
~ gl.[{j +~ 8'{0t:
Ell · 10883

\,_. - -1

39:!5/ z - '77
A.A.Karlov

SOFTWARE FOR GRAPHIC DISPLAY SYSTEMS

1977

Ell - 10883

A.A.Karlov

SOFTWARE FOR GRAPHH: DISPLAY SYSTEMS

Submitted to the Second Summer School on Computing Techniques
~

in Physics (20- 28 August, 1977, CSSR).

KapnoB A.A. Ell - 10883
MaTeMBTI.P.IecKoe o6ecne'leHue rpa¢~ot:treCKHX .aucnneH:HbiX cucTeM

PaccMaTpusaiDTC~ eonpoCbi MaTeMaTuqecKoro o6ecrreqeHHQ rpa¢uqeCKHX
.auanoroBbiX cucTeM: Bbi6op cnoco6a peanHaauuH, crpyKTypa 6H:6m-:~oTeKH
JnrcrrneHHbrX nonnporpaMM, opraHuaauusr .auanora c MHoroyposHesofi crpyKTy­

poH, anrrapaT JlHanoroBbiX (rno6anbHb!X) nepeMeHHbiX " r.n.
DpRseaeHbi rrpuMepbr nporpaMMnposamHr Ha H3biKe $0PTPAH.

?a60T8 OblflOJIH€H8 B Jla6opaTOpHH: BbPHiCJIHTenhHOii TeXHHKH H

8BTOM8TH38UHH: OYI.R'VI.

llpenpBHT 061oe.lliiBeBBOrO BBCTBTYT& B,llepRWX BCCJie)lOBIUIBI. ,lly6aa 1977

Karlov A. Ell - 10883

wftware for Graphic Display Systems

The software problems for graphical display systems
are considered~ the implementation, the structure of
display subroutine library, the organization of a dialogue
with multilevel structure and the extension of a high-le­
vel programming language (FORTRAN) by the dialogue vari­
ables.

Some examples of programming technique for FORTRAN
are given.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 06-.eOUHeHHWU UHC•WIY• .. oepHWXUCCAeOOBaHUii)b61111

1.Introduction

A display software can be classified into a general (base)
software, which is independent of the particular problem and
specifies general-purpose logic capabilities of a display system,
and a special (problem-oriented) one to be developed for the solu­
tion of some special problem or some class of problems.

Difficulties arising in the programming for graphic diplays
are one of the reasons preventing the introduction of these devi­
ces. The difficulties are relating to the development of just the
base software, which has to provide the user with flexible and
natural for usage facilities for the graphic data handling and the
interaction with a picture on a display screen and user progran,.

2. Implementation

To develop a general-purpose software for graphic displays
three methods can be used:

I. The development of a special graphic language.
2. The extension of the existing languages.
J. The creation of a display subroutine library.

A special gra¥hic language. The development of a graphic lan­
guage (e.g. ref8:J •2•3,4/) like any special development has the
advantage of high efficiency in the solution of problems of a gra­
phic data processing. Along with this important advantage, howeve~
there are essential disadvantages, namely, quite heavy expenses
for the development of the language itself, those for the user
training and the addition of a new language into the running ope­
rating system and the difficulties of the graphic language exten­
sions to be required in the future.

The development of a special graphic language is justified,
where the expenses for the solution of the main problem are suffi­
ciently large, so that the difficulties related to the development
of a special graphic language and to its introduction, are

3

cmupensated o;y ttie efficiency to be achieved.

£he extension of existing high-level lan;,uae:co. L1 this case
the special graphic operators are addeu to tne lanc_;ua;;e 1-J,G/.
i'nerefor·e, iu practice tne user has only "to improve r1is Knowledge'
o"· a -:,own la.1,;uage. It :.ic;ht be well to point out the difficul-
-s Le~ t;:; :1e ,_;:.1uce:.;. bJ 3ome :nou.ification or cxte~1s.i.oL or tLe lant;u­

J'-e. 1'.t~is is, I'lrscl.i, tne moclification of a translator, v:hiclJ

results in tne increase of the translator size, that appears to
ue w1j ustifieci, wncn .1ot all tile graphic functiolls are used, or
tile :..evelopment of a preprocessor to transform the graphic opera­
tors into the operators of the main language before the prol:!:rmu
translation.

