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A Numerical Method for Caleulating Resonarnt
State Wavefunctions

An initial-value method of numerical solving of Sturm-Liouville
problems is applied to find the solution to the Schridinger equation
which carresponds to & resonance situation.

The depth of the ruclear potential is regarded as an eigerva-
lue,which is obtained by iteration. Having established the nuclear potern-
tial, the resonant waveiunction is generated by integrating numerically the
Schriddinger differectial equaticn inwards from largeradiiusing the initial
conditions of G(r), where G is the irregular Coulomb function. .

The method of integration is Numerov's one, which has some ad
vantages conpared with other methods, For example, it is more accurate
than the finite-difference methods and simpler than the Runge-Kulta
method. In addition, the accuracy is mcreased by using the Richardson
extrapoiation technique. :

The eigenvalue is fourd by the Newton method, which ensures se-'
cond order convergence, and therefore it is faster than other procedures,’'
e,g., repeated bisection, :

Because the solution is exactly on resonance, no searching for the
phase shift is required. Conaequently, the suggested procedure may be
emploved even if the resonance widths are extremely narrow (e.g.,
10718 Ma).

The final result was used to determine resonance widths for very
narrow states,

The investigation has been performed at the Laboratory
of Nuclear Research, JINR,
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1. Introduction

The term of *resonance” or "guasi-bound state™ often
appears in nuclear physics.

It is related to the execited stistes, which may be
conasidered to consist of & core nucleus plus e single nucleon
or cluster (an alpha particle, for exsmple).

If the radial potentials invoived have the form indi-
cated in i‘ig. 1, discrete states may exist at varimas energies E,

The states are clagssified as

- bound, if E<Q

- guesi-bound, if 0 <E<Ey

- unbound, if E>E,.

The case of quasi-bound atates is of particular interest
and many methods heve been developed for solving the Schridinger
equation which describes the=e states,

The quasi-boumd state wavefunctions are usually obtained
a8 solutions (eigenfunctions) of 2 Sturm-Liouville problem as—
sociated with the Schridinger equation,

In formulating the Stuwrm-Liouville problem, it is
posaible to conaider eith;er} the energy or the depth of the

nuclear potential as eigenvalue.
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Fig. 1 A graph of the effective potential with a binding con-

dition which corresponds to a quasiw~bound resonant state,

Problems of the first type are solved in refs, 1 apd 2
by the continuous smalog of Newton's method (see ref. 3).

Other methods for solving such problema are suggested

in refs. 4 a3 5.
In ref. 6, DeVries solves » problem of the second type,

using & method related to the bound states,

4 polution to both types of problems may also be found
by searching for the phase shift. and requiring that it goes
through ‘TT/2 (see, c.g. , ref. 7). ’

In order to compute the phase shift, one cean use, for
exsnple, the procedure suggested in ref. 8, which is based on

the numerical quadrature of the integral form of the SchrBdinger

equation.



An initial-value method for eigenvalue problems is ap—
plied here to solve a second type problem.

The method converges rapidly and is useful even if the
gtate involved is very narrow, because no searching for the

phase shift is required.

2, The Sturm-Liouville Problem for Quasi-Bound States.

The solution to the radiesl Schr¥dinger equation with
typicsl boundary conditions is requireds
in this study, the following Fform of the eguation is

congidered

2
d%uelr) 1,2 , _B_&U/(r) - _EH_(%}_). uelr) = 0, (ia)

dr2 flz b
A :
where st =7§%£;L is the reduced mass, K@ =-§4%E3 and € is
POT A

the angular momentum.
The potential r\) (r) is the sum of Coulemb, spherical

naclear and spin-orbit potentials
V= Vg + Vo + Vgt

The Coulomb potential is chosen te be that due to a

homogeneously charged aphere of radius Ro

2
by b © 2
FT - (g +Xy if reRj
V, 5
cir) = ) o o (2)
~ZpZp e if £ R
r

= 1/3 .
where Ro =T, AT .



The nuclear potential has a Wooda~Saxon form

Vo) =T Vg (1), ()
where Vi.(r) = 1/(1 + exp 1__Rn.), (4)
e a

0
and 5, is the diffuseness.

