
El0-9757

D.C.Marinescu

EPL/1
(EXPERIMENTAL PHYSICS LANGUAGE ONE) -

A PROPOSAL FOR A HIGH LEVEL

MINICOMPUTER LANGUAGE
FOR EXPERIMENTAL PHYSICS APPLICATIONS

197&

JINR PUBLICATIONS

ations of the Joint Institute for
are considered to be original publica

accordance with Article 4 of the JINR
preprints and communications consists

will be published in future in one of
collections.

and deposited publications of
ing (four last figures of the index)

index - a letter, denotes the language.

j_

category
_ _. • .,e JINR

>f the

mu
me,
r

E 10-9757

•

D .C.Marinescu

EPL/1
(EXPERIMENTAL PHYSICS LANGUAGE ONE) -

A PROPOSAL FOR A HIGH LEVEL

MINICOMPUTER LANGUAGE
FOR EXPERIMENTAL PHYSICS APPLICATIONS

,

MapuuecKy ll.K. EIO · 9757
EPL/1 (H3biK aKcnepuMeHTam.aoA cpa3HJtH) - npe.ttnoJKeHae

0 Sl3b1Ke BbiCO!tOrO ypOBHB .QlUI MSnbiX Bbl'IHCnHTelibHblX

MSWHH, npHMeHHeMbiX B 3KCnepHMeHT8libHOA cpH3HKe

B pa6oTe aaeTCH xapaKTepacTHKa Sl3b1KOB nporpaMMBpoaaHHH, paapa-

6aTbiBaeMbiX .QnH ITOCTpOeHHH CHCTeM peam.HOrO apeMeHH H8 MHHH-MSWHHBX,

KOTOpble npHMeHHJOTCH .QnH peweHHH 3B.QB'I 3KCnepaMeKT8llbHOA tPH3HKH,

npeanaraeTCH KOBbiA B8pH8KT npo6neMHo-OpHeHTHpOBBHHOro Sl3b1K8 EPL/1 .
0606WBIOWHA OCKOBHble B03MOJKHOCTH H3BeCTHblX H3b!KOB YK838KHOrO K83Hf'

'leKHH,

Pa6oTa Bbmonsesa B na6opaTOPHH Bbi'II!CnHTem.aoA TeXHHKH

H BBTOM8TH381IJIII OH.RH.

Coo6meHMe 06beAMHeHHOrO MHCTMTyTa XAepH~X MCC~eAOBaHM~
,ay6Ha 1976

Marinescu D.q. EIO · 9757
EPL/1 (Experimental Physics Language One)-

a Proposal for a High Level Minicomputer
Language for Experimental Physics Applications

The goal of this paper is to present a high level
real time language developed for experimental physics
applications.

In the first part of the paper the features of the
language are examined; BNF description and the problems
related to the implementation of the language are the
subject of the second part. Finally a compiler for the
language, written in CDL (Compiler Definition Language)
will be described in a ~hird part.

The investigation has been performed at.the
L~boratory of Com~utiong Techniques and Automation,JINR.
U»mmunication of the Joint Institute for Nnelear Research

Dubna 1976

"

PART 1 EPL/1 features in the context of contemporary

real time languages

CON'rENTS

1. The state of art in the area of high level real time

languages for minicomputers

1.1. Minicomputers in today's computing world.

1. 2. High level real time languages for minis.

2. EPL/1 - Language description

2.1. General considerations

2.2. Language definition

2.2.1. General specifications

2.2.2. System obJects

2.2.3. Files

2.2.4. User defined data structures and operators

Acknowledgements

Bibliography ,

1. The state of art in the area of high level real-time

languages for minicomputers.

1.1. Minicomputers in todav 1s computing world

The minicomputer of today is a rather powerful computing

machine with 16-64 K bytes of internal memory, an elaborated

interrupt; system and a large variety of I/O devices including

mialdisKs,disl!:s,displays,magnetic tapes,medium speed card readers

and line printers,etc.,which can be connected to it.

