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Introduction 

In the previous note the method of SDD alignment (position re­
construction) within SVT system and fast algorithms for track and 
vertex reconstruction were described [1]. The precision of the pro­
posed algorithms was investigated using a simplified Monte Carlo 
model. Here we analyse the possibility of using these algorithms 
for processing real experimental data a computational model with 
the geometry maximally close to that of the real STAR-SVT was 
developed. SVT coordinate system and labeling scheme is chosen 
as it was proposed by R.Bellwied [2]. We studied the accura­
cy and the resistance to the data contamination of the proposed 
methods. 

1 Computational model 

Following [2] we consider the SVT structure as consisting of three 
barrels. The innermost barrel is barrel 1, the middle one is barrel 
2, the outermost barrel is barrel 3. 

The barrels consist of 8, 12, 16 ladders respectively. They are 
labeled clockwise, in the same way as in [2]. The ladders contain 
4, 6, 7 wafers respectively. The detectors are labeled from West 
to East. 

In the model sizes of wafers, distances between their centers in 
the ladders and radial distances between the detector center and 
ladders of each of the 3 barrels are taken to be equal to those of 
the real detector. 

The global coordinate system (X9,Yg,Z9) is chosen in the fol­
lowing way. The coordinates origin is chosen to be right in the 
detector center. X9 axis was taken to go along the beam line 
from West to East (so that if viewed in this direction ladders 
were labeled clockwise and wafer label numbers increased together 
with X9• Yg axis was taken to be vertical directed upwards and 
Z9 axis - horizontal from left to right (if viewed from West). Be-



sides, for each wafer a 2D-coordinate system is chosen. The local 
coordinate center was in the wafer center, the direction of X axis 
is coincided with that of the X0 axis of the global coordinate 
system and Y axis is perpendicular to it in the wafer plane. 

When simulating an event, at first, the vertex coordinates (in 
global coordinate system) are randomly chosen inside the beam 
pipe. After that a wafer on the 3-rd barrel is calculated by the 

. random choice of the label number for a ladder and a wafer. 
The local coordinates of the point are determined by two uniform 
random numbers. After that ladders and wafers of the 2-nd and 
1-st, barrel which are crossed by the track drawn through the 
simulated vertex and the point chosen in the 3-rd barrel, are 
determined. For this purpose we recalculate the coordinates of 
the chosen point from the local coordinate system to the global 
one. 

In the YgZ0 plane 

½I= Rcose + Yisin8 Zg1 = Rsin8- Yicose 

where R is the radial distance between wafer and detector center, 
8 is the angle between R and Yg axis (see Fig.la) 

{ 

k1r/4, for l - st barrel 
8 = k1r/6, for 2 - nd barrel 

k1r/8, for 3 - rd barrel, 
where k is the ladder number. 

In the X0Z0 plane (see Fig.lb): 

X10 = X1 + (n - l)STEP- c 

where STEP is the distance between neighouring wafer centers 
in. the ladder, n is the wafer label number, c is the constant, 
calculated on the following way: 

{ 

3STEP/2, 
c= 5STEP/2, 

3STEP, 

for l - st barrel 
for 2 - nd barrel 
for 3 - rd barrel 

2 

Y., 

Y,,1 

a 
R 

a) x,, 

X,,1 •·•·····••••••-·••••••·-•••·•····• 

Z 9 1 Z,, 

3 b) 

2 

1 z., 

0 

Figure 1: Coordinate recalculation from the local coordinate system to the 

global one 

Then after defining "the ladder label number in the 2-nd bar­
rel (using the angle value ¢,), we recalculate the coordinates of 
the chosen point from the global coordinate system to the one 
connected with this ladder (see Fig.2). 

Yg 

Y., Zg 

Figure 2: The coordinate system connected with some ladder 
1 

In this coordinate system we have 

Y{ = Yisin0- Z1cos8 Z~ = Yicos0 - Z1sin8 

and for the vertex coordinates one obtains 

Y; = Y11sin8 - Zvcos0 Z~ = Yvcos0 - Zvsin0 
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In this system we can define one of the local coordinates of 
the· intersection point on the 2-nd barrel: 

y; _ Y.' (Y{ - Y:)(R- Z~) 
2 - V + Z{ -Z~ 

and using the 2-nd coordinate in the global system 

X _ X (X91 - Xgv)(R - Z~) 
g2 - gv + Z1 - z~ 

it is easy to obtain its value in the local coordinate system. For 
example for the 5-th wafer it is: 

X2 = X92 - 3STEP/2 

etc. Then in the same way we obtain the coordinates of the track 
intersection point with the 3-rd barrel. 

