


Introduction

In the previous note the method of SDD alignment (position re-
construction) within SVT system and fast algorithms for track and
vertex reconstruction were described [1]. The precision of the pro-
posed algorithms was investigated using a simplified Monte Carlo
model. Here we analyse the possibility of using these algorithms
for processing real experimental data a computational model with
the geometry maximally close to that of the real STAR-SVT was
developed. SVT coordinate system and labeling scheme is chosen
as it was proposed by R.Bellwied [2]. We studied the accura-
cy and the resistance to the data contamination of the proposed
methods. |

1 Computational model

Following [2] we consider the SVT structure as consisting of three
barrels. The innermost barrel is barrel 1, the middle one is barrel
2, the outermost barrel is barrel 3.

The barrels consist of 8, 12, 16 ladders respectively. They are
labeled clockwise, in the same way as in [2]. The ladders contain
4, 6, 7 wafers respectively. The detectors are labeled from West
to East.

In the model sizes of wafers, distances between their centers in
the ladders and radial distances between the detector center and
ladders of each of the 3 barrels are taken to be equal to those of
the real detector. k

The global coordinate system (Xg,Yy,Zg) is chosen in the fol-
lowing way. The coordinates origin is chosen to be right in the
detector center. X, axis was taken to go along the beam line
from West to East (so that if viewed in this direction ladders
were labeled clockwise and wafer label numbers increased together
with X, Y, axis was taken to be vertical directed upwards and
Zg axis - horizontal from left to right (if viewed from West). Be-
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sides, for each wafer a 2D-coordinate system is chosen. The local
coordinate center was in the wafer center, the direction of X axis
is coincided with that of the X, axis of the global coordinate
system and Y axis is perpendicular to it in the wafer plane.
When simulating an event, at first, the vertex coordinates (in
global coordinate system) are randomly chosen inside the beam
‘pipe. After that a wafer on the 3-rd barrel is calculated by the
~random choice of the label number for a ladder and a wafer.
The local coordinates of the point are determined by two uniform
random numbers. After that ladders and wafers of the 2-nd and
1-st, barrel which are crossed by the track drawn through the
simulated vertex and the point chosen in the 3-rd barrel, are
determined. For this purpose we recalculate the coordinates of
the chosen point from the local coordinate system to the global
one

In the YyZ, plane .
Yy = Rcos© +Yysin©  Zj; = Rsin® — Yic0s0

where R is the radial distance between wafer and detector center,
© is the angle between R and Y, axis (see Fig.la)

kn/4, for 1— st barrel
©={ kn/6, for 2—nd barrel
. kw/8, for 3—rd barrel,
where k is the ladder number.

In the X,Z, plane (see Fig.1b):
Xlg = X] -+ (n - 1)STEP —C
where STEP is the distance between neighouring wafer centers

in. the ladder, n is the wafer label number, ¢ is the constant,
calculated on the following way:

3STEP/2, for 1— st barrel
c=4¢ 8STEP/2, for 2—nd barrel
3STEP, for 3—rd barrel

Yor X1 2

Zgl Zv

Figure 1: Coordinate recalculation from the local coordinate system to the
global one

Then after defining the ladder label number in the 2-nd bar-
rel (using the angle value #), we recalculate the coordinates of
the chosen point from the global coordinate system to the one
connected with this ladder (see Fig.2).

Yy

73 z’

Y, 2y
Figure 2: The coordinate system connelcted with some ladder
In this coordinate system we have
Y] = Y15in© ~ Z1c0s© Z! = Y1080 — Z,5in©
and for the vertex coordinates one obtains

Y, = Y,sin® — Z,cos© Z! = Yyc080 — Z,5in©



In this system we can define one of the local coordinates of
the intersection point on the 2-nd barrel:
Y -Y)(R-Z)

Z - Z,
and using the 2-nd coordinate in the global system
(Xyl — va)(R - Z{))
AR/

it is easy to obtain its value in the local coordinate system. For
example for the 5-th wafer it is:

X, = X2 — 3STEP/2

etc. Then in the same way we obtain the coordinates of the track
intersection point with the 3-rd barrel.

To simulate an uncertainty of the experimental data a normally
distributed random distortion is added to the local coordinates of
points, in which the simulated tracks crossed the detectors. The
mean square deviation (distribution width) o of this displacements
is taken to be 20 um. Besides, the Coulomb scattering is simulat-
ed for the 2-nd and 3-rd barrels. For this purpose the slope of the
line simulating the track is changed by some small angle 6 after
it crosses the wafers of the 1-st barrel. The value of this angle is
determined by a normally distributed random number with some
gg [3]. The analysis of the vertex reconstruction precision is done
with 09 = 1 mrad. The azimuth direction of scattering (in zy
plane) is determined by some angle ¢ uniformly distributed in the
interval (0,27). The procedure is repeated in oder to get suffi-
ciently representative statistics (1000 tracks for our model). Then
a number of uniformly distributed points is added to each detec-
tor in oder to simulate a background measurements. We study
the precision of vertex reconstruction with 30% background level.
The output file of each event contains the local coordinates of
all simulated points for each of 216 wafers. The structure of da-
ta presentation in the output file closely resembles that obtained
from the real experiments.