A certain dif:t'iculty of both these approaches is a conside­
rable auount o:t' work of the system progrmamers.

JJiy;,.i.1lJ3..J:.._ ~Jt..lbrou~ci.~e l..jJl"ury .. The CTeat ioil of a displBy ouu­

cout.,_,._d';) L.~LJ:..·..1l'J C'v<Li .. l3blc or higtl-le.;el lunguas...;s allows o.ue to

"·:aid b lot of pro u1erns, arisint; in the uevelopu?nt o.L' ;:; special
~r3phic 1di~~~U~J,.~c or :i.~ the extensi')n of ~~j-t.;h-level lunt~Udf~es. 1l1 tH.~

o;:,'., iou~1 d(J~/-J:t La(._;.;c JI-. :J:..l·::L a:t approuct n-r._.c as r'ollowa:

- ttHo c•ic:plicit.y of a user "traii"nnf;" (a known rr.r)chaniGn, for
call..i."'C GubroutlJeS ana :t'WJ.C"tions, e.g. in F'OJ:I.'£J{dli by the operti-
t ur CALJ,J;

- tn~_:: ~levp lopment oi' n Jar;;~~ _i)art of tbe librar;y ca;1 be pe:c­

formeU LJ' lOd-n,ystem progra1amers;

- tne sllnplicit.Y of the extension if' necestJary by tile adcii­

~1ou o!· dew subroutines to tne library;

- time requ.i.red for the so!·tware development is essentially
r-educeu;

- the possibility o!' a rather simple adoptation of the soft­
ware created for variowJ computers and displayG.

.i'tw"eforcJ, ttle QCVelopmeu t of the uisp lsy library is now
tnd uas i_c approach I" or "tbe des.i.bning of' tne eli splay soft·:wre
(<;.c:· rers/"l,o, 10, i1, 12/j.

~) . .:.ioLe p:r< 1nciulcn o:t' tne ~..~.eu;.?Jlin~; oi' the dlspla:t .. libra1·.y

'.L'Le t.HJsJ.c p:linciple~ oi' tbe uesi~ninc oi t11e uisplay library

iJl'C scle::te~1 :.c;): ~he pcJllt of view of t:~e Jnd.Xlj,j'L. conveniences
:lor users 3n.J. r:~ust r}rovi...:.e for the r'ollovvlnc; 1JV:Js .. d..llli 1;iee.

4

..

The availability of all the facilities to handle graphic
data and to organize a dialogue through a high-level language. It
should not be necessary for the user to llave the detailed informa­
tion about the operation of the display equipment, computer chan­
nels and communication circuits. All the facilities for the const­
ruction and modification of the pictures and also for the opera­
tion with a light·pen and a keyboard have to be available for the
user through a high-level language (or thrCQghan assembly lan~ua­
ge, when he wants to use it for the purpose of effective prograril­
Illing).

The possibility of the execution of the same functions by
various means and a minimum dependence of the display subroutine
from each other. Such an opportunity allows the programmer, in
any particular case, to select the optimal, from his point of
view, set of display subroutines. There must be the basic set
of subroutines, which is always used and a large set of additional
subroutines, which can be used, depending on the requirements of
the application progralll and the skill of the programmer.

A possibility of constructing hierarchY of graphic objects.
Due to this possibility, the creation of composed objects is
assumed, when an object can be inclwied as a part of a l•>ore comp­
lex object and the latter, in its turn, be a part of another ob­
ject and so on. An object being formed at relative coordinates
can be included into several composed objects. I<'or this case, to
display several identical objects, it is sufficient to have only
one copy in the computer mewory.

A flexible mechanislli of memory allocation. To allocate gra­
phic and auxiliary inforJilation, i.e. to organize the graphic
data structure, the memory is required, whose size depends on the
amount of graphic data in a user program. Therefore, if there is
no the automatic memory allocation for a given operating computer
system, the user should hilllself be responsible for the memory al­
location. It is important, that this task would be maximum easy
for him. For example, it would be sufficient to·define the buffer
to be used for the graphic data and auxiliary information. Ser­
vice display subroutines have to be responsible for the utiliza­
tion of the allocated memory.