To simulate an uncertainty of the experimental data a normally 
distributed random distortion is added to the local coordinates of 
points, in which the simulated tracks crossed the detectors. The 
mean square deviation (distribution width) O' of this displacements 
is taken to be 20 µm. Besides, the Coulomb scattering is simulat­
ed for the 2-nd and 3-rd barrels. For this purpose the slope of the 
line simulating the track is changed by some small angle 0 after 
it crosses the wafers of the 1-st barrel. The value of this angle is 
determined by a normally distributed random number with some 
O'(J [3]. The analysis of the vertex reconstruction precision is done 
with a0 = 1 mrad. The azimuth direction of scattering (in xy 
plane) is determined by some angle ¢ uniformly distributed in the 
interval (0, 2rr). The procedure is repeated in oder to get suffi­
ciently representative statistics (1000 tracks for our model). Then 
a number of uniformly distributed points is added to each detec­
tor in oder to simulate a background measurements. We study 
the precision of vertex reconstruction with 30% background level. 
The output file of each event contains the local coordinates of 
all simulated points for each of 216 wafers. The structure of da­
ta presentation in the output file closely resembles that obtained 
from the real experiments. 
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2 Vertex reconstruction 

The methods of track and vertex reconstruction described in [1} 
was used to test the proposed model. To accomplish this the 
track parameterization must be changed, since it is impossible 
to choose a coordinate system, which would allow to parameter­
ize all the possible tracks with the help of two projection slopes 
without loosing some tracks being parallel to some of the axes. 
The new parameterization is chosen in the following way. Point 
,Pt(Xig, )'i9 , Zig) belonging to the track is defined as follows 

A= a+.\J (1) 

where A is the i-th point on the track, bis the vector, deter­
mining track direction in space, ii is the vector defining the mini­
mal distance between the beam axis and the track in a plane or­
thogonal to the beam axis ( by definition, one has (b•a)h~z

9 
= 0), 

and ,\ is a parameter that determines the position of any point 
along the track (see Fig.3). The above parameterization allows a 
quick, non-iterative, determination of the track parameters. 

zg 

Figure 3: Traclc parameterization 

The track reconstruction is done in the way described in the 
previous note (1}. For every point of the 3-rd barrel (Pa) a line 
is drawn passing through Pa and Pi, where Pi is such a point 
that the line drawn through Pa and Pi didn't pass farther then 
the determined distance (Vertexw) from the beam axis in YgZ9 
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plane and its projection in X 9Z9 plane intersects X 9 axis with­
in the interval (-Vertex L, +Vertex L) ( where Vertex L =3cm and 
Vertexw=lmm are constants defining the region of possible ver~ 
tex location). For each found line the ladder and wafer numbers 
and local coordinates · of the point, where this line crossed the 2-
nd barrel, are defined in the above mentioned way. If there is a 
point P2 on the defined wafer in the vicinity of the found point, 

. then these three points (Pi, P2, P3) are assumed to belong to the 
same track. Then the track parameters are determined with the 
help of the least square method. 

While optimizing the track using 3 defined points the main 
problem is to choose the functional, which is quadratic in respect 
all track parameters. That means, it , is possible to find them at 
once, without iterations. For this purpose a preliminary vector 
b0 = Pi -A, where A and A are radius-vectors of points Pi and 
P2 respectively, is ' formed in the YgZ9 plane ( transverse to the 
beam axis). 

We calculate for each point · P parameter Ai as: 

, . _ (ffi · bo)YgZg 
Ai-.,.. -, 

_ (bo · bo)YgZg 
(2) 

then the following functional is to be minimized: 

3 ( _ -)2 
L= ~ a+Aib-~ 

i=l 
(3) 

We choose this functional for our minimization because its min­
imizing would lead to a system of the simple linear equations of 
the track parameters, which allows one to determine these param­
eters by a simple one step procedure without any time consuming 
iterations. 

