for the calculation of such functions of
separated variables based on the representation of the scattering problem as a para-
metric eigenvalue problem similar to [3] which is realized here with the help of the
modified Newton iteration scheme [4].

The structure of this paper is following. In section 1 the formulation of the
two-center problem is given briefly. In sections 2,3 the statements of the eigen-
value problems for quasiangle and quasiradial equations are presented in sections.
In section 4 the method of solution and the corresponded iteration and numerical
schemes are considered in details. The numerical results of the separation constants,
the phase shifts together with dependence of the parameters of the grids and the
wavefunctions are shown in tables and pictures.

2 Two-center problem

The wavefunction of the two-center problem with charges Z, and Z, separated by a
distance R can be factored into the form [5].
eim:p
v = 19 =) = |

where the £,7 and  are the prolate spheroidal coordinates. We put the charge Z,
in the left focus (€ = 1,7 = ~1) and the charge Z, in the right focus (¢ = 1,7 =1).
Functions I1(£) and Z(7) are solutions of the eigenvalue problem for system of the
equations
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where Z,, =2Za + Zyand Z_ = Z, — Z,, E is an energy, A is a separation constant,
A=-X- RTE, where A is the standard separation constant. We supposed that

TI(1)| < +00, |E(£1)] < +o0.

The asymptotic behaviour of the function I1(£) take a form

T(¢) — %’i’ sin(ct + Zicln(zcg) - %r +6), £-+oo, (3)

where § is the phaseshift of the radial function, Ny, is normalization coefficient,
2 . .
c=E& o= R(Z,+ Z) and  is the orbital quantum number.

3 Quasiangle equation

1t is useful to make the next transformation [4]

Y(n) = (1-n")E(n).

The problem transforms to the following one

((1 - nz)% + 217;—17 +RZ_n - T T(;z + 2(1le;722) - E}fnz - A)Y(n) =0,
-1<n<1 (4)
with the new boundary conditions
Y(-1)=0, Y(1)=0. (5)

Due to Dirichlet boundary conditions the normalization condition take a form

1

[¥mdn-1=0. (6)
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At given value of energy F we can find the value of the separated constant A. The
problem (4-6) is the eigenvalue problem for the quasiangle function Y'(n) and the
separated constant A. We solve it with the help of the continuous analog of Newton
method and the finite-difference scheme of 4th order. The results of calculation are
presented in Table 1. For convenience of comparison the dependence of the separated
constant A from the momentum of the electron & is shown. The connection A with
A and k£ with E take the form
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All calculations were performed for Z, = Zy =1 and R = 2.

A=—A-
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4 Quasiradial equation
In quasiradial equation we make the following transformation [4]
X(€) = (£ - D).

The problem for new function X (£) take a form

((52—1)%—2§%+RZ+§__627”:1 +§il . Ef;le - A)X(E) =0,
1 << 40 (7)
with the new boundary condition
X(1)=0 (8)
and asymptotics
X(§) = No Sill(c§+ 2%1!\(2(:{) - %r + 6), £ = +oo. (9)

Using modified analog of Newton method [3] we look for such £, that X (§,,02) =
0, Emaz >> 1. The phase § is calculated by the formula

- !
6(§maz) =7]— (Cgmaz + Eag ln(2C§maI) - ?ﬂ-),

where the integer number j is chosen to lead the phase § to the interval {0, 7).
Taking into account the asymptotic correction Ad

oo ; 1 i—1
Ad(&maz) = Z 2111_ 1 (‘_—) 3

i=2 Emax

where w; are the coefficients of the expansion of the potential V' (¢) [6]
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in power series, we obtain the value of the phase

§= d(gmaz) + Ad-(fma:c)-

The results of calculations are presented in Table 2. Some quasiradial function
X (&) are shown in Figs.1a,1b for case Z, = Z, = 1, R = 2. The final value of the
normalization coeflicient corresponds to the normalization of the unit flow

Ny = =/ —.
mi BV x



5 Method of solution

In quasiangle equation it is convenient to rewrite the equation (4) into the form
M) = QY - AY =0,

where Q is the differential operators of second order

d? d m? 2(1+%°) ER*®
1-17 2 +RZ_n— -
Q= ( )d2+ = (e e 5

The boundary and normalization conditions of the function Y (n) take the form
. 1
9P =¥(-1)=0, ¥P=Y(1)=0, o= [Y()dn-1=0.

