

E11 - 10883

A.A.Karlov

SOFTWARE FOR GRAPHIC DISPLAY SYSTEMS

Submitted to the Second Summer Scbool on Computing Techniques
in Physics (20 - 28 Auqust, 1977, CSSK).

Kapnos A.A. E11 - 10883
MaTemarryeckoe ofecrnedyenne rpadHuecKHX AHCIIEHHEBIX CHCTEM

PaccMaTpHBalOTCH BONPOCH MaTreMaTHYeckoro ofecmedeHus rpaduyeckux
[MAaNOTOBEIX CHCTeM: BHIGOp clocofa peanu3alud, CTPYKTypa GabGngoTeku
AWCIVIeAHBIX NMOAMPOTpPaMM, OpraHH3AalHd AHalora C MHOTOYPOBHEBOHR CTPYKTy-
poii, anmapaT amanorobLiX (raofambHnX) HepeMeHHbIX H T.IL

IpuBeaeHs NpHMepbl NMporpamMupopaHusa Ha sasvike $OPTPAH,

Pa6ora awmonHeHa B JlaGopaTopuH BHIYHC/AHTE/NbLHON TEXHHKH H
apToMaTtu3aunn OUAM.

IlpenpaaT O6veAHHERHOr0 FHCTHTYTA SAePHHNX BcchenoBauult . Jy6ma 1977

Karlov A. E11 - 10883

Software for Graphic Display Systems

The software problems for graphical display systems
are considered: the implementation, the structure of
display subroutine library, the organization of a dialogue
with multilevel structure and the extension of a high-le-
vel programming language (FORTRAN) by the dialogue vari-
ables,

Some examples of programming technique for FORTRAN
are given.

Preprint of the Joint Institute for Nuclear Research.Dubna 1977

© 1977 O6vedunennsii uncmumys soepNsx uccaedosanud Jybra

1.Introduction

A display software can be classified into a general (base)
software, which is independent of the particular problem and
specifies general-purpose logic capabilities of a display system,
and a special (problem~oriented) one to be developed for the solu~
tion of some special problem or some class of problems.

Difficulties arising in the programming for graphic diplays
are one of the reasons preventing the introduction of these devi-
ces. The difficulties are relating to the development of Jjust the
base software, which has to provide the user with flexible and
natural for usage facilities for the graphic data handling and the
interaction with a picture on a display screen and user programe.

2. Implementation

To develop a general-purpose software for graphic displays
three methods can be usged:

I. Thg development of a special graphic language.

2. The extension of the existing languages.

3. The creation of a display subroutine librarye.

A special g£a¥bic language. The development of a graphic lan-
guage (e.g. refs.’ '?

'2**/) 1like any special development has the
advantage of high efficiency in the solution of problems of a gra-
phic data processing. Along with this important advantage, however,
there are essential disadvantages, namely, quite heavy expenses
for the development of the language itself, those for the user
training and the addition of e new language into the running ope-
rating system and the difficulties of the graphic language exten-
sions to be required in the future.

The development of a special graphic language is justified,
where the expenses for the solution of the main problem are suffi-
ciently large, so that the difficulties related to the development
of a special graphic language and to its introduction, are

cowpensated by the cfficiency to be achieved.

fhe cxtension of existing high-level languages. L this case
the special graphic operators are added to the lanuage /j’b/.

fnererore, in practice tne user has only "to improve his <nowledge!"
or a «<nown lauguage. It ight be well to point out the difficul-
Ties 1o ne csuceu by some modification or cxteusion of tre langu-
4. 2. Tuis is, rirstly, tane modificatiocn of a translator, whici
results in tue increase of the translator size, that appears to

ve unjustified, when .ot all the graphic functions are uged, or
the development of a preprocessor to transform the graphic opera-
tors into the operators of the main language before the program
translation.

A certain difficulty of both these approaches is a conside-
rable aumount of work of the system programmers.

Pisplay subrouti.e liuvrary. The crestion of a display suu-

routiue library svallable of nigh-level languages allows oue to
avold & lot of probLlems, arising in the developrent ol a gpecial
sraphilc lanjuase or in the extension of high-level languages, I'he
oovious advaulages of nuch an aspproucht arve as rollows:

- the simplicity of a user "training® (a known mochanisn for
calli.u subroutites and functions, e.g. in PORTRAL by the opersa-
tor CALL);

~ the development of e larse part of the library can pe par-
formed by 10u-system prograimers;

~ tne simplicity of the extension if necesusary by the adai-
tlou or new subroutines to the library;

- time required for the software development is essentially
reduceu;

- the possibility of a rather simple adoptation of the gcft~
ware created for variocus computers and digplays.

