

1. The state of art in the area of high level real-time
languages for minicomputers.

1.1, Minicomputers in togday's ¢omputing world

The minicomputer of today is a rather powerful coumputing
machine with 16-64 K bytes of inlternal memory, an elaborated
interrupt system and a large variety of I/0 devices including
minidisks,disks,displays,magnetic tapes,medium speed card readers
and line printers,etc.,which can be connected to it.

Minicomputers rather low basic cost (in the range of 50-100
K$) and their suitability for real time applications are responsi-
ble for the high number of such installations in a wide ranging
variety of applications like 3

- discrete process control,

- continuous process control,

- coaversational and interractive programming,
~ information retrival,

- mesBsage processing,

- graphics,

-~ data logging,

- reservation systems,

Only in F.R.Ge there are over 6000 such installations
and their number increases every year by 25%.

Perhaps the highest number of such installations is working
in the area of industrial applications for process control and
management but still a significant nwnber of them is in communi-
cation systems,reservation systems or in scientific applications,

The minicomputers are either dedicated to a process and

working independently of each other or interconnected in a network;

sometimes such a network might contain one or several medium or
large scale computers.

Since the minicomputer hardware price is not expectied to drop
pignificantly in the very next future (the minicomputers do not
benefit extensively of the use of LSI) ,an effort is made today

to reduce the cost of the software developement -for them.

With the average productivity of 500-2000 assembler instructions

per man,per year the idea of specific user designed programming
systems for real time applications is no longer appealinge.

The relative efficiency (in terms of CPU speed and core oc-
cupancy) of low level language written programs is now weighted
against theinconveniences of such systews (the inflexibility
during design ,the difficulties to modify, to extend and to ucse,
the lack of communications between users with the same type of
problems,etc.).

As a result a number of high level languages have been deve-

loped in the recent years for real time applications.

1 High leve al time languages for minicomput

Today any type of minicomputer has at least a compiler for
one of the conventional high level languages, PL/I,FORTRAN,ALGOL,
COBOL . A recent research of K.Thompson /1/ showed that at least
20 other real time high level languages have been developed for
industrial applications only. Among them we note CORAL 66, PEARL,
RTL2, PROCOL, BCPL, CSL, MAHY, MACROLYPE, NEL1AC, PROSEC, TPL,
INDACS8, SAL, SEQUEL, SNIBBOL.

For scientific applications BASLIC provides enough computational

facilities and it is used quite often. But other languages have
been designed for specific applications; as an example at CERN,

NODAL has been developed for accelerator control.

Though it is rather difficult to think about an internationally - function and expression evaluation,

standardized real time language,an effort is made in this direction. - expansability .
A Long Term Procedural Language (LTPL) will be defined by the From the point of view of implementation the following features
1International Purdue Workshop this year. are desirables
We shall now list several features which are commonly considered - a good protection mechanism,
to be desirable in the areas of: - standard compile time diagnostics,listings and cross refference,
- data storage manipulation, : - run time diagnostics,
-~ function conatruction, - relocatability,
- language implementation, ~ page swapping,
but we are fully aware that several compromises are required when - djnamic linkage between routines,
deciding to include such features in a newly constructed programming - facilities to access hardware error states,
language for real time applications. - standard linkage to routines,
As far as data storage manipulation is concerned, the most - reentrant code,
important features ares ~ data allocation at run time.
~ ability to define and manipulate data structures As pointed out earlierit is not conceivable tc think of
~ sBtring handling building all these facilities in one language though a user
- ability to manipulate data in stacks,queues,arrays might like to use them all.

~ automatic and controlled assignement of storage during run
time.

4B far as functions are concerned,the following teatures are
highly appreciateds

- exception handling,

< 1/0 handling,

- interrupt handling,

~ recursion,

- block structure,

- subroutine parameter specification,

- multiple entry and exit subroutine, [

2, EPL/I (Experimental Physice Language One)
Language description.

2.1, General considerations

Since a large number of minicomputer installations are now
working in the scientific applications and meny of them in the
field of experimental physics we thinkK that a high level language
for these types of problems would be welcomed if it is carefully
designed, neatly implemented and easy to be learned and used.

As far as the last requirement is concerned, we must keep in
mind the fact that presently most of scientifical programming is
in FORTRAN although other remarkably 80od languages are available.