Minicomputers rather low basic cost (in the range of 50-100

Ki) and their suitability for real time applications are responsi

ble for the high number of such installations in a wide ranging

variety of applications like :

- discrete process control,

- continuous process control,

- conversational and interractive programming,

- information retrival,

- message processing,

- graphics,

- data logging,

- reservation systems.

Only in J:o'.R.G. there are over 6000 such installations

and their number increases every year by 25%.

Perhaps the highest number of such installations is working

in the area of industrial applications for process control and

management but still a significant number of them is in communi

cation systems,reservation systems or in scientific applications.

The minicomputers are either dedicated to a process and

working independently of each other or interconnected in a network;

4

sometimes such a network might contain one or several mediwn or

large scale computers.

Since the minicomputer hardware price is not expected to drop

significantly in the very next future (the minicomputers do not

benefit extensively of the use of LSI) ,an effort is made today

to reduce the cost of che software developement for them.

With the average productivity of 500-2000 assembler instructions

per rnan,per year the idea of specific user designed progr8Jllll1ing

systems for real time applications is no longer appealing.

The relative efficiency (in terms of CPU speed and core oc

cupancy) of low level language written programs is now weighted

against theinconveniences of such systems (the inflexibility

during design ,the difftculties to modify, to extend and to uEe,

the lack of communications between users with the same type of

problems,etc.).

As a result a number of high level languages have been deve

loped in the recent years for real time applications.

1.2. High level real time languages for minicomputers

Today any type of minicomputer has at least a compiler for

one of the conventional high level languages, PL/I,FORTRAN,ALUOL,

COBOL • A recent research of K.Thompson /1/ showed that at least

20 other real time high level languages have been developed for

industrial applications only. Among them we note CORAL 66, PEARL,

RTL2, P!tOCOL, BCPL, CSL, MA.!t:L, MACl:W'r:i.k'~, J:Hll.olA(;, PRO::l~C, TPL,

INDACS, SAL, SEQUEL, SNIBBOL.

For scientific applications tlA::ll(; provides enough computational

facilities and it is used qui~e often. But other languages have

been designed for specific applications; as an example at CERN,

NODAL has been developed for accelerator control.

5

Though it is rather difficult to think about an internationally

standardized real time language,an effort is made in this direction.

A Long Term Procedural Language (LTPL) will be defined by the

1International Purdue Workshop this year.

We shall now list several features which are commonly considered

to be desirable in the areas of:

data storage manipulation,

- function construction,

- language implementation,

but we are fully aware that several compromises are required when

deciding to include such features in a newly constructed programming

language for real time applications.

As far as data storage manipulation is concerned,the most

important features are:

- ability to define and manipulate data structures

- string handling

- ability to manipulate data in stacks,queues,arrays

- automatic and controlled assignement of storage during run

time.

As far as functions are concerned,the following features are

highly appreciated:

- exception handling,

- I/O handling,

- interrupt handling,

- recursion,

- block structure,

- subroutine parameter specification,

- multiple entry and exit subroutine,

6

- function and expression evaluation,

- expansabili ty •

From the point of view of implementation the following features

are desirable:

- a good protection mechanism,

-standard compile time diagnostics,listings and cross refference,

run time diagnostics,

- relocatabili ty,

- page swapping ,

-dynamic linkage between routines,

-facilities to access hardware error states,

-standard linkage to routines,

reentrant code,

- data allocation at run time.

As pointed out earlier it is not conceivable to think of

building all these facilities in one language though a user

might like to use them all.

7

2. l>PL/I (Experimental Physics Language One)

Language description.

2.1. Ueneral considerations

Since a large number of minicomputer installations are now

working in the scientific applications and many of them in the

field of experimental physics we thin.k: that a high level language

for these types of problems would be welcomed if it is carefully

designed, neatly implemented and easy to be learned and used.

As far as the last requirement is concerned,we must keep in

wind the fact that presently most of scientifical programming is

in FORTRAN although other remarkably good languages are available.