5

1 • Classification of displaY subroutines

From the functional point of view ell the display subrouti­
nes can be divided into three classes:

!.Subroutines-generators of the graphic command and data for
the display unit. The picture on the screen can consist of both
the simplest graphic components, such as dots, vectors, texts and
others (generated by low-level subroutines-generators), and more
complex pictures, for instance, coordinate axes, equipotential
lines and so on (generated by high-level subroutines-generators)

2.Administrative subroutines providing the memory allocation
for graphic data and also executing different operations at the
picture components (adding, removal, replacement and others). This
cl&ss may include also the auxiliary subroutines, which allow one
to estimate the memory allocation, to print output listings of tqe
graphic data, internal display variables and the system control
tables, which is quite useful for the debugging of new display
subroutines.

). Control subroutines providi11g independently of the execu­
tion of the user routine, the output of a picture on the display
screen and the operation of input devices provided for the man­
machine-interaction (a light pen, a keyboard and others) and the
dialogue organization as well.

. The example of the display library

Consider the example of the implementation of the principles
mentioned above.

A software/ 11
/ for the graphic display SIGDA on the mini­

computer M-6000, has been developed at JINR. It has been realized
as a subroutine package available for a user through the Y-6000
assembler or PORfRAN and added as the extension for a standard
subroutine library. At present the display library consists of
about 100 subroutines.

Graphic objects on tbe display screen are constructed of the
primitive items (dots, vectors, a text, circles and arcs), which
are generated by the display hardware, when graphic instructions
are entered from the computer. Any combination of the primitive
items from a dot to a complex picture can be defined as an objec~

6

..

•

In a computer memory the object occupies a set of subsequent words
with a graphic and control information which have been assigned a
name. To establish a correspondence between the names of the object
and the actual storage location, the graphic object .table (GOT) is
provided (Pig. 1). The size of this table is selected by the user
and depends on an assumed maximum number of objects. For each
currently existing object, there is an entry of three words which
contains the initial address of the object in the storage and also
the length and the name of the object. Besides, a special mask bit
determines if a current object should be displayed on the screen
(active object) or not (masked object).

When a new object has to be adde~service subroutines search
for a free place in the GOT, form a new entry and insert it into
the table. The removal of the object is performed by clearing of
the appropriate entry in the object table.

A regeneration subroutine (a display driver) is activated,
when the first active object appears in the GOT and is

then called with regeneration frequency (normally ?0 Hz) via a
computer interrupt system. It is responsible for scanning of the
object table and the organization of output for the active objects
on the screen.

The objects for SIGDA display can be primitive and composed.
The primitive and composed objects have the same represen­

tation in the GOT. A reference to the subobject consists of two
words: the first is a special instruction "control", the second
is the name of subobject. Such a structure of the reference per­
mits to refer to the subobjects which do not yet exist and will
be generated some later.

The object location in the memory is determined by the fact,
which area was ordered by the user as a so-called current buffer
before the procedure of the object generation. When ordering the
current buffer, the user specifies the initial address and the
length of the area, which he allocates for this purpose.

The following calls to subroutines-generators will place
graphic information in the current buffer consequently beginning
from the first free word.

7

J~> tr.J

iJI"lilrJlC ob,j EGt
tc;t>le (GuT)