This means that a FORTRAN-like language would be the first
choice of most real time users in experimental physics if they

think that the time for a high level language for their

type of problems has come. And this last problem is a matter of
dispute; most people still think that they have nothing but little
to comminicate with each other since the type of data processing,
which is subject ot their interest,is not only determined by the
type of their experiment and by the minicomputers available for
them but by many other factors like the specifiec techniques of
the experiment, the availability of higher level computational
facilities (large scale computers with specialised programs which
fit the experimental data with one or other thepretical model),
etc. , and thus,the advantages of a high level language are
considerably diminished.

We :trongly oppose to such an approach with the arguments
already presented in the previous section.

But we think that there is a point when postponing the .decision

to design such a language. And the point is that any mistakes

made in the process of designing of such a language will have
implications later on when the language has a widespread use.
Again a good example in this direction is FORTRAN; an estimation
made by Iann H.Barron /2/ shows that a more carefull design of
FORTRAl which could have added to its initial developement cost
10id$ in 1960,would save 1000W. each year (today 30% of programming

is in FORTRAN and the annual expenditure for computers is 15,0001%) .

But this only shows. that if a step forward should be made
in the direction of the development of such a language , then
the step must be carefully made,large groups of people must be
consulted and their wishes and proposals must come under close
scrutinitye.

The intention of this paper is to provide a starting point
for future discuasions on this topic. We are fully aware that
the solutions we propose here can be the subject of criticism.

We think that there are several crucial problems to which
the language must provide resonable gsolutionss

-1. The problem of communication with different experimental
on-line devices. The information which forms the object of this
communication must be easily available for computation but at
the same time ,like in low level languages the user.should have
the facility to test the status of the external device , to delay
any computation untill all information is transferred and to
provide special procedures for other types of interruptions
generated by the device.
~z. The problem of adequate data structures. Since the structure

of the information largely depends upon the type of the experiment
the language can either provide a large number of data structures

or can allow dynamically constructed data structures and operators.

-3. The problem of communication with other program modules
written in other languages. In real time systems the problem of
driving special external devices or of handling interrupt condi-

tions is most suitably solved in machine language written pro~
gram modules., Therefore the facility to call machine language
or assembler modules is highly recommended. At the same time since
on almost every minicomputer there is a compiler for FORTRAN or
another high level language frequently used for scientifical data
processing, the facility to call such program modules is desired.
~4. The problem of efficient handling of rather large volumes
of data whiah must be kept on secondary memory for later processing.
=5+ The problem of efficient debugging and of tools to assist
the user when constructing his programs.
We shall briefly examine now a set of solutions for these
problems.
In any experimental environement the computer communicates
with the external apparatus via a standard mechanism. A number
of channels is hardware built into the machine and all external
devices are attached to such channels. Regardless of the complexity
of the device its status can be examined by the channel and the
information can be transterred in one sense or another (read or
write operations) under channel control. If the transfer is
successful the information is available in a memory buffer after
8 read operation or is transferred from this buffer to the device
in a write operation. We shall call such nonstandard I/0 devices
'system objects'; a name will be used to identify both the
information read or to be written from or to such a device and
the device itself. In terms of the high level language several

standard operations can be requested in connection with such an

10

object,e.g.,read,write,test,wait, When a statement of this type
(for example READS(neme)) is encountered, the entry point in

the device access module, supplied when the system object has

been defined, is provided. We think that such a tool is powerful
enough to enable the user to handle his experimental device in a
conventional manner without being exposed to the difficulties of
machine language written programs which are now the responsability
of the system programmer installing the system. Still the user
must be aware of the structure of the information which forus the
object of the communication with the external device.

Also a certain number of condition sewitches associated with
different levels and sublevels of interruptions is to be defined
when the system is installed. The language must have the facility
of the 'ON (condition) GO TO (statement label)' statement to test

condition switches and to provide linkage to the user own interrupt
processing routines.

Another delicate problem is the one of data structures;
normally depending upon the type of the experiment a data structure
type or another one is desirable. A solution is to allow the user
to define his own data structures in terms of the few basic data
structures of the language. Often an experimental e;ent consists
of a set of nonhomogenous data describing the conditions of the
experiment, the information concerning the state of different
hardware elements and the information pertinent to the investigation
itself. It should be possible to refer to the whole data structure
or to the elements of its substructure easily.