ITnerefore, the aevelopmeut of the display library is now
tite basic approach Tor the designing of the display software

[refs./Y’d’}U’i1’12/).

3. Sfoue priunciples of the uesiwuing of the display libraiy

eu Iron the point of view of the maxiuwi. convenlences
and pust proviue for the roilowing possibilities.

The availability of all the facilities to haadle graphic

data and to organize a dialogue through a high-level language. It
should not be necessary for the user to have the detailed informa-
tion about the operation of the display equipment, computer chan-
nels and communication circuits. All the facilities for the const-
ruction and modification of the pictures and also for the opera-
tion with a light-'pen and a keyboard have to be available for the
user through a high-level language (or thraigh an assembly langua-
ze, when he wants to use it for the purpose of effective progran-
wing).

The possibility of the execution of the same functions bz.
various means and a miniwum dependence of the display subroutine
from each other. Such an opportunity allows the programmer, in
any particular case, to select the optimal, from his point of
view, set of diesplay subroutines. There must be the basic set
of subroutines, which is always used and a large set of additional
subroutines, which can be used, depending on the requirements of

the application prograw and the Bkill of the programuer.

A possibility of constructing hierarchy of graphic objects.
Due to this possibility, the creation of composed objects is
agsumed, when an object can be included as a part of a uore comp-
lex object and the latter, in its turn, be 8 part of another ob-

ject and so on. An object being formed at relative coordinates
can be included into several composed objects. For this case, to
display several identical objects, it is sufficient to have only
one copy in the computer umewmory.

A flexible wechanign of memory allocation. To allocate gra-
phic eand auxiliary information, i.e. to organize the graphic

data structure, the memory is required, whose size depends on the
amount of graphic data in a user program. Therefore, if there is
no the automatic memory allocation for a given operating computer
systen, the user should himself be responsible for the memory al-
location. It is important, that this task would be maximum easy
for him. Por example, it would be sufficient to-define the buffer
to be used for the graphic data and auxiliary information. Ser-
vice display subroutines have to be responsible for the utiliza-
tion of the allocated memory.

¢, Classification of display subroutines

From the functional point of view all the display subrouti-
nes can be divided into three classes:

I.Subroutines-generators of the graphic commaend and data for
the display unit. The picture on the screen can consist of both
the simpleast graphic components, such as dots, vectors, texts end
others (generated by low-level subroutines-generators), and more
complex pictures, for instance, coordinate axes, equipotential
lines and so on (generated by high-level subroutines-generators)

2.Administrative subroutines providing the memory allocation
for graphic data and also executing different operations at the
picture components (adding, removal, replacement and others). This
class may include also the suxiliary subroutines, which allow one
to estimate the memory allocation, to print output listings of the
graphic data, internal display varisbles and the system control
tables, which is quite useful for the debugging of new display
subroutines.

3. Control subroutines providing independently of the execu-
tion of the user routine, the output of a picture on the display
gcreen and the operation of input devicee provided for the man-
machine~interaction (a light pen, a keyboard and others) and the
dialogue organization as well.

“. Ihe example of the display library

Consider the example of the implementation -of the principles
mentioned above.

A software/11/ for the graphic display SIGDA on the mini-
computer M-6000, has been developed at JINR. It has been realized
as a subroutine package available for a user through the M-6000
asgembler or FORTRAN and added as the extension for a standard
subroutine library. At present the display library consists of
about 100 subroutines.

Graphic objects on the display screen are constructed of the
primitive items (dots, vectors, a text, circles and arcs), which
are generated by the display hardware, when graphic instructions
are entered from the computer. Any combination of the primitive
items from a dot to a complex picture can be defined as an object

In a computer memory the object occupies a set of subsequent words
with a graphic and control information which have been assigned a
name. To establish a correspondence between the names of the object
and the actual storage location, the graphic object .table (GOT) is
provided (Fig. 1). The size of this table is selected by the user
and depends on an assumed maximum number of objects. For each
currentily existing object, there is an entry of three words which
contains the initial address of the object in the storage and also
the length and the name of the object. Besides, a special mask bit
determines if a current object should be displayed on the screen
(active object) or not (masked object).