This eigenvalue problem is solved by the continuous analog of Newton method [4]

du

(WG = -8(w), u(0)=u,

where u(t) = {Y(t), A(t)} the unknown variable and wp is initial approximation
from a vicinity of the solution u,. ®, is Freshet derivative of the vector function
B(u) = {80 (), 8O (u), 23 (u), 24 (w)}.

The next designations are introduced

Y  dA

¢=E, a——dt—.

The Newton method takes a form
Q¢ — Ap — aY = —(QY — AY)
¢(-1) = -Y(-1), ¢(1)=-Y(1)
/1 20V + Y?)dn =1
4

We use the decomposition

¢=¢ +ap,

To find ¢,,¢; it is required to solve the next linear differential equations
Qs — Agy = —(QY - AY), #(-1) ==Y (-1), (1) =-Y(1)
Q¢2 - A¢2 = Y’ ¢2(“1) = 07 ¢2(1) =0 (10)



It is obviously that ¢, = -V, therefore we have

1

——
_f1 Poydn

a =

(11)

Thus, using Y, A®) we calculate ¢5° solving (10). The relation (11) give us
a®). The increment for wavefunction is

¢(k) =_y® 4 a(k)qsgk)
The next approximation calculates by the formula
YD = y ) 4 pgB) AR = 4R) 4 rg

where 7 is the step by the parameter ¢ calculating by

_ 400
= 50y + (1)

6(t) = 6(Y® 1+ 1o® AE L 1®) =) (Y® + 16) A®) 4 1a®) ||,

The iteration process is finished when § < ¢, ¢ is the given number.
The initial approximation of the function Y'(7) was taken

Y(n) = (1 - ) F"(n),

where F™ is the Legendre polynomial. The examples of the solutions and initial
approximations of the states with quantum numbers m = 0, = 6, m = 0,/ = 8
and m = 0,0l =10 at R = 2, k& =1 are presented by means of solid and dashed
lines respectively on fig.2 for case Z, = Zy = 1, R = 2. The solutions and the
initial approximations almost coincide. The initial values of the separated constant
is calculated by the formula

P—-m?) (0 +4%) (1 +1)? = m?) (P + 432(1 4+ 1)%)
AL -1 +1) 2+ D) (2A+1)(2A+3)

T

AO = 2 11+ 1) + (

where b = R(Z, — Z,). ‘
The linear systems are solved with 4th order approximation by step of uniform
grid by means of finite-difference formula

1
Yy = W(loyl ~ 15y, — dys + Ldyg — 6ys + ys) + O(h*)

1
Y3 = o7 (=3u1 — 1032 + 18ys — 6y: + ys) + O(")

(=Yi2 + 16y;-1 — 30y; + 169341 — 6yip2) + O(R*)

no_
Y = 1op2
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2 — 8yt + 8yiy1 — Yis2) + O(R")

1
I: — Y
Y; 1Qh(y,_

1
Yn_) = W(yn—.’) — 6Yn—s + 14yn-3 — 4¥n_3 — 15yn_; + 10y,), +O(h")

, 1
Yn—1 = Top
The matrix of linear system is reduced to five-diagonal form and we solve the above
algebraic problems with the help of LU-decomposition for the band matrixes. The
integrals in equation (11) is calculated by the Simpson method.
Let us rewrite the quasiradial equation into the form

( —Yn-q4 + Gyn 3~ 18yn— + 10yn 1+ 3yn) + O(hd)

242
PX - ERE

X =0,

where
d m? 2

2
_(1—5)(152 E+R+E g2 1+E——»+A

First we fixed the point €9 and require that X (¢) ) = 0 for value of the energy

mazt

E which is different from the given value E* > 0. Thus we obtain the system

R2E2

PX-E—X=0, X(1)=0,X(tna)=0. (12)

To close the system we introduce the normalization condition

Emaz

X2(€)dg = 1. (13)
1
The eigenvalue problem (12-13) is solved similarly the problem of the angle equation.
When we find the value of energy E corresponded &%) the next approximation is
calculated by the formula

0

y N ERMAE® _ gk-DAER-D
Ema:c = Smaz + E,,, Ema:z:’ -

E(k+1) .
maz AE® ZAE®-D

where AE® = E®) — B*  Then the problem (12-13) is solved again. The iteration
process is stopped when |E — E*| < ¢, ¢ is the given number. So we find such
&maz that X {€mez) = 0. Using values of the phase shift at different values &, we
can find the extrapolated value of the phase ;s corresponded &nuz — +0c0. The
example of the dependence of the phase shift from the value of &nqs 15 presented in
Table 3 for the case k =1,m =0,l=0.