;~n tr,:- i

Lc,try j

Graphic buffer

Object i

!_ ~- ----

,,l,try k Ouject k

l .J --

Jtructure of entry for
GOT

' J M I A

~~~-==~~--~=~ 
N 

Object j 

----

A - initial aduress 01 object 

L - object length 

N - object name 
M - mask bit 

Fig. 1. The structure of the graphic object 
table. 

8 

.. 

• 

When designing the library for the SIGDA graphic display, a 
great attention was paid to the software for the man~achine inte­
raction facilities: a light pen end a display keyboard. A light 
pen can be used both in the indication mode, i.e. for the identi­
fication of obJects existing on the screen, and in the treeing 
mode to construct new objects. In the indication mode the user 
has an access to the coordinates of a point indicated by c light 
pen and the name of the object, which this point belongs to. 

The process of tracing the light pen is performed by means ~ 
a special marker simultaneously and independently on the user 
program execution. At any time the user program has the access to 
the coordinates of the current position of the marker on the 
screen via variables specified by the user. Minimum user efforts 
are required to specify the tracing type (without drawing or with 
that). When drawing the user has to indicate only a minimum step 
of regiatrating the coordinates of the intermediate marker posi­
tion and the type of approximation (by dots, vectors etc.). A 
possibility to move the objects existing on the screen by means 
of a tracing marker is also provided. 

A set of keyboard subroutines, which independently or. the 
execution of the main program can input and display characters 
from the keyboard and perform some editing procedures, is deve­
loped. 

Thus, all the possibilities of the display library are avai­
lable for the user both through the M-6000 assembler and PORTRAl(. 

As an example, the procedures of the memory allocation and 
the graphic object generation are given in Fig. 2. 

9 



. . 
CALL ~STO(TAB,LT) 
CALL nsBUF(BUF,LB) 

: 
CALL DSPl'A (IX,IY) 
CALL DSMVA(IX1,IY1,IX2,IY2 MODE) 
CALL DSTXA(KX,KY,TEXT,LT) 
CALL ~SADD(NAME) 

Generation 
of the other graphic 

objects 
(if any ) 

CALL DSLPN(LPF, LNAME,LX,LY) 
5 LF(LPF)7,5,7 . . . . 

Definition of the graphic object 
table 
Definition of the graphic buffer 

Point generation 
Vector generation 

Text generation 
Graphic object declaration 

Light pen call 
Waiting of the light pen hit 
(if required) 

Fig. 2. The example of the graphic object generation 

~. The dialogue organization 
' . I. Terminology 

To organize t~e man-machine dialogue various devices can 
be used by the user: a keyboard, a light pen, functional keys and 
so on. B,y means of them he enters symbolic and graphic information 
~r some special codes and influences, in such a way, on his prog­
ram and the computer system. 

For simplicity, a block of information entered by the user 
as an inquiry answer from s computer, or on his own initiative, 
is called as a message. Thus, in this case, the line of symbols 
from the keyboard, the information from a light pen when biting 
the graphic object on the screen and the code of a function but­
ton. can be considered as a message. In the general case, the mes­
sage consists of an order, which indicates the action to be per­
formed and parameters which have to be used. 

10 

J 

' 

/, 

' 

The state of the dialogue is described by many factors: 
an operational situation in the computing system, the state of a 
user program and so on. Here, the state of a dialogue at some 
moment is considered in the limited sense as a set of messages 
allowed at this moment. The combination of all the states, which 
are available when running the user program together with the con­
ditions of jumping from one state to another, forma the structure 
of the dialogue of a current program. From the point of view of 
programming, the stay in some state is a loop of waiting a user 
message. If the jump from one state to another is completed by 
return to the previous loop, we say, that we stay at the same ~­
!!!• If a jump to another loop has a place, we say about the jump 
to another level (that may be the jump to a more "deep" level with 
respect to original one or the return to the previous level). 

6. 2. llessage processing 

In special dialogue systems (for example, when designing 
a printed board, analyzing the electric circuits and so on) the 