When a new object has to be added, service subroutines search
for a free place in the GOT, form a new entry and insert it into
the table. The removal of the object is performed by clearing of
the appropriate entry in the object table.

A regeneration subroutine (a display driver) is activated,

when the first active object appears in the GOT and is
then called with regeneration frequency (normally 50 Hz) via a
computer interrupt system. It is responsible for scanning of the
object table and the organization of output for the active cobjects
on the screen.

The objects for SIGDA display can be primitive and composed.

The primitive and composed objects have the same represen-

tation in the GOT. A reference to the subobject consists of two
words: the first is a special instruction "“control", the second
is the name of subobject. Such a structure of the reference per-
mits to refer to the subobjects which do not yet exist and will
be generated some later.

The object location in the memory is determined by the fact,
which area was ordered by the user as a so-called current buffer
before the procedure of the object generation. When ordering the
current buffer, the user specifies the initial address and the
length of the area, which he allocates for this purpose.

The following calls to subroutines-generators will place
grephic information in the current buffer consequently beginning
from the first free word.

urapnic ohject Graphic buffer
tanle (GOUT)
snury i -
N Object 1
Luntry § .
N Ouject k
sntry Kk - T
Object j

Stiructure of entry for

GOT

A - initial address or

L - object lengti

N - object name
M - masx bit

Pig. 1. The structure of the graphic object
table.

When designing the library for the SIGDA graphic display, e
great attention was paid to the goftware for the man-machine inte-
raction facilities: a light pen and a display keyboard. A light
pen can be used both in the indicetion mode, i,e. for the identi-
fication of objects existing on the screen, and in the tracing
mode to construct new objects. In the indication mode the user
has an access to the coordinates of a point indicated by & light
pen and the name of the object, which this point belongs to.

The process of tracing the light pen is performed by means o
8 special marker simultaneously and independently on the user
program execution. At any time the user program has the sccess to
the coordinetes of the current position of the marker on the
screen via variables specified by the user. Minimum user efforts
are required to specify the tracing type (without drawing or with
that). When drawing the user has to indicate only a minimum step
of registrating the coordinates of the intermediste marker posi-
tion and the type of approximstion (by déts, vectors etc.). 4
possibility to move the objects existing on the gcreen by means
of m tracing marker is also provided.

A set of keyboard subroutines, which independently on the
execution of the main program can input and display characters
from the keyboard and perform some editing procedures, is deve~-
loped.

Thus, all the possibilities of the display library are avai-
lable for the user both through the M-6000 sssembler and FORTRAL.

Ap an example, the procedures of the memory &llocation and
the graphic object generation are given in Pig. 2.

CALL 6STO(TAB.LT)
CALL DSBUF(BUF,LB)

gegigition of the graphic object
Définition of the graphic buffer

CALL DSPTA (1X,IY) Point generation
CALL DSMVA(IX1,IY1,IX2,IY2 MODE) Vector generation
CALL DSTXA(KX,KY,TEXT,LT)
CALL DSADD(NAME)

Text generation
Graphic object declaration

Generation
of the other graphic
objects
(if any)

CALL DSLPN(LPF, LNAME,LX,LY)
5 LF(LPF)7,5,7

Light pen call
Waiting of the light pen hit
(if required)

Pig. 2. The example of the graphic object generation

t. The dialogue organization
. .1. Terminology

To organize the man-machine dialogue various devices can
be used by the user: a keyboard, a light pen, functional keys and
80 on. By means of them he enters symbolic and graphic information
or some special codes and influences, in such a way, on his prog-
ram and the computer system.

For simplicity, a block of information entered by the user
as an inquiry answer from a computer, or on his own initiative,
is called as g _message. Thus, in this case, the line of symbols
from the keyboard, the information from a light pen when hiting
the graphic object on the screen and the code of a function but-
ton. can be considered as a message. In the general oése, the mes=-
sage consists of an order, which indicates the action to be per-
formed and parasmeters which have to be used.