Also special operators useful for the manipulation of such
structures should be dynamically constructed when needed.

A CALL, SAVE, RETURN procedure based upon a standard linkage

1

convention (a register containing the address of the parameter

list . . 2.2, Languagze definition
ist,save areas in the calling program module,etc) should be

used by all compilers 80 that modules produced by them can be 2.2.1. General specifications
linked together to form an executable code. We do not intend to give here full specifications for the

Of course when designing the language & compromise must be language but to present an overview of its facilities as compared

made between the degree of flexibility we built into the language with the ones in BASIC, the language which has been used os a

and the difficulties we are willing to undergo when the problem reference.

of implementation arises. And this was the reason for many deci- An EPL/1 program has 8 modular structure; it consists of a
sions limiting the number of sophisticated options in the process main program and the set of subprogram modules called by the main
of language definition. program, Definition blocks for system objects , data structures,

operators,files,subprograms must be entered in the user computational
space (either defined by the user hinself or made available from

the system pool or from another user computational space) prior

to their use.

A program module (block) consists of a set of statements;
each statement must be completed on a single line and it consists
of up to 72 characters. A statement is identified by a line number
and containes one of the keywords of the language.

Numerical (réal or integer) and string constants are allowed.

Internally , string constants of 1-127 characters are repre-
sented in character format prefixed with the word specifying the
lengthe

There are three types of simple variablessinteger,real and
string variables. For simple numerical variables (integer or real)
the name consists of one to six alphanumeric characters,the first

of which must be a letter. The convention that names begining
with letters I-N are reserved for integer variables ,is valid.

An explicit declaration of type can alter the implications

of this convention.

12
13

A variable of the type string has a name consisting of one
to six alphanumeric characters and a % subfix; if not otherwise
specified a standard length of 8 is agsumed for a string variable.

Hames for user defined data structures,files,system objects,
user defined coerators type follow the general convention for
identifiers (1-6 alphanumeric characters,the first a letter) but
have a dedicated prefixs D. for data structures,S. for system
obyects, ¥. for files, U. for operators , P. for subprograms.
Actual names for the same type of objects (data structures,files,
operators,system objects,subprograms) are standard identifiers.
The correspondence between an object type and its actual name
is established via a DECLARE statement prior to their use. Also
declaration of type for simple variables,declarations of type and
maximun size for arrays must be present in any program module
using them,with the understanding that such variables belong to
the program module where they first appeared (where allocation
is performed); it such a variable appears in the argument list
of the subprogram the USING statement only informs the compiler
how Lo treat it. ,no allocation is performed.

In order to provide automatic data swapping VIRTUAL mode

can be specified when working with arrays of data structures.
4 virtual address space is defined when the system is installed;
it consists of a set of pages. The page size is selected at that
moment depending upon the size of available internal memory,the
disk organismation and other arguments.

The size of an element of a data structure of type array,

cannot exceed the page size. When arrays of a certain type of
data structure are used in a virtual mode only one element of

this array is present at one time in core.

14

It should be observed that only linear arrays of reals,
integers or strings are available, Multidimensional arrays can
be constructed as user defined data structures.

Arithmetic and relational expressions are allowed.

The standard mathematical functions are on line (SIN,COS,
TAN,ATN,EXP,LGT,LOG,ABS,SQR, INT,SGN) ja number of system functions
(TOD$,DATE$,?IMES,TIME etc.) as well as BASIC like string functions
(LEN,STR$,SUBSTR,VAL) are built in.

We ghall now present a nonexhaustive list of the statements
available in the language.
= Any definition block must begin with a DEFINE stateument and
the last statement of it must be an END statement. Subprogram
definition blocks must contain at least one RETURN statewent.The
general forms of these statements ares
DEFINE t.name
here name represents the namne of a certain type of
ob,ect created by the definition block
t is a prefix.Each type of object which
can be created by a definition block has
a dedicated prefixi
D for user defined data structures
QO for user defined operators
F for user defined files
S for user defined system objects
P for subprograms
RETURN
END
- The DECLARE statement is used in the main program or in any