This means that a FORTRAN-like language would be the first

choice of most real time users in experimental physics if they

think that the time for a high level language for their

type of problems has come. And this last problem is a matter of

dispute; most people still think that they have nothing but little

to comm·Ulicate with each other since the type of data processing,

which is subject or their interest,is not only determined by the

type of their experiment and by the minicomputers available for

them but by many other factors like the specific tecru1iques of

the experiment, the availability of higher level computational

facilities (large scale computers with specialised programs which

fit the experimental data with one or other theoretical model),

etc., and thua,the advantages of a high level language are

considerably diminished.

We ~trongly oppose to such an approach With the argumenta

already presented in the previous section.

But we think that there is a point when postponing the.decision

to design such a language. And the point is that any mistakes

8

made in the process of designing of such a language will have

implications later on when the language has a widespread use.

Again a good example in this direction is FORTRAN; an estimation

made by Iann M.Barron /2/ shows that a more careful! design of

FOHTRAH which could have added to ita initial developement cost

10M$ in 1960,would save 1000M~ each year (today JO~ of programming

is in FORTruui and the annual expenditure for computers is 15,000M~).

But this only shows. that if a step forward should be made

in the direction of the development of such a language , then

the step must be carefully made,large groups of people must be

consulted and their wishes and proposals must come under close

scrutinity.

The intention of this paper is to provide a starting point

for future discussions on this topic. We are fully aware that

the solutions we propose here can be the subject of criticism.

We think that there are several crucial problema to which

the language must provide reaonable solutions:

-1. The problem of communication with different experimental

on-line devices. The information which forms the object of this

communication must be easily available for computation but at

the same time ,like in low level languages the user should have

the facility to teat the status of the external device , to delay

any computation untill all information is transferred and to

provide special procedures for other types of interruptions

generated by the device.

-<:. The problem of adequate data structures. Since the structure

of the information largely depends upon the type of the experiment

the language can either provide a large number of data structures

or can allow dynamically constructed data structures and operators.

9

-3. ~he problem of communication with other program modules

written in other languages. In real time systems the problem of

driving special external devices or of handling interrupt condi

tions is moat suitably solved in machine language written pro

gram modules. Therefore the facility to call machine language

or assembler modules is highly recommended. At the same time since

on almost every minicomputer there is a compiler for FORTRAN or

another high level language frequently used for ecientifical data

processing, the facility to call such program modules is desired.

-4. 'l.'he problem of efficient handling of rather large volumes

of data which must be kept on secondary memory for later processing.

-5. The problem of efficient debugging and of tools to assist

the user when constructing hie programs.

We shall briefly examine now a set of solutions for these

problema.

In any experimental environement the computer communicates

with the external apparatus via a standard mechanism. A number

of channels is hardware built into the machine and all external

devices are attached to such channels. Regardless of the complexity

of the device its status can be examined by the channel and the

information can be transferred in one sense or another (read or

write operations) under channel control. If the transfer is

successfUl the information is available in a memory buffer after

a read operation or is transferred from this buffer to the device

in a write operation. We shall call such nonstandard I/O devices

'system obJects'; a name will be used to identify both the

information read or to be written from or to such a device and

the device itself. In terms of the high level language several

standard operations can be requested in connection with such an

10

ObJect,e.g.,read,write,test,wait. When a atatemen~ of this type

(for example READS(name)) is encountered, the entry point in

the device access module, supplied when the system object has

been defined, is provided. We think that such a tool is powerful

enough to enable the user to handle his experimental device in a

conventional manner without being exposed to the difficulties of

machine language writ ten programs which are now the responaabili ty

of the system programmer installing the system. Still the user

must be aware of the structure of the information which forma the

ObJeCt of the communication with the external d~vice.

Also a certain number of condition switches associated with

different levels and sublevels of interruptions is to be defined

when the system is installed. The language must have the facility

of the 'ON (condition) GO TO (statement label)' statement to teat

condition switches and to provide linkage to the user own interrupt

processing routines.