structure of a dialogue and the appropriate set of commands (mes­
sages) available for the user are selected by the system designer 
and are fixed. In the general case, the user of the dialogue sys­
tem should be allowed to select by himself the set of messages 
convenient from his point of view to contact his program. 

In principle, to organize the processing of messages it would 
be sufficient to provide the user with some set of subroutines of 
input and unpacking of messages and to rest for him the analysis 
of these messages in accordance with the algorithm of his program. 
Besides, programming required for such an analysis, in this case 
the dialogue structure becomes difficult to observe and to corred. 

For example, the part of the user program in FORTRAN, which 
is responsible for the organization of operation with a light pen 
(light buttons) is given in Fig. J. 

11 



c 
c 
c 

c 
c 
c 

c 
c 
c 

CALL DSLPN(LP!,LNAME,LX,LY) 

5 IF(LPF) 7,5,7 
GO TO 7 , IF LIGHT PEN HIT 

7 IF(LNAME. EQ~HEDIT) GO TO 10 
IF(LNAME.EQ. 3HRUN) GO TO 20 
li'(LNAME.EQ.6!JRESULT) GO TO 30 . 
GO TO 10 TO EDIT INITIAL DATA 

10 CONTINUE 

GO TO 20 TO CALCULATE 

20 CONTINUE 

GO TO 30 TO DISPLAY RESULTS 

30 CONTINUE 

Light peu call 

Loop to wait 
a. light pen hit 

Analysis of 
the light button 
selected 

Section 
of initial 
data editing 

Section 
of calculation 

Section 
of the analysis of 
the results calculated 

Fig. J. The example of decision making for light 
buttons in the user program. 

The user has to analyze what graphic object was selected, and u, 
has to program the jump to the proper section of his program c~' 

to the separate subroutine. When the algorithm of the dialogue is 
complete enough, the programming of the dialogue structure is & 

a labour-consuming procedure, including a lot of testa of various 
conditions in many subroutines of the user program. In other 
words, the structure of a dialogue is distributed to a number of 
subroutines and in order to implement it, a great accuracy and 
patience, which are not related to the solution of an application 
program, are required from the user. 

Therefore, programming means, which allow the user to be free 
from the programming of standard procedures of the message proces­
sing ( the request for input,analysis of the message, the organi­
zation of jumps to executive subroutines and so on.) must be pro­
vided in a modern dialogue system (for example, /9,l3/ ). It is 
natural only to demand from the user the description of the 

12 

.,. 

l 

1 
I 

dialogue structure and the presence of executive program related 
to the specific algorithm of his job. 

6.3.Definition of the dialogue structure 

To describe the dialogue structure, the user depending on the 
requirements of his job, selects the number of levels in the 
structure, the number of states at each level, indicates for each 
state the correspondence between messages (which he selects by 
himself) and executive subroutines. A logic correspondence bet­
ween every message and the executive subroutine to be called is 
established by the user through a special table, subroutine link 
table (SLT). Thus, every state is specified by its own SLT. 

The dialogue structure can be defined by the programmer sta­
tically or dynamically. In the statical assignment it is described 
at the beginning of the program run (for example, by means of a 
separate subroutine). In the dynamical assignment a new set of 
messages allowed can be formed within the executive subroutine. 
Due to this, in particular, the opportunity to vary the dialogue 
structure appears depending on the intermediate results. Besides, 
the possibility of dynamic description is necessary to connect to 
the user program special dialogue subsystems for data processing 
and analysis with its own dialogue structure. For example, the 
subsystem of the analysis of two variable functions with respect 
to the user program might have its own multilevel structure of the 
dialogue, which will be defined dynamically when entering to the 
subsystem. 

To perform typical control procedures by running the user 
job (to restart the job, to terminate the program, to store the 

"history" of the dialogue and so on) the system messages have to 
be provided along with the user messages. 

The dynamic organization of the dialogue structure can be 