Y2=Y;,I+(

2 Vertex reconstruction

The methods of track and vertex reconstruction described in {1}
was used to test the proposed model. To accomplish this the
track parameterization must be changed, since it is impossible
to choose a coordinate system, which would allow to parameter-
ize all the possible tracks with the help of two projection slopes
without loosing some tracks being parallel to some of the axes.
The new parameterization is chosen in the following way. Point
Pi(Xig,Yig, Zig) belonging to the track is defined as follows

Po=d+M\b | (1)
where P, is the i-th point on the track, b is the vector, ‘deter-
mining track direction in space, @ is the vector defining the mini-
mal distance between the beam axis and the track in a plane or-
thogonal to the beam axis ( by definition, one has (b-&)|y,z, = 0),
and A is a parameter that determines the position of any point
along the track (see Fig.3). The above parameterization allows a
quick, non-iterative, determination of the track parameters.
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Figure 3: Track paramei;erization o

The track reconstruction is done in the way described in the
previous note [1). For every point of the 3-rd barrel (P;) a line
is drawn passing through P:; and P, where P; is such a point-
that the line drawn through P; and P, didn’t pass farther then
the determined distance (Verterw) from the beam axis in Y;Z,



plane and its projection in X,Z, plane intersects X, axis with-

in the interval (-Vertezy, +Vertezxy) (where Verterr=3cm and
Vertezw=1mm are constants defining the region of possible ver-
tex location). For each found line the ladder and wafer numbers
and local coordinates of the point, where this line crossed the 2-
nd barrel, are defined in the above mentioned way. If there is a

point P, on the defined wafer in the vicinity of the found point,
_then' these three points (P, P, P3) are assumed to belong to the

same track. Then the track parameters are determmed with the
help of the least square method.

.- While optimizing the track using 3 defined points the main
problem is to choose the functional, which is quadratic in respect
all track parameters. That means, it:is possible to find them at
once, W1thout iterations. ' For this purpose a preliminary vector

bo . Pg, where P, and P, are radius-vectors of points P, and:
P, respectively, is formed in the Y;Z; plane (transverse to the

beam axis).
- 'We calculate for each pomt ‘P parameter \; as:
.= (B bolryz, (2)
) (bo : bo)Y_,,Z
then the following functional is to be minimized:
3 4 o2
L=} (a+\5-PB) 3)

i=1

We choose this functional for our minimization because its min-
imizing would lead to a system of the simple linear equations of
the track parameters, which allows one to determine these param-
eters by a simple one step procedure without any time consuming
iterations.

Given an estimate b,, one finds a corresponding estimate for @
with:

- Aibo. (4)

Better estimates are sought by rewriting the functional L as a
function of adjusted vectors @ and b defined as follows:

Derivatives of L with respect to a and 8 must be zero.

@—2§(aao+/\(b + Bd,) — ﬁ) =0 (7
oL 3 o
5 21_21(aao+)\(b + Bad,) — ) G, = 0. (8)

That yields the solution :

o 1 X - N T P-d,
g aZBT XM -\ -ZA 3 T NF-a,

Having minimized L in the Y;Z, plane, one then consider the
x-projection component of the L functional to be so far neglected.

Ly = ¥ (az + Mibz — i - P)? (10)

This function can be minimized by zeroing derivatives with
respect to a, and b;. One gets

az \ _ 1 2/\? -2/\1)( ZP;_.;_’) (11)
b: B -—(Tx)H)\-ZN 3 TAF; -

The solution (&, b) can then be expressed as

@, = Qd,+azi (12)
b = b,+fd,+ bt (13)
7



In general, @, is not perpendicular to b. So for our convenience,
we ‘redefine @ to remove any component along b.

Q"l

- Oy
" b-b

After all the possible tracks are found we can start with the
preliminary vertex fit. For this purpose the previously described
region of the possible vertex locations is breaking into a set of
cylinders with R = Vertery with the step = 2mm and the
common symmetry axis coinciding with a beam axis. Then a
particular cylinder that is crossed by the biggest number of tracks
must be found. After that, for track, that crosses the found
cylinder, the vertex position is determined precisely.

One considers the optimal estimate of the vertex position as
the position which minimizes the sum of the distance of a point
nearest to all tracks simultaneously.