The Runge relation ¢ for the quasiangle equation is presented in Table 4. It is
proved 4th order of the finite-difference scheme. In Tables 5a, 5b, 5¢ the convergence
of calculating method for the quasiradial equation is shown.
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6 Matrix elements

If we have the solution in the case of continuous spectrum that using the solution
in the case of discrete spectrum [7] it is possible to calculate the matrix elements
between continuous and discrete spectrum. Don’t forget that the functions of the
continuous spectrum are connected with the solution X (£), Y (5) by the next formula

A8 Yn)
£E-1° n?—1

The quasiradial function is normalized on the unit flow

Hc({) = Eﬂ(n) =

mi l7
(&) — ~Zl sm(cf + gz In(2c¢£) — ?T + 5), £ — 4oc, Ny =

= o

The real normalization condition for quasiangle function is

t
/E n)dy = 1.
2

Let us introduce the next designations:

P = H(:(5)5(1(7}): $a = Hd(g)Ed(n):

where T1.(€)},Z.(n) is the solutions in the continuous spectrum corresponded to the

momentum of electron K = (/% and the quantum numbers I, m.; Hg(€),Za(n)
is the solutions in the discrete spectrum corresponded to the quantum numbers
Ny, la, g, We calculate the matrix elements

HKI(mUNdldmd = R/EZ Z+£+Z 7})¢(¢d

R
DK[(:'":,Ndldmd = 5/d7-§77¢(:¢(l

R /“m
Dchm,Ndldm:H = _"_—2‘ /dT - 1 1 - 7}2)4)1 d)(l

3+00

Jo-5T

{
J (& —yga
i

Tle dependences of H %0,100(12) and Q(K_G)U,‘ZI o(R) are represented on Fig.3ab.
In Table 6 4th order of calculation scheme is confirmed. The values of matrix
elements H 1(5()),100 and Q14,100 are presented.



Table 1. The separated constant A (Z, = Z, =1, R = 2).

k {m]|l A k |m|l A
1 11| -0.0066681477 111 1.9919995429
011112 1.9959993142 | 0.1 | 1 | 2| 5.99428532557
1|3 5.9952391097 113 11.99466680302
1 11} -0.68099994486 111 1.1955483554
1.0} 1 (2] 1.59308457997 {101 |2 5.4246991437
1 |3] 5.5334718005 1131 11.4679153304
1 (11}-12.8279325778 1 11]-11.60040693284
40] 1 | 2| -6.1940561590 {4.0 | 1 | 2| -4.0512806162
1 |3 -0.6937000038 113 3.4652605398
Table 2. The phased (Z, =2, =1,R=2)
k |m|l 1) k |mf{l )
010 2.1702 111 1.2901
0.1{0 1 2.2763 0.1(1 (2] 0.36896
0|2 0.5832 1 (3] 2.07349
0 {0]1.9002491 1 111]1.435894
1.0 0| 1}22627836 (1.0} 1 |2 ]| 1.171195
0 ]2]1.4528653 1 |3)0.601453
0 10| 2.4723507 11112444128
4010 | 1| 2655815 |40} 1 |2 2537655
0| 2| 2.8655007 1 {3 2.560437
7 Conclusion

In this paper the efficiency of the proposed algorithm of the calculation of the
Coulomb two-center wavefunctions and the phase shifts is shown.
that the achieved accuracy of the calculations of the phase shifts of order 10~°
for the electron momentum £ > 1 ( E > 50eV ) will be sufficient for application of
such functions for numerical simulating the above mentioned problem of dissociative
ionization of HF by fast electrons. The matrix elements between the continuous and

discrete spectrum are calculated.

One can see



Table 3. The dependence of phase § from the maximal value of variable £ for the
quantum numbers m = 0,/ = 0, N; is the number of points on the interval [1,£mas]
(k=1,Z,=2,=1,R=2).