Another delicate problem is the one of data structures;

normally depending upon the type of the experiment a data structure

type or another one is desirable. A solution is to allow the user

to define hie own data structures in terms of the few basic data

structures of the language. Often an experimental event consists

of a set of nonhomogenous data describing the conditions of the

experiment, the information concerning the state of different

hardware elements and the information pertinent to the investigation

itself. It should be possible to refer to the whole data structure

or to the elements of ita substructure easily.

Also special operators useful for the manipulation of such

structures should be dynamically constructed when needed.

A CALL, SAVE, RETUilli procedure based upon a stw1dard linkage

11

convention {a register containing the address of the parameter

list,save areas in the calling program module,etc) should be

used by all compilers so that modules produced by them can be

linked together to form an executable code.

Of course when designing the language a compromise must be

Jnade between che degree of flexibility we built into the language

and the difficulties we are willing to undergo when the problem

of implementation arises. And this was the reason for many deci

sions limiting the number of sophisticated options in the process

of language definition.

12

..

2.2. Language definition

2.2.1. General specifications

We do not intend to give here full specifications for the

la.t15uage but to present an overview of its facilities as compared

with the ones in BASIC, the language which has been used as a

reference.

An EPL/1 program has a modular structure; it consists of a

main program and the set of subprogram modules called by the main

program. Definition blocks for system objects , data structures,

operators,files,subprograms must be entered in the user computational

space (either defined by the user himself or made available from

the system pool or from another user computational space) prior

to their use.

A program module (block) consists of a set of statements;

each statement must be completed on a single line and it consists

of up to 72 characters. A statement is identified by a line number

and containes one of the keywords of th~ language.

Numerical (real or integer) and string constants are allowed.

Internally , string constants of 1-127 characters are repre

sented in character format prefixed with the word specifying the

length.

There are three types of simple variables:integer,real and

string variables. For simple numerical variables (integer or real)

the nan1e consists of one to six alphanumeric characters,the first

of which must be a letter. The convention that nan1es begining

with letters I-N are reserved for integer variables ,is valid.

An explicit declaration of type can alter the implications

of ~his convention •

13

A variable of the type string has a name consisting of one

to six alphanumeric characters and a ~ subfix; if not otherwise

specified a standard leneth of 8 is asswned for a string variable.

Hames for user defined data structures,files,system objects,

user defined c;>erators type follow the general convention for

iden~ifiers (1-6 alphanumeric characters,the first a letter) but

have a dedicated prefix' D. for data structures,S. for system

ObJec~s, 1''. for files, o. for operators , P. for subprograms.

Actual names for the same type of objects (data structures,files,

operators,system objects,subprograms) are standard identifiers.

'l'he correspondence between an obJect type and its actual name

is established via a D~~~ statement prior to their use. Also

declaration of type for simple variables,declarations of type and

maximum size for arrays must be present in any program module

using them,with the understanding that such variables belong to

the program module wnere they first appeared (where allocation

is performed); it' such a variable appears in the argument list

of the subprogram the U~l~U statement only informs the compiler

how to treat it. ,no allocation is performed.

In order to provide automatic data swapping VIRTUAL mode

can be specii'ied when working with arrays of data structures.

A virtual address space is defined when the system is installed;

it consists of a set of pages. The page size is selected at that

moment depending upon the size of available internal memory,the

disk organisation and other arguments.

The size of an element of a data structure of type array,

cannot exceed the page size. When arrays of a certain type of

data structure are used in a virtual mode only one element of

this array is present at one time in core.

14

I

J

It should be observed that only linear arrays of' reals,

integers or strings are available. Multidimensional arrays can

be constructed as user defined data structures.

Arithmetic and relational expressions are allowed.

The standard mathematical functions are on line (SIN,COS,

TAN,ATN,EXP,LGT,LOG,ABS,SQR,INT,SGN);a number of syst~n frn1ctions

(TOD$,DATE$,TIME$,TIME etc.) as well as BASIC like string functions

(LEN,STRi,SUBSTR,VAL) are built in.

We shall now present a nonexhaustive list of the statements

available in the language.