Given the (unknown) vertex position V, and a track, j, whose
direction is given by bJ, the point of the closest approach to the
vertex, P, can be obtained by solving the followmg equastion:

= Gp — (14)

(P°-V)-b=0. (15)
Using the same track model (1) one finds

@+ Xb; — V) - b; = 0. | (16)
Clearly, this yields

oo V—3) b
’ o

The optimal vertex “position is obtained by minimizing of the
functional K defined as the sum of the distance squares of the

closest approaches to all tracks.

(17)

Nl - —- 2 . .
K=Y w(@+X5-7V). (18)
j=1

We use here the special robust approach (see, for example [4])
in oder to reduce a contaminating effect of ghost tracks and oth-
er tracks properly reconstructed but not pointing to the primary

\ vertex. At this approach a conventioanl least square functional
is replaced by the sum of weighted least squares with optimal-
ly chosen weight functio, which values also depend on the track
parameters and must be reculculated on each iteration. We use
suboptimal weight function [4] which are, in fact, the Tukey’s
be-weights calculated as  foolows:

1 - %) for g < [Bo™ )2,
wj={( € )) r9 (19)

0, otherwise

where “n” is the iteration number, and

L (@-g)Ep
gj = (V—aj)~(V~—aj)-—(( = '7-). J), (20)
(; - b5)
. i Ny n—1
o = Sheg ,‘ -
ENt n-1
j=1%j

'N; is the number of tracks in the event. The notation X"!
refers to quantities calculated on the previous iteration.

The vertex position, 17 is determined by minimizing the func-
tional K relative to the vertex position. Substituting A in (18) .
by (17) we obtaine the normal equatlon system: .

oK M &) 5~ S\ (58
i ——:zzle(aj+(‘—b;’)—-ib,—V) (‘;2 —1)=0, (22)



which yields the solution

Va I,
V, |=M1] 1,1, (23)
Vz I

where the matrix “M” is defined as

-7 b ) (B

LB 2 L b2

-k )(b b-k)(b- 1-(b-k){b-
Y —w % () Z__w(_g!z_ll Zw'—(‘p)'(—‘l)

Tw(@ ) - @ &)
I=| sw(@-j)- @ Hsd (25)
Sw((@- k) — (@-b&H)

Here the sums are taken over all “N;” tracks reconstructed in
an event.

3 Simulation results

In this section we present the results for track fitting routine, com-

pare the results for the vertex reconstruction obtained be means
of simple non-iterative minimization of non-weighted functional K
(wj = 1) and the robust approach. The accuracy of proposed
vertex finder is studied.

The underlying sample consists of 1000 Monte Carlo events
simulated for the above mentioned values of ¢ and oy.

- Fig.4 shows histograms of the track y? distributions for re-
constructed tracks. It is to be noted that, the obtained x? dis-
tribution is quite close to the theoretical expectation for a x>
distribution with 1 degree of freedom (theoretical distribution is
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shown with dashed line). Besides, the proposed algorithms allows
us recognize about 98% of simulated tracks.
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Figure 4: Tra.ck Chi-squares

Fig.5 show the vertex X, y and z coordinate distribution for
the cases of the simple non-weighted vertex fit (plots a, b and c,
respectively) and of the robust method (d, e and f). One can see
from the resulting histograms the advantages of using the robust
weight functions: it allows significant increase of vertex position
determination accuracy. All peaks have Gaussian form, which is
illustrated by the fitted Gaussians, and have practically unbiased
mean values. ‘

The different resolutions obtained by fitting each of the distri-
butions individually for both cases are shown in Table 1. The
robust approach gives a significantly better resolution for each co-
ordinate.

Table 1: Precision of the vertex reconstruction

Method Oz Oy o,
Unweighted fit | 23.43 | 10.35 | 10.91
Robust fit 7.15 | 4.92 | 5.36

um
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Figure 5: Vertex coordinate definition errors a,b,c - for unweighted fit; d.e,f -
for robust fit ‘

To determine the precision of the vertex reconstruction the
set of thousand events is treated for each value of o and oy
parameters. Fig.6, a demonstrates the distribution of the ver-
tex reconstruction errors for o = 20um and sigmapy; = lmrad.
Fig.3 b shows the dependence of vertex reconstruction precision
Ouerter = /02 +cry2 + 02 on values of o and os. The results ob-
tained show the good precision of the method proposed, even when
hit dispersion is significant. That allows us to use this method
for wafer position reconstruction (alignment).
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4 Computational matters

For implementing of the worked out algorithms and their inclu-
sion in the STAR software C++ programming language with all
benefits of object oriented approach is used. The problem itself
demands the application of abstract data types, that are connect-
ed on the one hand to the complex geometrical configuration of
the setup and on the other hand to the physics nature of the
problem. .
Several types of abstract classes were elaborated: wafer, lad-
der, barrel, event, work etc. The first three classes are closely
connected to the setup geometry and allows us, for instance, to
make quite complex point coordinate recalculations (e. g. for dif-
ferent recalculations switches between 216 local, 36 intermediate
and one global coordinate systems are used). All details are hid-
den from the user by the help of the C++ encapsulation feature.
Thus, each new task connected to similar geometry structure of
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the given setup can be salved with the help of these classes (with
minimal alterations) or some new classes can be derived.

it is quite natural to create for our task such the abstract
data types as point, track, event that not only considerably sim-
plify access to data, but also make the program more logical and
readable. Besides, the use of the proposed classes is for sure to
enhance a further development of this software for different pro-
_grammers.