10

The_state of the dialogue is described by many factors:
an operationel situation in the computing system, the state of a
user program and so on., Here, the state of a dialogue at some
moment is considered in the limited sense as a set of messages
allowed at this moment. The combination of all the states, which
are available when running the user program together with the con-
ditions of jumping from one state to another, forms the stiructure
of the dialogue of a current program. From the point of view of
programming, the stay in some state is & loop of waiting a user
message. If the jump from one state to another is completed by
return to the previous loop, we say, that we stay at the same le-
vel. If a jump to another loop has a place, we say about the Jump
to another level (that may be the jump to a more "deep"™ level with
respect to original one ar the return tec the previous level).

6.2. Message process

In special dialecgue systems (for example, when designing
a printed board, analyzing the electric circuits and o on) the
structure of a dialogue and the appropriate set of commands (mes-
sages) available for the user are selectied by the system designer
and are fizxed. In the general case, the user of the dialogue sys-
tem should be allowed to select by himself the set of messages
convenient from his point of view to contact his program.

In principle, to organize the processing of meassages it would
be sufficient to provide the user with some set of subroutines of
input and unpacking of messages and to rest for him the analysis
of these messages in accordance with the algorithm of his program.
Besides, programming required for such an analysis, in this case
the dialogue structure becomes difficult to observe and to correct.

Por example, the part of the user program in FORTRAN, which
is responsible for the organization of operation with a light pen
(1ight buttons) is given in Fig. 3.

1

CALL DSLPN(LPF,LNAME,LX,LY)

Light pen call

5 IF(LPF) 7,5,7 Loop o wait
GO TO 7, IF LIGHT PEN HIT @ 11ght pen hig
7 IF(LNAME.EQMHEDIT) GO TO 10 Analysis of
IP(LNAME. 2Q. 3HRUN) GO TO 20 the light button
IP(LNAME.EQ.6HRESULT) GO TO 30 selected
: GO TO 10 TO EDIT INITIAL DATA Section
¢ of initial
10 CONTINUE data editing
c
c GO TO 20 TO CALCULATE Section
¢ 20 CONTINUE of calculation
g GO TO 30 TO DISPLAY RESULTS Section
¢ of the analysis of
30 CONTINUE

the results calculated

Pig. 3. The example of decision making for light
buttons in the user program.

The user has to analyze what grephic object was selected, and ie
has to program the jump to the proper section of his program Co
to the separste subroutine. When the algorithm of the dialogue iz
complete enough, the programming of the dialogue structure is =
a labour-consuming procedure, including & lot of tests of variocus
conditions in many subroutines of the user program. In other
words, the structure of a dialogue is distributed to a number of
subroutines and in order to implement it, a great accuracy and
patience, which are not related to the solution of an application
program, are required from the user.

Therefore, programming means, which allow the user to be free
from the programming of standard procedures of the message proces-
sing (the request for input,analysis of the message, the organi-
zation of jumps to executive subroutines and so on.) must be pro=-
vided in a modern dialogue system (for example, /9,13). It is
natural only to demand from the user the description of the

12

dialogue structure and the presence of executive program related
to the specific algorithm of his Job.

6.3.Definition of the dialogue structure

To describe the dialogue structure, the user depending on the
requirements of his job, selects the number of levels in the
structure, the number of states at each level, indicates for each
state the correspondence between messages (which he selects by
himgelf) and executive subroutines. 4 logic correspondence bet-
ween every mesgsage and the executive subroutine to be called is
egtablished by the user through a special table, subroutine link
table (SLT). Thus, every state is specified by its own SLT.

The dialogue structure can be defined by the programmer sta-
tically or dynamically. In the statical assignment it is described
at the beginning of the program run (for example, by means of a
separate subroutine)., In the dynamicel assignment a new set of
messages allowed can be formed within the executive subroutine.
Due to this, in particular, the opportunity to vary the dialogue
structure appears depending on the intermediate results. Besides,
the possibility of dynamic description is necessary to connect to
the user program special dialogue subsystems for date processing
and analysis with its own dialogue structure. For example, the
subsgystem of the analysis of two variable functions with respect
to the user program might have its own multilevel structure of the
dialogue, which will be defined dynamically when entering to the
subsystem.

To perform typical control procesdures by running the user
Job (to restart the job, to terminate the program, to store the
"higtory" of the dialogue and so on) the system messages have to
be provided along with the user meassages.

The dynamic organization of the dialogue structure can be
realized by means of the following system subroutines:

BSAMES (P,SP,IT) ~ the setting of the logical correspondence
between the order P and the executive subroutine SP; IT - the
descriptor of a number and a type of message parameters.