Any definition block must begin with a DE.r'lil.E s~atemenc ami

the last statement of it must be an END statement. ::iubprogram

definition blocks must contain at leatJ t one HETURll s ta temen t. 'l'he

general forms of these statements are I

DEFINE t • name

HETURli

EliD

here name represents the name of a certain type of

obJect created by the definition block

is a prefix.Each type of object which

can be created by a defini~ion block has

a dedicated prefix'

D for user defined data structures

0 for user defined operators

}<' for user defined files

s for user defined system objects

p for subprograms

The DECLARE statement is used in the main program or in any

subprogram to establish the correspondence between the actual

15

name of an object (data structure,operator,file,system object,

subprogram) created by the user and the name of the prototype

of that obJect as given in the define block e.g. 1

DECLARE name 1 , name 2 , ••• name k It. name/

here nwnei are actual names of defined obJects;for

data structures,namei can be of the form

1 data structure nwne'(d) with d the dimension

of an array of such data structures.

This statement is also used to declare the dimension of arrays or

the length of nonstandard strings.

USING statement is used in any definition block to provide

information about the type of different variables;its format is:

USD~G name 1,name 2 , ••••••• narnek/t.name/

it should be noted that in a DECLARE or in a USING statement the

prefix t. may not be present;in this case 'name' must be either

REAL or INTEGER or STRING.

A comment statement must start with the REM keyword,e.g.

llliM c

here c is the body of the comrnent,any string formed

with the characters available in the language.

Standard assignement statement of the form

vae exists.

There are three types of branch statements:

IF r TllliN n

GO TO n

ON e GO 'l'O n

here: r is any relational (logical) expression

n is a statement number

here n is a statement number

herel e is a logical expression used in

conjuncture with a condition switch

or &l interrupt level previously defined

16

Loops are implemented via 1

FOR sv~e 1 TO e 2 STEP e
3

i'IEXT av

herel sv is a simple integer variable

e 1 ,e2 ,e
3

are integer constants or integer variables

previously defined.

The subprogram call is performed via the statement!

CALL name(par1 , ••• par
11

)

here: name is the actual name of a subprograrn;it must

have been previously encountered in a DECLARE

subprogram statement.

par1 ••• parn are the actual parameters of the call

In addition to standard I/O operation (READ,WRITE) defined for

system files ,there are specialised read,write,wait and teat

operations defined for user files or for system objects (READF,

ru:ADS and so on)

'l'he definition blocks for system objects,files and data struc

tures and operators have a specific syntax •

17

2.2.2. System obJects

As pointed out earlier'system objects' provide a general

means to control the nardware associated with the experiment,

They are defined in special program blocks called 'define

system object block' which have a specific syntax.

The actual name of the system obJect acts both like a vari

able of the type and size specified in the definition block and

as an identif"ier for a hardware unit which can be subject to a

~D§., !JUTE§., ,!ES~or W!IT§. operation. (Abbreviations can be used

as RS, WS, TS, AS) • Hames for the routines performing each of

the operations, the unit can be subject of ,must be supplied at

definition time.

As an example let us construct the definition block for a

system object of type S,AiiALl:t. ,with the physical address

IODEV=213,linked to interrupt level 10 and transfering as data

an array or l.N'.CEGER elements of size 512; RAN,TAN,WAN are the

names of machine written routines for read,test and respectively

"wait'' operations.

10 DEFINE S,ANALlZ

20 TYl'E=ll'H'EI.ZEH.

30 SIZE=~12

40 HEADJiJOD=RAN

50 TESTMODaTAN

bO WAI'flilODaWAN

70 IODEV=213

80 LEV1SL•10

~0 END

A program declaring the actual name BETA for a system object of

type S.ANALIZ will be presented in a following paragraph.

18

2.2,3, Files

The files are collections of data the language can Inanipulate;

a file consists of a set of records with the same structure,A

record can contain only data or a key and data.

The structure of a file must be described in a special

'define file block' according to a specific syntax.