realized by means of the following system subroutines: 

BSAMES (P,SP,IT) - the setting of the logical correspondence 
between the order P and the executive subroutine SP; IT • the 
descriptor of a number and a type of message parameters. 

BSLTB (IBUP, LB) - the definition of the subroutine link 
table where the information defined by the subroutine BSAMES is 
stored. 

13 



L 

program 
initialization 

/ 

" I 
::..evel 1 <: R&W >----1 

A 

(/ 

EJ 
j 

r 
I 

I 
Level 2 

,_'__( ---, 
r- -- . 

message 
analysis 

I _J 
L- -7~ T 7 -

< 

"' I 
I B 

SABB 

- -- -, 
I 

I 
R&W _,_- J 

'y 

- ~-----, 

message 
analysis 

L ___ /_, ___ -.J 

' ' 

A- SUBA 
B -suBB-jn -sUBD 
c -sUBc~ E -suBF 

c 

1 

SUBC 

' -

L-: R&W 

y 

lp- SUBF 
G- SUBG 

R&W - Request 
and Wait 

Executive 
user subroutines 

- ~- -I 

'> 

r------L ----

I 

message 
analysis 

L - - -/-'::- - ~-- -- _; 

D / 
', E F // ', G 

Executive 
user , 

subroutines· 
I 
I B G G EJ, 
L __ j ______ J i_ _____ j ___ -.J 

Fig. 4. Example of dialogue structure. 
14 

.. 
I 

~ 

BSWAIT - the subroutine which generates the request for 
message input, organizes the loop to wait a message at the current 
level, the analysis of ~he message and the transfer of the control 
to the executive subroutine in accordance with a current SLT. With 
a statica~ :y r1t:fidd structure the user must form some tables of 
connection depending on the number of states within the structure 
and besides. to set the correspondence between every table and the 
order on which this table should become the current one. In this 
case, each table is assigned the name, coincident with the order 
and the service system subroutines have to declare on the order of 
the user, the current SLT from the number of those formed previous­
ly. To save "named" SLT, the SLT catalog is formed. 

These functions can be, for example, performed by means of 
the following system subroutines: 

:OOCA.T(CAT,LC) - the catalog definition. 

BSLTC (TAB, LT,P) - the table TAB with the length LT is 
registered in the catalog under the name P; on the user order P 
this table is declared as a current SLT. 

Consider, for example, the structure of a dialogue given in 
Pig. 4. There are two levels. At the first level there is one etate 
(State I) with an allowable set of user orders A,B,C which the 
executive subroutines SUBA, SUBB, SUBC correspond to. There are 
two states at the second level. A jump executed on the Iiller order 
B tc one of them (State 2); this state is defined by the set of 
user orders D and E, which the executive subroutines SUBD and 
SUBE correspond to. To another (State J) a jump is done on the 
user order C. In this state, the user orders F and G, which the 
executive subroutines SUBF and SUBG correspond to, are allowed. 
Then the static description of the dialogue can be performed in 
FORTRAN, as it is shown in Fig. 5. 

• 

15 



. 
CALL BSCAT(CAT,LC) 

CALL BSLTB(TABJ,LT.)) 
CALL BSAJIES ( 1 P, 1 SUBP 1 , ITP) 
CALL BSAJIES( 1 G1 , 1 SUBl1 ,ITG) 

CALL BSLTC(TAB3,LT 3, 1 C1 ) 

CALL BSLTB(TAB2 ,LT2) 
CALL BS.AilES ( 'D 1 , 1 SUBD 1 , ITD) 
CALL BSAJIES( 1 E1 , 1 SUBE' ,ITE) 

CALL BSLTC(TAB2,LT2,'B') 

CALL BSLTB(TAB1 ,LT1) 
CALL BSAMES( 1 A1 , 1 SUBA 1 ,ITA) 
CALL BSAMES( 'B', t SUBB' ,ITB) 
CALL !15AMES( 1 C1 , 1 SUBC 1 , ITC) . . 

Catalog definition 

SLT3 declaration 
for state 3 and its 
registration in 
catalog with name 1 C' 

SLT2 declaration 
tor state 2 and 
its registration in 
catalog with name 'B' 

SLT 1 declaration 
for state 1 

Pig. 5. Static description of the dialogue structure. 

The description of the structure is done "below-up", thus, the 
SLT of the initial level is described as the last one. This table 
becomes the current one at the beginning of the work. 

The subsequent procedures of the SLT switching,when a jump f~ 
one state to another exists, and the correspondent calls are rea­
lized by the system. 

7. Dialogue variables 

The absence of a simple access of the user to his program 
variables from the terminal is one ot the disadvantages of non­
dialogue programming languages (tor example, PORrJUll). Such an 
access is required in the procesa of the dialogue when editing 
initial data, analyzing the computation results, obaerving the 
variation of variables during the calculation and so on. Por the 