BSLTB (IBUF, LB) - the definition of the subroutine link

table where the information defined by the subroutine BSAMES is
stored.

13

program

initialization
A ~—= SUBA
structure
definition B — SUBB— " 'D — SUBD
c -—..smsc\ E —> SURF
o . S -

T : F —= SUBF
Level 1 Q// Rew :}_—J G —= SUBG

- 1
t
1
! message R&W - Request
! s \ and Wait
: analysis .
L e
P } o
A T | B .. ¢
- ! T~
- i ~
r | B
[X L1
SUBA SABB SUBC Executive
uger subroutineg
J
! ~
: . i | | LT~ :
! S L_ " R&W -
Level 2 <.\\ Ré&w P < /’,> |
i T R l
.Y -—— L I
i | | \ |
i ' message ! | message ! ,
i , enalysis ! ! enalysis | !
: b e = <=4 Lo e l
! P N ~
| ‘ N // \\ ¢
| D// \\E F . NG |
; (y ‘ N l
! i 4 ¢ 1 ;
1]
Executive i I
user '
Eubroutines; SUBD SUBE SUBP SUBG |
] '
i T 1 1 1 1
S R v o _ . B

Fig. 4. Example of dialogue structure.

14

BSWAIT - the subroutine which generates the request for
message input, orgasnizes the loop to wait a message at the current
level, the analysis of -the message and the transfer of the control
to the executive subroutine in accordance with & current SLT. With
a statically defi..ed structure the user must form some tables of
connection depending on the number of states within the structure
and besides. to set the correspondence between every table and the
order on which this table should become the current one. In this
case, each table is assigned the name, coincident with the order
and the service system subroutines have to declare on the order of
the user, the current SLT from the number of those formed previous-—
ly. To save "named®" SIT, the SLT catalog is formed.

These functions can be, for example, performed by means of
the following system subroutines:

BSCAT(CAT,IC) - the catalog definition.

BSLTC (TAB, LT,P) -~ the table TAB with the length LT is
registered in the catalog under the neme P; on the user order P
this table is declared as a current SLT.

Consider, for example, the structure of a dialogue given in
Fig. 4. There are two levels. At the first level there is one state
(State I) with an allowable set of user orders A,B,C which the
executive subroutines SUBA, SUBB, SUBC correspond to. There are
two states at the second level. A Jump executed on the user order
B tc one of them (State 2); this state is defined by the set of
user orders D and E, which the executive subroutines SUBD and
SUBE correspond to. To another (State 3) a Jump is done on the
user order C. In this state, the user orders P and G, which the
executive subroutines SUBF and SUBG correspond to, are allowed.

Then the static description of the dialogue can be performed in
FORTRAN, as it is shown in Fig. 5.

15

CALL BSCAT(CAT,LC) Catalog definition
CALL BSLTB(TAB3,LT3) SL’.l‘3 declaration
CALL BSAMES('P,'SUBP',ITF) for state 3 and its
CALL BSAMES('G!,'SUBG',ITG) registration in

CALL BSLTC(TAB3,LT 3,'C?) catalog with name 'C*
CALL BSLTB(TAB2,LT2) SLT, decleration

CALL BSAMES(‘'D','SUBD!,ITD) for state 2 and
CALL BSAMES('E','SUBE',ITE) its registration in
CALL BSLTC(TAB2,LT2,!'B*) catalog with name 'B!

CALL BSLTB(TAB1,LT1) SLT, declaration
CALL BSAMES('A','SUBA',ITA) for state 1

CALL BSAMES('B','SUBB',ITB)

CALL ?SAMES(!G','SUBC?, ITC)

Pig. 5. Static description of the dialogue structure.

The description of the structure is done "below-up", thus, the
SLT of the initial level is described as the last one. This table
becomea the current one at the beginning of the work.

The subsequent procedures of the SLT switching,when a jump fru
one state to another exists, and the correspondent calls are rea-
lized by the system.

7. Dialogue variables

The absence of a simple access of the user to his program
variables from the terminal is one of the digadvantages of non-
dialogue programming languages (for example, FORTRAN). Such an
access 1s required in the process of the dialogue when editing
initial data, analyzing the computation results, observing the
variation of variablees during the calculation and so on. Por the
dialogue system the access must be provided by the system facili-
ties and require minimum programming from the user.