Given an estimate b0 , one finds a corresponding estimate for a 
with: 

llo = Pi - A1bo. (4) 
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Better estimates are sought by rewriting the functional L as a 
function of adjusted vectors a and · b defined as follows: 

a= aao 
'6 =ho+. f3a. 

(5) 
(6) 

Derivatives of L with respect to a and /3 must be zero. 

oL 3 ( - -) ~ = 2 ~ aii0 + Ai(bo + f3iio) - ~ · ii0 = 0 
va i=l 

oL 3 ( · - -) !l/3 = 2 ~ aii0 + Ai(b0 + f3iio) - ~ · Aillo = 0. 
V i=l 

(7) 

(8) 

That yields the solution : 

(a)- 1 ( EAl 
{3 - a~(3 E >.r - E Ai) - E Ai 

- E Ai ) ( E Pi_.· ilo ) 
3 LAi~ · iio 

(9) 

Having minimized L in the YgZ9 plane, one then consider the 
x-projection component of the L functional to be so far neglected. 

' 
- - 2 Lx = I:(ax + Aibx - i · ~) (10) 

This function can be minimized by zeroing derivatives with 
respect to ax and bx. One gets 

ax = 1 E Ai - E Ai E Pi_.· i _ (ll) 
() ( 

2 )( --=-) 
bx (3 E Ai - (E Ai)2) - E Ai 3 E >.i~ · i 

The solution (ii,b) can then be expressed as 

lln = aii0 + axi (12) 
b = bo + f3ao + bxi (13) 
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In general, an is not perpendicular to b. So for our convenience, 
we · redefine a to remove any component along b. 

-,; . an 
a=iin-: ii-b (14) 

After all the possible tracks are found we can start with the 
preliminary vertex fit. For this purpose the previously described 
region of the possible vertex locations is breaking into a set of 
cylinders with R = V ertexw with the step = 2mm and the 
common symmetry axis coinciding with a beam axis. Then a 
particular cylinder that is crossed by the biggest number of tracks 
must be found. After that, for track, that crosses the found 
cylinder, the vertex position is determined precisely. 

One considers the optimal estimate of the vertex position as 
the position which minimizes the sum of the distance of a point 
nearest to all tracks simultaneously. 

Given the (unknown) vertex position V, and a track, j, whose 
direction is given by bi, the point of the closest approach to the 
vertex, Pc can be obtained by solving the following equastion: 

(P-V) ·b=O. (15) 

Using .the same track model (1) one finds 

(a+ >.c-Cj - V) . ;;j = o. (16) 

Clearly, this yields 

c (V - aj) • bj 
>.i = In -

J 

(17) 

The optimal vertex .,, position is obtained by minimizing of the 
functional K defined as the sum of the distance squares of the 
closest approaches to all tracks. 
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I 

Ni ( ... ...)2 
K = ~ Wj ai + >.Jbi - V . 

J=l 
(18) 

We use here the special robust approach (see, for example [4]) 
in oder to reduce a contaminating effect of ghost tracks and oth­
er tracks properly reconstructed qut not pointing to the primary 
vertex. At this approach a conventioanl least square functional 
is replaced by the sum of weighted least squares with optimal­
ly chosen weight functio, which values also depend on the track 
parameters and must be reculculated on each iteration. We use 
suboptimal weight function [4] which are, in fact, the Tukey's 
be-weights calculated as. foolows: 

( 1 -:- (3uf~1)2) 
2 

for g < [3un-l]2, 
Wj = { 

0, otherwise 

where "n" is the iteration number, and 

9 - = (v - a·). (V - a·) - ((V: aj2. bj)
2 

3 3 3 (b · · b ·) ' . J J ....,N, n-1 n-1 
un = L,j=l Wj 9j 

· .._...Nt n-1 ' 
L..,j=l Wj 

(19) 

(20) 

(21) 

Nt is the number of tracks in the event. The notation xn-l 

refers to quantities calculated on the previous iteration. 
The vertex position, V, is determined by minimizing the func­

tional K relative to the vertex position. Substituting >.1 in (18) . 
by ( 17) we obtaine the normal equation system: 

aK = ~ . (-· (v - iii)· bib·_ v) . (bjbj _ 1) = 0 
av... ~ W3 a3 + b~ J b~ ' 