The spin-orbit potential is given by

AV (1)
(\yso(r} =<@.8> VSO-%— ——gi——, (5)

where <E-s> = %[.j(.jﬂ) - E(Pﬂ) - s(a+l)] and ?= e+ ;.

A first boundsry condition is

up{r) —=> 0 (1w)

r—C
The solutien of the Schr#dinger equation for large r
is & linear combinatien of the regulsr and irregular Coulomb
functions which look like, respectively,
FNsinQr and Gf\-'couer, (6) 0
where O = f-"Minf2p) - E'g+ T, ¢=krand W;L=-z—-g:—g:——}:-

(The Coulomb functions are solutions to the following diffew
2
rential equation au , {l - e Mﬁ}u =01},

ap® £ Fr

The solution which corresponds to = quazi-bound reso-

nant state must behave like G(r) st large radii {boundary
condition (1c¢) ).

This condition ‘may be obtained as follows,

By introdueing the phmse shift Se »y one knows that the
solution for large r is uy o ain Gr + gg}. For resonance,
SE = g and hence u, coaer. (There are seversl definitions
of regenant states in quentum mechanics. If the width of the |

state is narrow, the above definition holds with good accuracy).



It is not possible to sstisfy the conditions (1b) and
(le) with any arbitrary (UN(I')‘

Then, for fixed radius R, and diffuseness a_, it will be
necessary to vary V, until the boundary conditions are satisfied.

If we now introduce the motations

q(r} = —ﬁgi{(u’c(r) + qjso(r)] + .—-—Q—E 1) _ ke
T
p(r) = i%tvws(r)
fA = vo (7)
7{r) = uplr)
x=r,

Eq. (1) assumes the standard form of a Sturm-licuville problem,

i.e.,
¥t (x) - qix)yix) + :\p(x)y(x) = 0, (8a)
y{0)y = 0, _ (8b)
yx)reG . _ (8c)
bl .

We ahall reduce this problem, which is defined on the
interval 0¢ x<oo, to a problem defined on a finite interval [a,b}.
It is known thet for such problems there exists an in-~

" finite sequence of eigenvalues
A< A2<)‘3< ()

In addition, there exist correspording eigenfunctions
¥,{x}, which are twice continuoualy differentisable.

It is alsoc known that the n-th eigenfunction has n-1
distinct zeros in (&,b). (Some restrictions are necesséry: pix)
and q(x) sre continuous on fa,b], plx)> 0, vae(a,b—j ).

In our particular problem only one eigenvalue,respecti-

vely, only one eigenfunction may be required.



It is possible to indicate this value by the mmmber of
nodes of the corresponding eigenfunction.

The eigenvalue will be found by iterstion and an initial
Zuess is required to start th; iteration process, '

Such an estimate may be obtained by using information
concerning the number of nodes (see Section 5).

After calculating the eigenvalue (VO), the eigenfunction
(ug ) is found by the mumerical integration of Eq. (la) inwards
from iarge radii using the initisl veluss of G(r).

This is our quasi-bound state wavefunction.

A normmlization condition will make the wavefunction
unique. We use the following condition

oD
u, ()] 2 ar = 1. (10}
o Iee ]

3. Initiel-Value Method for Eigenvslue Problems,

Using a genmeral form for the boundary conditions, we

consider the following Sturm~Liouville problem on the interval

[a,b]

7 () = a0y (x) + A pix)y(x) = 0, ©(11a)

0, a2 + a2 £ 0, (11b}

a;y(a) + ay*(a)

. ‘
2,7(b) + byy*(b) = 0, b2 + b2 £ 0. (11c)

We may relate the solution of (11} to an initial~value
problem as follows.
For any fixed :\ we consider
vx) - qx)v(x) + Apovix) = 0, . (12a)

8,v(a) + avi(s) = 0, (220)

1

clv(a) +eyv'(a) = 1. (12¢)



Here ¢y and ¢, are any constants . such a8 8yC,manCy ¥ 0,

Then the two initial conditioms ere linesrly independent
and & unique nontrivial soletion of the initial-~value problem (12}
exists. ¥We denote this solution by v(‘). ,X) and consider the

transcedental equation _ ]
@ Q= beA,p) sy Ap =0 (19)

Clearly each eigenvalue ) p Dust satisfy this eguation.