dialogue system the access must be provided by the system facili­
ties and require minimum programming from the uaer. 

16 

! 

The access to variables in nondislogue programming languages 
can be provided by means of the special package of service sub­
routines. Simple variables and arrays declared as dialogue ones 
or in the user program, or on the order from the terminal become 
available for the subsequent reference by the names, which were 
assigned to them. This results in the possibility to organize 
a simple and effective interface between the application program 
and processing. 

The simplicity means that minimum attempts are required from 
the user for programming (see the example in Fig. 6.) 

CALL BSGBP(GTAB, LC) 
CALL BSGLI(K, 1 K') 

CALL BSGLA(A,L, 1 A1 ) 

CALL BSGLAD(B,L1,12,'B') 

Declaration of dialogue variable table 
Declaration of variable K .. 4ialogue 
one with n .. e 'K'. 

Declaration of a~ray 
one with name 'A' 

A as dialogue 

Declaration of two-dimension array B 
as dialogue with name 'B'. 

Fig. 6. Declaration of dialogue variables. 

He should specify the memory for registration of the dialogue 
variables and declare the variables as dialogue ones. 

The efficiency is achieved due to a free (i.e. nonprogramable) 
access to a large number of subroutines and subsystems (both lib­
rary ones and developed by the user) to represent, to analyse and 
to edit data. This access is performed by means of the system or 
the user messages. The dialogue variables can be used as parame­
ters of these messages. For example, a call of the subsyatem to 
analyse and to edit one-dimensional array declared as a dlelogue 
one with its representation on the screen can be performed by 
means of a special system message, whose parameter is the name of 
this array. No special need of programming such a call in the 
user program is required. 

Thus, the problem of the dialogue organization at a high-le­
vel language for a wide range of problems can be essentially 
simplified. 

17 



8. Conclusion 

The development of effective software for graphic display 
systems continues to remain one of the actuel problems of modern 
programming, despite of great attempts expended in this field. 

Here, only some aspects of this problem have been considered, 
mainly, from the point of view of the user, who is programming in 
a high-level language. For those interested in a more 
detailed computer graphics, the book by W.Newman and R.Sproll/ 14/ 
which is recommended as a manual at many Institutes, will be very 
useful. 

References 

1. H.E.Kursrud. A General Purpose Graphic Language. CACM, v.11, 
No.4, 1968, 247-254. 

2. L.B.Smith, C.E.Vandoni. Graphical Ken-Machine Interactive 
Systems for Numerical Problems: PEG, a Special Purpose System 
and GAMMA, a general purpose System, CERN, 70-23, Auguet 1970. 

3. C.D.O'Brien, H.G.Bown. IMAGE - a Language for Interactive 
Manipulation of a Graphics Environment. SIGGRAPH - ACK, v.9, 
No. 1, 1975, 53-60. 

4. C.E.Vandoni. SIGMA, A System for Interactive Graphical Mathema­
tical Applications. JINR DIO, 11-8450, Dubna, 1974, 234-248. 

5. A.Hurwitz, J.P.Citron, J.B.Yeaton. GRAP: Graphic Addition to 
FORTRAN, 1967, SJCC, 47-54. 

6. D.N.Smith. GRL/I-APL/I Extension for C~puter Graphics. 
1971, SJCC, 511-528. 

7. A.Yule, R.Killer, A.Teavona. GD3-Graphic Display System, 
CERI Computer 6000 Series Program Librar,r, 1970. 

8. P.A.Woodsford "GINOa Graphical Input/Output" University of 
Cambridge Computer Aided Design Group, June, 1969. 

9. T.Fergacs, G.Hermann, G.Pickler. Software methods in developing 
CAD Programs. Computer Aided Design (Proc. of tbe IPIP Working 
Conf. on Principles of Computer-Aided. Design), edited by J. 
Vlietstra and R.P.Wielings. IHC-Aaaterdam-London, 1973, 205-215. 

10.Yu.K.Baiakovaky, T.N.~kbailova, S.G.Kiabakova. Preprint of 
Applied Mathematics Institute of tbe ·usSR Academ7 of Sciences, 
No.41,1972. 

18 

" 
I 
l 

11. A.V.Kavchenko, A.A.Karlov, A.D.Polyntsev, T.F.Smoliakova. 
Journal YC and K, Kiev, I, 1974, 110-113. 

12. S.V.Gorin, V.I.Dvorzhets, V.A.Debelov, A.Ia.Krutikov. 
"Computer Graphics and Applications". Novosibirsk. 1971,7-18. 

13. A.A.Karlov, T.F.Smoliakova. JIRR, P-II-10440, 1977. 
14. W.K.Newman, R.F.Sproll. Principles' of interactive Computer 

Graphics. KcCRAW-HILL Book Company, 1973· 

Received by Publishing Department 
on June 21, 1977. 

19 