é‘maz N§ 6 6e:ct
199.7394749582 | 20001 | 1.900261211
399.4195210394 | 40001 | 1.900252114
599.6700960262 | 60001 | 1.900250411 | 1.900249131
800.1558628525 | 80001 | 1.900249820
1000.7707687768 | 100001 | 1.900249553

Table 4. Runge relation
_ o= fup
Jryz = frya
The impulse of electron k = 1, the distance between charges R = 2, the step of the
uniform grid on interval 5 € [~1;1] A = 0.01

f l=4,m=3|l=4m=4{[=5,m=2
Y(-0.8) | 16.743221 15.866189 18.741457
Y(-0.6) | 19.868391 15.937843 18.020318
Y(-0.4) | 12.298477 15.959770 16.223387
Y (-0.8) | 14.469839 15.925757 11.608296

Y (0.0) 12.426774 15.943446 16.875422
Y (0.2) 13.912054 15.946564 16.812849
Y (0.4) 10.841275 15.949665 15.483128
Y (0.6) 17.796659 15.934301 15.842029
Y (0.8) 16.397187 15.845237 16.732263

A 15.995529 15.969777 15.804448




Table 5a. Relation

The impulse of electron k£ = 1, the distance between charges R = 2, the initial value

of ez in iteration process €9 = 501, the number of grid points N = 10001. Using

maxr

by =

" ban — ban

this parameters the phase shifts éy, Sun, dan are calculated.

on On
ml don c mi don o
dan dyn
1.900303852846468 1.435913469016245
00 | 1.900252079960914 | 17.0895 | 11 | 1.435895298283555 | 15.7754
1.900249050450859 1.435894146445816
2.262824889452540 1.171214283432231
01 | 2.262785720437930 | 17.3793 | 12 | 1.171196082815751 | 15.8036
2.262783466670075 1.171194931143834
1.452880046424015 0.6014718091072850
02 | 1.452865945099130 | 14.8813 | 13 | 0.6014537415575438 | 15.9734
1.452864997511752 0.6014526104608190
Table 5b. £ =4, B =2, £0)_ = 501, N = 10001.
5}\1 (sN
ml Oan o ml dan o)
dan dan
2.472377922423183 2.444146710509758
00 | 2.472352684920623 | 16.0099 | 11 | 2.444129857022201 | 16.0654
2.472351108559252 2.444128807968534
2.655837514839573 2.537672912052000
01 | 2.655816372711427 | 16.3695 | 12 | 2.537656396425598 | 15.5390
2.655815081159464 2.537655333577429
2.865517109608426 2.5604549591205610
02 | 2.865501687166074 | 15.6978 | 13 | 2.560438257167399 | 15.9429
2.865500704711682 2.560437209558018
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Table 5¢. £ =0.1, R=2.
£ = 5001, N = 100001 £9 = 20001, N = 20001
on on
mi dan o mi don o
641\1 64N
2.170397206002768 1.488165578085649
00 | 2.170382727918684 | 17.2860 | 11 | 1.296986110214245 | 28.0614
2.170381890357920 1.290173229380229
2.286966519816308 0.3575882275673924
01 | 2.277245282111599 | 13.8431 | 12 | 0.3684133627865706 | 18.1824
2.276543038544383 0.3690087260433970
0.582398748351524 2.080915474659997
02 | 0.583294364469660 | 16.7411 | 13 | 2.074129500280666 | 11.4280
0.583347862324392 2.073535702047295

Table 6. Relation

of &rnaz 15 51(727; =

7= (2N, h/2) - f(4N, h/4)

The impulse of electron £ = 1; the distance between charges R = 2; the initial value
501; the number of points on interval [1;£paz) 18 N = 10001; step
of uniform grids for y, eta is h = h, = h, = 0.05. The values Hl(B%,wO and Q(J&,Oo

are calculated.

Hbwo Qi
f(N,h) f(N,h)
£(2N, h/2) o £(2N,h/2) o
F(4N, h/4) f(4N, h/4)
0.1678882687538151 -0.02861528026087824
0.1683145983625204 | 16.0243 | -0.02822615078494821 | 15.9426

0.1683412035313158

-0.02820174267099179
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Fig.la. The distribution of the quasiradial solution, R = 2.
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Fig.1b. The distribution of the quasiradial solution, R = 2.



Fig.2. The distribution of the quasiangle solutions and the initial approximations,
R=2.
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Fig.3a. The dependence H };%0’100(12) for different K.
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