16

The access to variables in nondialogue programming languages
can be provided by means of the special package of service sub-
routines. Simple variables and arrays declared as dialogue ones
or in the user program, or on the order from the terminal become
available for the subsequent reference by the names, which were
asgigned to them. This results in the possibility to organize
a simple and effective interface between the application program
and processing.

The simplicity means that minimum attempts are required from
the user for programming (see the example in Fig. 6.)

CALL BSGBPF(GTAB, LC) Declaration of dialogue variable table
CALL BSGLI(K,'K') Declaration of variable X as dialogue
one with name 'K',

CALL BSGLA(A,L,'A') Declaration of array A as dialogue
one with name 'A'

CALL BSGLAD(B,L1,L2,'B') Declaration of two-dimension array B
as dialogue with name 'B'.

Pig. 6. Declaration of dialogue variables.

He should specify the memory for registration of the dialogue
variables and declare the variables as dialogue ones.

The efficiency is achieved due to a free (i.e. nonprogramable)
access to a large number of subroutines and subsystems (both 1lib-
rary ones and developed by the user) to represent, to analyse and
to edit data. This access is performed by means of the system or
the user messages. The dialogue variables can be used as parame-
ters of these messages. For example, a call of the subsystem to
analyse and to edit one-dimensional array declared as a dielogue
one with its representation on the screen can be performed by
means of a special system message, whose parameter is the name of
this array. No special need of programming such a call in the
uger program is required.

Thus, the problem of the dialogue organization at a high~le-
vel language for a wide range of problems can be essentially
gimplified.

17

8. Conclusion

The development of effective moftware for graphic display
syetems continues to remain one of the actual problems of modern
programming, despite of great attempts expended in this field.

Here, only some aspects of this problem have been considered,
mainly, from the point of view of the user, who is programming in
a8 high-level language. For those interested in a more
detailed computer graphics, the book by W.Newman and R.Sproll/14/
which is recommended as a manual at many Institutes, will be very
useful.

References

1. H.E.Kursrud. A General Purpose Graphic Language. CACM, v.11,
No.4, 1968, 247-254,

2. L.B.Smith, C.E.Vandoni. Graphical Man-Machine Interactive
Systems for Numerical Problems: PEG, a Special Purpose System
and GAMMA, a general purpose System, CERN, 70-23, August 1970.

3. C.D.0'Brien, H.G.Bown. IMAGE - a Language for Interactive
Manipulation of a Graphicse Environment. SIGGRAPH - ACM, v.9,
No. 1, 1975, 53-60. '

4. C.E.Vandoni. SIGMA, A System for Interactive Graphioal Mathema-
tical Applications. JINR D10, 11-8450, Dubna, 1974, 234-248.

5. A.Hurwitz, J.P.Citron, J.B.Yeaton. GRAF: Graphic Addition to
PORTRAN, 1967, SJCC, 47-54.

6. D.N.Smith., GRL/I-APL/I Extension for Computer Graphics.

1971, SJCC, 511-528.

7. A.Yule, R.Miller, A.Teavons. GD3-Graphic Dieplay Syatem,
CERN Computer 6000 Series Program Library, 1970.

8. P.A.Woodsford "GINOs Graphical Input/OQutput™ University of
Cambridge Computer Aided Design Group, Junme, 1969.

9. T.Pergacs, G.Hermann, G.Pickler. Software methods in developing
CAD Programs. Computer Alded Design (Proc. of the IFIP Working
Conf. on Principles of Computer-Aided Design), edited by J.
Vlietetra and R.F.Wielings. NHC-Amaterdam-London, 1973, 205-215,

10.Yu.M.Baiakoveky, T.N.Mikhailova, 8.G.Mishakova. Preprint of
Applied Mathematice Institute of the USSR Academy of Soiences,
No.41,1972.

18

g

11. A.V.Kavchenko, A.A.Karlov, A.D.Polynteev, T.P.Smoliakova.
Journal YC and M, Kiev, I, 1974, 110-113.

12. S.V.Gorin, V.I.Dvorzhets, V.A.Debelov, A.Ia.Krutikov.
"Computer Graphice asnd Applications". Novosibirsk. 1971,7-18.

13. A.A.Karlov, T.F.Smoliakova. JINR, P-II-10440, 1977.

14, W.M.Newman, R.F.Sproll. Principles of interactive Computer
Graphics. McCRAW-HILL Book Company, 1973.

Received by Publishing Department
on June 21, 1977.

19