Also information about the physical location of the file

must be supplied (device address and extent when wor~ing with a

direct access device).

In order to access a certain record in the file the user can

either specify the value of the KEY (if format data+key is used)

or a value for the associated variable. The associated variable

is a pointer within the file to the record currently acceseed;it

must be declared when declaring the use of the file and throughout

of the program block it becomes a reserved identifier.

Only a pure sequential access is allowed for files residing

on devices other than direct access ones. Even for this type of

files a pure sequential access can be used (no key or associated

variable declared).

There is a number of dedicated files (l!fPUT,OUTPU'l') normally

attached to the terminal but the user is able to use own files

instead of system ones when needed,

19

2.2,4, User defined data structures ana operators

The argwnents pleading for user defined data structures and

operators are strong enough to JUStify the effort to built them

into the lar~uage; they offer a high degree of flexibility and

allow experienced users to make an efficient use of memory space

when dealing with large collections of data,

Such structures can be defined in special 'define data' or

'define operator' blocks ; this must be done prior to their use,

Then they must be declared in any program block using them.

As a first example we will define a new data type COMPL

as a pair of real numbers and an operator PLUS which performs

addition of such data types.

10 J.lEl!'INE D,COMPL

20 USING .A.,B/HEAL/

30 D,COMPL=(RE,IM)

40 llli=A

:,o IM=B

60 .C:NJ.l

10 J.lEFINE O,PLUS

20 USING A,B,C/D,COMPL/

30 C=A(O • .PLUS)B

40 I~(C)=llli(A)+RE(B)

50 ~(C)=IM(A)+IM(D)

60 END

The program called JUDY uses these structures; it should

be observed that when an overflow condition occures a specially

written routine CHECK is used,

20

10

20

30

40

50

60

70

80

90

100

110

120

J'AAIN JUD:i

DECLARE A(100),B(100),C(100)/D.COM£1/

D~~ P/O,PLUS/,hl/O,MULPLY/

D~LA~ CHECK/P,SUBPR/

READ A,B

ON (0~'1) GO TO 150

E=O

FOR 1=1 STEP 1 UNTIL 100

C(l)•(A(I)(P)(B(I))(M)(.A.(I))

F=SQR(RE(C(I))**2+lM(C(I))••2)

E=~.l!'

liEX'l' I

130 WRITE E

140 STO.P

150 CALL CHECK

160 EllD

In this program the operator of type O,MULfLY is uaed•for

multiplication of data of type u,CUM~L ,

tionhomogenous data structures are of a special interest,

As an example we shall define a data structure of type D.EVENT

which can contain all the information about an angular distribu

tion type experiment. The structure of such a data is:

- UA~E - a string of 18 characters representing the date and

the time when the experiment was performed

- TIME - an integer representing the duration of the irradiation

- CUND - a string of characters (length 50) representing the

experimental conditions

- .A.NG an integer specifying the angular position

- P~E(IJ,1=1,512- an integer array containing the number of

pulses on the 512 channels of an analyzer.

21

The corresponding 'define data block' is presented below.

10 .lJ.l:O]'lrlE D.EVENT

20 USl.tiU '"/~'.rJ:(.J.dlZl18)/ ,Bi/STRlliG(50)/

J0 USING C/INTEGER AHRAY/

40 Ui:i.l.r.U lN'l'V ,AlfGPO::l/Ilf'l'EGER/

50 EVENT=(DATE,TIME,CUNll,ANG,(PULSE(I);Ia1,512))

60 DATE=-"'

70 TDlEaiNTV

80 CONDa~

90 AUG=ANIJ.I:'U~

100 EVENT=(C(I);I .. 1,512)

110 ElfD

A program using such a data structure to repeat 100 times the

experiment for afib?Ular positions between 32 and 132 degrees

and to perform readings from the system object of type S.ANALIZ

follows.