Algo, every root ?\* of this equation is an eigenvalue
of (11) end the corresponding s-olution‘ v(,}*,x) of (12) is a
corresponding eigenfunction of {11). _

Thus, the Sturm-Licuville problem (11) has ,been reduced
to finding the roots of Eq. (13) and corresponding sclutions of
the initisl-value problen (iz). '

Of course, it wouid be preferable tc use a high-order
iteration scheme, for example, Newton's method,. in order to de-
termine the roots of Eq, (13).

If the eigenvalue ’A n is required, then, for given
initial guess )t(g), the suctessive approrimatiocnms to An are

obtained by the formala

<
3 3 (AN
2( ;:1) = )(n) _-.L.E-r-ﬁn-s’— , Q = 0’1,.2’... (14)
PraAD _
In order to eatimete the derivative ‘-P' (A) =£-%—%)——,
we use the so-called variational equation for Eq. (12). Thus,

P = byw(A,b) + oWt (A,b) (15)

where w(),x) = -}L.;a—lﬂ is the solution of the variatiocnal

problem



w' o~ glx)w + )Lp(x)w + p(x)v()(,x) = Q, (16a)
wlA,a) = 0, (16b)
w'(A,m) =0. (16¢)

This problem is obtained by the formal differentiation
of the initial-value problem (i2).

A complete theoretical justification of the expoaed
procedure is contained in ref. 9.

In practice, we procéed ge follows.

We consider a uniform network X = a+ih, i = 0,1,...,N,

h =Jli%5L and determine an approximate solution of (12) by a
numerical method,
¥e denote this numericel solution for any fixed 7\ by
7., 71, 1= 0,10, ,N, _
The function qj (A,) will be approximsted by
P A= 07 + v ). | 7
Using the values ?i()) instesd of v(A,x;) in Eq. (16a),
we also soive (16) numerically to determine an spproximation to
¢
PN = o7 N+ nF L, (18)
where Gi(:l), Gi(:\) is the mumerical solution of problem (16).

The approximations to the root 7{n will be realiy

. A
’/\(%1) - )(3) - Mfﬁ_, N =0,1,... (19)
. )1 n (Pt()(\}))

Of course, it would be desirable to obtain more sccurate

given by

values for Fi(:X) before introdweing them in Eq. (16a).
This is possible by using the Richardson extrapolation
teclmique (aee, e.g. , ref. 10, p. 186) for the solution of (12),

10



4. Application of the Method..

The s'uggeéted algorithm may be realized only on a finite
interval [a,b], while the initial physical problem is defined on
the semiaxias (O, o2 ], ]

In practice, the problem (8) may be reducnd to & Sturm-
Liouville problem on the finite interval [0+ pax)s by taking as
Toax & sufficiently large radius at which the contribution of
central Woods—Saxon and spin-orbit potentials to the total po-
tential is negligible (from the point of view of the aveilable
precision}.

To staft-the numerical integration of Eqs. (12) und (18),
which ere of the form y* = f{x,y), the following Hunge-Kutta

method is used (see ref, 10, p. 268)

¥y + h[y:{ + Bixy ;21:2)]

Yie1 T
$la = T) + §kg + 4k, + k)
ky = Bf(xy,7;) {20)

- h n b

kp = BEGq *+ 5oyy + p¥] + gly)
- b

kg = Bf(x; + h,y; + hy! + k) .

In order to aveid an infinite value at the origin (the

4
term ——(e—# is invelved), a very small redius € >0 is taken
-~ .

as a rirst node of the network,

The initiel conditions (12b) and (12c)}, which for X, =0
would have the form v(-A,O) = 0O, v'().,o) = constant, become

¢ 41
V(R,E) - {k€)

(z €+ 1)!! (120
v {A, ) =l{l'§€—) . {12¢1)

H



(The behaviour of the solution ue(r) to the Sehr¥dinger equation

(la) in the vicinity of the crigin was taken into mccount, i.e.

2+
2 Cier)
o) woprde ) 557 e T

Fal
where je is the Riccati-Bessel function; see, e.g. , ref. 7).