subprogram to establish the correspondence between the actual

15

name of an object (data structure,operator,file,system object,
subprogram) created by the user and the name of the prototype
of that object as given in the define block e.g. 3
DECLARE nameq,name,, «e.name / t ename/
here name; are actual names of defined ob,ects;for
data structures,namei can be of the form
'data structure name'(d) with d the dimension
of an array of such data structures.
This statement is also used to declare the dimension of arrays or
the leangth of nonstandard strings.
- USING statement is used in any definition block to provide
information about the type of different variables;its format is:
USING name1,namez,.......namek/t.name/
it should be noted that in a DECLARE or in a USING statement the
prefix t. may not be present;in this case 'name' must be either
REAL or INTEGER or STRING.
- A comment statement must start with the REWM keyword,e.g. 3
REM c¢
here ¢ is the body of the comment,any string formed
with the characters available in the language.
- Standard assignement statement of the form
vome exisgts,.
- There are three types of branch statementss
IF r THsN n here: r is any relational (logical) expression
n is a statement number
GO TO n here n ies a statement number
ON e GO TO n heres e is a logical expression used in
conjuncture with a condition switch

or an interrupt level previously defined

16

- Loops are implemented via

FOR svae, TO e, STEP e

2 3
NEXT sv
here: sv is a simple integer variable
e1,e2,e3 are integer constants or integer variables
previously defined.
- The subprogram call is performed via the statementt
CALL name(par,,...par,)
here: name is the actual name of a subprogram;it must
have been previously encountered in a DECLARE
subprogram statement.
pary...par, are the actual parameters of the call
- In addition to standard 1/0 operation (READ,WRITE) defined for
system files ,there are specialised read,write,wait and test
operations defined for user files or for system objects (READF,
READS and so on)

- The definition blocks for system objects,files and data struc-

tures and operators have a specific syntax .

17

2.2.2, System objects

As pointed out earlier 'system objects' provide a general
means to control the nardware associated with the experiment.

They are defined in special program blocks called 'define
system object block' which have a specific syntax.

The actual name of the system object actse both like a vari-
able of the type and size specified in the definition block and
as an identifier for a hardware unit which can be subject to a
READS, WRITES, TESTSor WAITS operation.(Abbreviations can be used
as RS, WS, TS, AS). wNames for the routines performing each of
the operations, the unit can be subject of ,must be supplied at
definition time.

As an example let us construct the definition block for a
system object of type S.ANALLZ ,with the physical address
IODEV=213,linked to interrupt level 10 and transfering as data
an array ol INTEGER elements of size 512; RAN,TAN,WAN are the
names of machine written routines for read,test and respectively
"wait" operations.

10 DEFINE S.ANALLZ

20 TYPE=INILEGER

30 SiZE=b12

40 READWOD=RAN

50 TESTMODmTAN

60 WAITHODaWAN

70 JODEV=213

80 LEVEL=a10

90 END
A program declaring the actual name BETA for a system object of

type S.ANALIZ will be presented in a following paragraph.

18

20223, Filesg

The files are collections of data the language can manipulate;
a file consists of a set of records with the same structure,A
record can contain only data or a key and data.

The structure of a file must be described in a special
'define file block' according to a gpecific syntax.

Also information about the physical location of the file
must be supplied (device address and extent when working with a
direct access device).

In order to access a certain record in the file the user can
either specify the value of the KEY (if format datat+key is used)
or a value for the associated variable. The associated variable
is a pointer within the file to the record currently accessed;it
must be declared when declaring the use of the file and throughout
of the program block it becomes a reserved identifier.

Only a pure sequential access is allowed for files residing
on devices other than direct access ones. Even for this type of
files a pure sequential access can be used (no key or associated
variable declared).

There is & number of dedicated files (LWPUT,OUTPUT) normally
attached to the terminal but the user is able to use own files

instead of system ones when needed.

19

2.204, User defined data structures and operators

The argunents pleading for user defined data structures aad
operators are strong enough to justify the effort to built them
into the language; they offer a high degree of flexibility and
allow experienced users to make an efficient use of meimory space
when dealing with large collections of data.

Such structures can be defined in special 'define data' or
‘define operator' blocks ; this must be done prior to their use.
Then they must be declared in any program block using them.

As a first example we will define a new data type COMPL
as a pair of real numbers and an operator PLUS which performs
addition of such data iypes.