10 MAIN XSEC

20 D.t:CLARE llETA/S.ANALIZ/, VERTFY/P.PR/ ,PR1 ,PR2/P.INTPRG/

J0 DECLA!US OU'!'CO.M(100)/D • .i!iVDT/, VIRTUAL

40 DECLARE SEC/F.MYFILE/

50 ON (INTR10) GO TO 260

60 ON (ERROR) GO TO 270

70 'l'ESTS(BETA)

bO CONI!='

~0 K1=32 ·

100 K2a132

110 FOR I..K 1 STEP 1 UNTIL K2

120 READS(BETA)

22

1)0 DATE(OUTCOM(I))=TODi

140 TIME(OUTCOM(I))a180

150 COND(OUTCOM(I)).CON¥

160 ANG(OUTCOM(I)),.I

170 UITS(BETA)

180 FOR Ja1 STEP 1 UNTIL 512

190 OUTCOM(I,J)=BETA(J)

200 NEXT J

210 WRITEF(SEC) OUTCOM(I)

220 WAITF(SEC)

2)0 NEXT I

240 CALL VERIFY(OUTCOM)

250 S1'0P

260 CALL PR1

270 CALL PR2

280 END

It should be observed that two copies of the interrupt processing

program of type P.INTPRG ,PR1 and PR2 have been supplied for the

processing of two types of interrupts, the ones associated with

the condition switches named INTR10 and ERROR. The two interrupts

are of a different level and consequently the interrupt processing

routine for one can be interrupted by the other; thus the problem

of reentrancy of interrupt processing routines is solved at user

level.

In this program the name OUTCOM appears without subscripts,with

one subscript and with two subscripts;in the first case it refers

to an array of data structure,in the second case it refers to an

element of this array (the structure of such an element is defined

by the D.EVENT definition block) and Ll the third case it refers

23

to an element of the array ~ULSE (the J-th element) for the

I-th outcome of the experiment described by the I-th element of

the array of data structure. Statements 130 to 160 assign values

pertinent to an outcome of the experiment to various elements of'

the data structure; TODi is a system function which returns as a

string of characters the Time of Day Wld the date. The 'wait

system obJect' opperation WAITS(l3ETA) is necessary to make sure

that data transfer is finished before the assignment at line

190 is performed.A similar function has the 'wait file' WAITF(SEC)

operation. The VIR1'UAL mode has been declared for array uurcow

since the subprogram VERIFY needs the whole array to check the

correctness of experliuental daoa and their consistency.

Several things must be pointed out in connection with user

uefined data structures:

- ~· As far as the synt~x of a 'define data structure block'

is concerned. the following rules must be observed&

- USINu statements must provide to the compiler all the informa

tion about the type of data·used when defining the structure.

- a model (a prototype) of the data structure must be given

and the names of all structural elements must be supplied.

- computational relations for each element of the struature

are to be included in the definition block.

- ~· Only one array can appear in a data structure element.

While to simple substructure elements we refer specit'yinc

their name as given in the DEFINE block ,to the array elements

we refer with the structure name followed by one or two subscripts

lone if it is a simple data structure and two if an array of

data soructures).

- ~· Arrays of data structures can be used as soon as the data

24

structures have been defined, As an example the program XSEC

uses the array OUTCOhl(100) with 100 elements; each element is

a data structure of the type D.EifEU'l'.

- ~· A data structure defined in a DEFlliE block cannot be

used as a basic element when defining other data structures.

From examples given here the construction of the define

data block for bidimensional arrays is straightforward.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to

Dr. 1/,P.Shirikov and to A.A.Hoshenko for many valuable

suggestions and for the friendly help.

BIBLIOGRAPHY

/1/ K.Thompson- A survey ofreal time language standards for

industrial use, in Minicomputer Forwn

1975 Conference Proceedings,

/2/ Iann M.Barron- The decline.and fall of the computer,

in Minicomputer Forum,

/J/ c.H.A.Koster - CDL a compiler implementation language,

University of Berlin ReportJ1975.

/4/

/5/

•••
•••

- CDC; BASIC language reference manual

- CDC; INTERCOM reference manual

Received by Publishing Department
J May, 1976.

25