The need to work simultaneously with the whole data ensem-
ble as well as with each event separately (i. e. preserving the
possibility of event identification in the ensemble) leads to create
an operating class work that is introduced in order to simplify
considerably the monitoring of large data amounts.

The program code organized in such the way simplifies the de-
bugging process, increases program stability and also makes easier
to perform its proper modification in cases of inevitable future
changes of the setup geometry. The latter issue is especially im-
portant for working out software for any research-and-development
experiment, since in the process of its designing and developing its
geometry configuration has usually to be changed several times.

5 Conclusion

We ‘propose the fast algorithms for the tracks and vertex recon-
struction and study the their precisions and the possibility of us-
ing these algorithms for processing of experimental data. For this
purpose the computational object model of vertex detector with
the geometry maximally close to that of the real SVT is cre-
ated. For track and vertex recomstruction for minimization the
functionals were chosen in such way, that it led to the simple
linear equations on the track and vertex parameters and allowed
to determine these parameters by a simple one step procedure
without any time consuming iterations. The results obtained show
the good precision of the method proposed, that allows us to use
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this method for wafer position reconstruction (alignment) for pro-
cessing of real experimental data. And besides, in our program
packet everything that is connected with the detector is placed in
a single block, this simplified the program structure, increased its
reliability, decreased the possibility of errors. One and the same
code (describing classes) can be easily used without any changes
by different programs (different users).
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Bapannnkosa O.10., Ocockos I' A., ITaneGpatues 10.A. E10-98-278
Hccnemosanne GBICTPBIX QITOPHTMOB [JIs1 BOCCTAHOB/IEHHS TPEKOB

H OMpefReNeHns NMONOXEHNHs BEpPIUHH C UCMOIB30BAHHEM HOBOM

BeIMMCNTENBHONH Mozenu ¢ nonnoit STAR-SVT reometpueit

[Tpemnoxensl GLICTPHIE ATTOPHUTMBI [V BOCCTAHOBIIEHHS TPEKOB M BEPILHH
cobutnit st perektopa SVT B akcnepumente STAR. HccnemoBanbl TOYHOCTB
fipeUiaraeMbIX arOPMTMOB M BO3MOXHOCTH HX HCMONBL3OBaHHMs s 06paGoTKH
peabHBIX KCIIEPUMEHTATBHBIX QAHHBIX, U Yero Gbuta paspaboTana o6beKTHas
Molenp BEpIULHHHOIO JETeKTOpa C TreoMeTpHel, MaKCHManbHO NpHOIHXEeHHOH
K peansHoi STAR-SVT ycranoske. B cosnannbix Ha C ++ NporpaMMHBIX KOAX Bce
OOBEKTHI, CBA3aHHBIE C IEOMETPHEH YCTaHOBKH, BBIIEJNICHB! B OTAENbHBIA GJIOK, 4TO
CYLIECTBEHHO YTPOLIAET CTPYKTYPY NPOTPaMMBbl, M YBENHYHBAET HaNeXHOCTb €e
pabotel. Kpome TOro, KOj, OMUCHIBAIOIIWIA KJIACCHl, MOXeT ObTh UCNONb3OBaH
nonb3oBarensMu 6e3 BCIKHX U3MEHEHHH JUIS Pa3NHYHBIX NPOTPaMM.

PaGora Buinonuena B JlaGoparopuu sricokux suepruit OUAU.

Coobutenne O6beAHHEHHOrO HHCTHTYTA SAepHbIX HconenoBanuil. dyGHa, 1998

Barannikova O.Yu., Ososkov G.A., Panebratsev Yu.A. E10-98-278
Investigation of Fast Algorithms for the Track Reconstruction -

and Vertex Finding Using New Computation Model

with Real STAR-SVT Geometry

We propose the fast algorithms for the tracks and vertex reconstruction
for the STAR-SVT setup and investigate their precision and the possibility of using
these . algorithms for processing real experimental data. For this purpose
the computational object model of the vertex detector with the geometry maximally
close to that of the real STAR-SVT is created. In our C ++ program all objects
related to the detector are placed in a single block. That simplified the program
structure, increased its reliability, minimized the possibility of errors. Besides,
the same code (describing classes) can be easily used without any changes
by different programs or users.
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