J=l J J 
(22) 
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which yields the solution 

rn l =M-•U) · {23) 

where the matrix "M" is defined as 

( 

Ewl-(b•pc;;.D) E-w<;;.~~b}) 
]}_ - -- --M = E-w<b•j)½b-fl Ewl-(b-jz)(b-j)) 
_ J> -ri J>_ --

. E -w<b•kJ~b-f E -w<b•kl~b-i) 

E -w <:·~~:~> ) 
E -w<b-j)(b•k) 

1 
( _b2 _ 

E w - b-~)(b·k)) 
(24) 

and the matrix "I" is defined as 

( 

Ew((a • i) - (a• b)4!1) ) 
I= Ew((a. t) - (a.~~) 

Ew((a • k}- (a. b)~) 

(25) 

Here the sums are taken over all "Nt" tracks reconstructed in 
an event. 

3 Simulation results 

In this section we present the results for track fitttng routine, com­
pare the results for the vertex reconstruction obtained be means 
of simple non-iterative minimization of non-weighted functional K 
( Wj = 1) and the robust approach. The accuracy of proposed 
vertex finder is studied. 

The underlying sample consists of 1000 Monte Carlo events 
simulated for the above mentioned values of u and <10. 

· Fig.4 shows histograms of the track x2 distributions for re­
constructed tracks. It is to be noted that, the obtained x2 dis­
tribution is quite close to the theoretical expectation for a x2 

distribution with 1 degree of freedom ( theoretical distribution is 
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shown with dashed line). Besides, the proposed algorithms allows 
us recognize about 98% of simulated tracks. 
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Figure 4: 'Irack Chi-squares 
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Fig.5 show the vertex x, y and z coordinate distribution for 
the cases of the simple non-weighted vertex fit (plots a, b and c, 
respectively) and of the robust method ( d, e and /). One can see 
from the resulting histograms the advantages of using the robust 
weight functions: it allows significant increase of vertex position 
determination accuracy. All peaks have Gaussian form, which is 
illustrated by the fitted Gaussians, and have practically unbiased 
mean values. 

The different resolutions obtained by fitting each of the distri­
butions individually for both cases are shown in Table 1. The 
robust approach gives a significantly better resolution for each co­
ordinate. 

Table 1: Precision of the vertex reconstruction 

Method <1x <1y <lz 

Unweighted fit 23.43 10.35 10.91 

Robust fit 7.15 4.92 5.36 

µm 
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Figure 5: Vertex coordinate definition errors a,b,c - for unweighted fit; d,e,f -
for robust fit 

To determine the prec1s1on of the vertex reconstruction the 
set of thousand events is treated for each value of u and u 4> 

parameters. Fig.6, a demonstrates the distribution of the ver­
tex reGonstruction errors for u = 20µm and sigmllphi = lmrad. 
Fig.3 b shows the dependence of vertex reconstruction precision 
<Tvertez = J<T; + <T~ + u~ on values of u and <T4>. The results ob­
tained show the good precision of the method proposed, even when 
hit dispersion is . significant. That allows us to use this method 
for wafer position reconstruction (alignment). 
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Figure 6: <T.,,,rt= dependencies on o- a) and o-~ b) 

4 Computational matters 

For implementing of the worked out algorithms and their inclu­
sion in the STAR software C++ programming language with all 
benefits of object oriented approach is used. The problem itself 
demands the application of abstract data types, that are connect­
ed on the one hand to the complex geometrical configuration of 
the setup and on the other hand to the physics nature of the 
problem. 

Several types of abstract classes were elaborated: wafer, lad­
der, . barrel, event, work etc. The first three classes are closely 
connected to the setup geometry and allows us, for instance, to 
make quite complex point coordinate recalculations ( e. g. for dif­
ferent recalculations switches between 216 local, 36 intermediate 
and one global coordinate systems are used). All details are hid­
den from the user by the help of the C++ encapsulation feature. 
Thus, each new task connected to similar geometry structure of 
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the .given .setup _can he .solved with the help of _these classes ( with 
minimal alterations) or some new classes can be derived. 

It is quite natural to create for our task such the abstract 
data types as point, track, event that not only considerably sim­
plify access to data, but also make the program more logical and 
readable. Besides,. the use of the proposed classes is for sure to 
enhance a further development of this software for different pro­
grammers. 

The need to work simultaneously with the whole data ensem­
ble as well as with each event separately (i. e. preserving the 
possibility of event identification in the ensemble) leads to create 
an operating class work that is introduced in order to simplify 
considerably the monitoring of large data amounts. 