The initial conditions of the variational problem (16}
will be ' , |
w(A,e) =0,  (16b")
w'{A,E)=0. (16¢*)
" After 'obtaining the values ofr V(R, € +h) x-and' w(l; E;i-h‘)
by the Runge-Kutta method, the integration is continued on the

o = rm) by Numercv's

network x; = €+ ih (i = 0,1,2,...,m; X
method .
h2

Vi = Byt g =aplfy ¢ 200 ¢ £ 50, (2D)

where f,j = f(xj'yj)“

(The order of the method is O(h®); see ref. 10, p. 280).
The boundary conditien (lc¢)} is:expressed by

ak =G
u: 1:‘ e [rmax ’ .(10.)
which leads to the following form of the ftﬁaction 43 (A)
P = s g, - Ny, (174)

where ?m(l) is the value in x of the mmerical solution of

the problem (12a), (12b*}, (12c*), G, = G{x,), and

s Ay Tana A2 - a1
- 2n
G(xm+h) - G(xm—h)
2h

(22)

—

12



The Coulomb function G was computed by the subroutine
RCWFN {(see ref. 11).

The convergence of the process defined by Eq. (19} is

Q(A‘i’)l
QD
- A} (28)

P\( r:l)

seen {rom the decremse of the quantity

h@ﬂ) _ )(3)
| nif)(\“l) n
n

Dy =

(the relative srror),
The process finishes, if AO-:S, where & is smell enough.
By computing q(x;) and p(x;) and storing them before
starting the integration and by taking into aceount the common
terms of equations (12a) amd {(16a), the pair (Fi()),ifi(k)) ney

be cbtained at each step by very simple computations,

After cbtmining the required eigehvalue, the resonant
gtate wavefunction u g is generated from starting velues of
G(r) at Toex 2nd Toax D bY the Numerov method.

The neormalizetion condition {10} is ampproximeted by

y:c‘ue (r)l2 dr = 1 . . (10*)

The r, cutoff redius is taken to lie in the neighbour-
hood of the first exterior node of ug and it was proved nume-—
rically that any radiws in this region yields the seme norma-

lization, if E is sufficiently below E,.

5. Numerical Exsmple,

On the baais of the suggested slgorithm a FORTRAN pro-

gram was written. As a test run, the wavefunction appropriate

214, _ 210

to the state Po Pb + of was calculated. The result with

13



2“Pﬂ P 210Pb +CX

rifm

Fig, 2 Resonant state wavefunctieon normalized to G{(r) for

large r.

starting values of G(r) at large radii is shown in Fig. 2.
The edditional parameters have been
E =7.687, r = 1.376, a_ = 0.625, £=0,5=0,n=09
( n is the number of internsl nodes of the wavefunetion).
An estimate for the initial guesa ' l(o) mey be derived,
on the basis of a classieal approximation of the potential, from

the condition
Ty —
nWg V Ap(x) - alx) dx < (m+1) T . (24)
0 .

where we used the notations (7}, and ry is the turning point
(for ryr,, Ap(r) - alr)=<0),
Under the above conditions, the range 95<.'>\< 107 haa

14



been cbtained and we used a value of ')L{O) =

85 £ 107 g 107 - 101 as
an initial guess.
For £=10"%, nh = 0,025, § = 1078, r = 28, the se-

max
quence of suecessive eigenvalus approximations is shown in teble 1.

Teble 1
: @) L 0D
N AW - |
J 1 ™) S A ')(\H 1
G 101, 60000
1 104.51789 3.3-1072
2 104.11843 3,8-1079
3 104,12266 4.1-1079
4 104.12266 [ 3.5+107°

The decrense of the value of CP (A) may be seen from

. 9(!(“1
th tic =
e ra l (AD)

¢ eyl -
In the present cese, Q = CP ( ,A o7, = 1.18-10 ".

The dependence of the calculation sccurascy on the step

h is exemplified in table 2.

Table 2
n 3)
0.05 104.12240
0.028 104,12266
0.0125 104.12268 °

For h = 0,025, the computation time on the CDC-6500 of
JINR,Dubna,is about 2 seconds.

15



The wavefunction normalized to 1 is A (r) = ¢ uplir},

B. The constant C has been obtained from the

where C=0,207595-107
Te 2

condition ‘ﬂy(r)\ dr = 1, with the cutoff radius r, = 34 fm.
o .

The wavefunction may be used to determine the resonance

width r . from the relation (see ref. 12)

M= fiy - , v = (234/»)*
goclue] dr

we have obtained | = 0.55141-107 16

MeV,
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