The program code organized in such the way simplifies the de­
bugging process, increases program stability and also makes easier 
to perform its proper modification in cases of inevitable future 
changes of the setup geometry. The latter issue . is especially im­
portant for working out software for any research-and-development 
experiment, since in the process of its designing and developing its 
geometry configuration has usually to be changed several times. 

5 Conclusion 

We propose the fast algorithms for the tracks and vertex recon­
struction and study the their precisions and the possibility of us­
ing these algorithms for proc~ing of experimental data. For this 
purpose the computational object model of vertex detector with 
the geometry maximally close to that of the real SVT is cre­
ated. For track and vertex reconstruction for minimization the 
functionals were chosen in such wayt that it led to the simple 
linear equations on the track and vertex parameters and allowed 
to determine these parameters by a simple one step procedure 
without any time consuming iterations. The results obtained show 
the good precision of the method proposed, that allows us to use 
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this method for wafer position reconstruction (alignment) for pro­
cessing of real experimental data. And besides, in our program 
packet everything that is connected with the detector is placed in 
a single block, this &implified the program structure, increased its 
reliability, decreased the possibility of errors. One and the same 
code (describing classes) can be easily used without any changes 
by different programs ( different users). 
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EapattHHKOBa O.IO., OcocKoB r.A., Ilatte6paTueB IO.A. 
MccJJe;:(OBaHHe 6hICTpbIX anropHTMOB .!(JUI BOCCTaHOBJJettml TpeKOB 
H onpe;:(eJJeHH51 nOJJO)KeHJrn Bepumu C HCTIOJlb30BaHJieM HOBOH 
Bh!llHCJJHTeJJhHOtt Moaentt c nonttoii STAR-SVT reoMeTPHett 

El0-98-278 

ITpellJJO)KeHbl 6bICTpbie anropHTMhl J:(J151 BOCCTaHOBJJeHH51 TPeKOB H BeprnHH 
co6hITHH an51 aeTeKTopa SVT B SKcnepttMeHTe STAR. Mccne;:(oBanhl TO'IHOCTh 
rrpeanaraeMblX anropHTMOB H 803MO)KHOCTH HX HCTIOJlb30BaHH51 J:(J151 o6pa6oTKH 
peanhHblX SKCnepHMeHTaJJbHblX aaHHhlX, .!(JUI 'Iero 6wrn pa3pa6oTaHa o6oeKTHM 
MOJ:(eJJb BepUIHHHOro aeTeKTOpa c reoMeTpHett, MaKCHMaJJbHO nptt6JJtt)KeHHOH 
K peanbHOtt STAR-SVT ycrnuoBKe. B co3JJ.aHHhIX tta C ++ nporpaMMHhIX KOJ:lax Bee 
061,eKTbl, CB513aHHbJe C reoMeTpHeH YCTaHOBKH, BbJlleJJeHbl B OTJ:(eJJbHhlH 6JJOK, 'ITO 
CYUieCTBeHIIO ynpomaeT CTPYKTYPY nporpaMMbl, H yseJJH'IHBaeT Ha,ue)KHOCTb ee 
pa60Tbl. KpoMe TOro, KOL{, OnHCbJBaJOll!HH KJJaCCbl, MO)KeT 6bJTb HCTIOJlh30BaH 
noJJh30BaTeJJ5IMH 6e3 BC5IKHX H3MeHeHHH J:(J151 pa3JJH'IHbJX nporpaMM. 

Pa6orn Bbmonnetta B J1a6oparnptttt BhICOKHX sueprntt 0115111. 

Coo6meHHe Om,e)IHHeHHOro HHCTlllyra 51/lepHLIX HCCJle)IOBaHHii. !ly6Ha, 1998 
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We propose the fast algorithms for the tracks and vertex reconstruction 
for the ST AR-SVT setup and investigate their precision and the possibility of using 
these algorithms for processing real experimental data. For this purpose 
the computational object model of the vertex detector with the geometry maximally 
close to that of the real ST AR-SVT is created. In our C ++ program all objects 
related to the detector are placed in a single block. That simplified the program 
struct:.1re, increased its reliability, minimized the possibility of errors. Besides, 
the same code (describing classes) can be easily used without any changes 
by different programs or users. 
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