10 DEFINE D.COMPL

20 USING A,B/REAL/

30 D.COMPL=(RE,IM)

40 Ris=A
50 IM=B
60 BND

10 DEFINE O.PLUS

20 USING A,B,C/D.COMPL/

30 C=A(0.PLUS)B

40 RE(C)=RE(A)+RE(B)

50 Lil(C)e=IM(A)+Ii(B)

60 END

The program called JUDY uses these structures; it should

be observed that when an overflow condilion occures a specially

written routine CHECK is used.

20

10 MAIN JUDY

20 DECLARE A(100),B(100),C{100)/D.COMPL/
30 DsCLARE P/0.PLUS/,L/0.MULPLY/
40 DECLARE CHECK/P.SUBPR/

50 READ A,B

60 ON (OVFL) GO TO 150

70 E=0

80 FOR I=1 8TEP 1 UNTIL 100

90 C(L)=(A(I)(P)(B(I)})(M)(A(I))
100 FaSQR(RE(C(I))**241u(C(1))*=2)
110 Eansp
120 WEXT I
130 WRITE E
140 STOP
150 CALL CHECK
160 EHD

In this program the operator of type O,MULFPLY is uded far

multiplication of data of type D.COwrL ,

Wonhomogenous data structures are of a gpecial interest.

4s an example we ghall define a data structure of type D.EVENT
which can contain all the information about an anguler distribu-

tion type experiment., The structure of such a data iss

~ DALY - a string of 18 characters representing the date and
the time when the experiment was performed
- TIME - an integer representing the duration of the irradiation
~ COND - a string of characters (lemgth 50) representing the
experimental conditions

- ANG ~ an integer specifying the angular position

PULSE(I1),1=1,512 - an integer array containing the number of

pulses on the 512 channels of an analyzer,

21

The corresponding 'define data block'! is presented below.

10 DEFINE D,EVENT
20 USING A%/STHING(18)/,B$/STRING(50)/

30 USING C/INTEGER ARRAY/

40 USLNG LNTV,ANGPOS/INTEGER/

50 EVENT=(DATE,TIME,COND,ANG, (PULSE(I);I=1,512))
60 DATE=A$

70 TI1MEaINTV

80 COND=B$

90 ANG=ANGPUS

100 EVENT=(C(I);I=1,512)

110 END

A program using such a data structure to repeat 100 times the
experiment for angular positions between 32 and 132 degrees
and to perform readings from the system object of type S.ANALIZ
follows.

10 MAIN XSEC

20 DECLARE BETA/S.ANALIZ/,VERIFY/P.PR/,PR1,PR2/P.INTPRG/

30 DECLARI OUTCOM(100)/D.sVENT/,VIRTUAL

40 DECLARE SEC/F.MYFILE/

50 ON (INTR10) GO TO 260

60 ON (ERROR) GO TO 270

70 TESTS(BETA)

80 CONpa! esee!

90 Ki1a32 -

100 K2a132

110 PFOR Ia=K1 STEP 1 UNTIL K2

120 READS (BETA)

22

130 DATE(OQUTCOM(I))=TOD$

140 TIME(OQUTCOM(I))=180

150 COND(OUTCOM(I))=CON%

160 ANG(OUTCOLI(I))=I

170 WAITS(BETA)

180 FOR J=1 STEP 1 UNTIL 512
190 QUTCOM(I,J)=BETA(J)

200 NEXT J

210 WRITEF(SEC) OUTCOM(I)
220 WAITF(SEC)

230 NEXT I
240 CALL VERIFY(OUTCON)
250 ST0P

260 CALL PR1
270 CALL PR2
280 END

It should be observed that two copies of the interrupt processing
program of type P.INTPRG ,PR1 and PR2 have been supplied for the
processing of two types of interrupts, the ones associated with
the condition switches named INTR10 and BRROR. The two interrupts
are of a different level and consequently the interrupt processing
routine for one can be interrupted by the other; thus the problem
of reentrancy of interrupt processing routines is solved at user
level,

In this program the name OUTCOM appears without subscripts,with
one subscript and with two subscriptsjin the first case it refers
to an array of data structure,in the second case it refers to an
element of this array (the structure of such an element is defined

by the D.EVENT definition block) and in the third case it refers

23

to an element of the array PULSE (the J-th element) for the
I-th outcome of the experiment described by the I-th element of

the array of data structure. Statements 130 to 160 assign values

pertinent to an outcome of the experiment to various elements of’

the data structure; TOD$ is a system function which returnse as a
string of characters the Time of Day aud the date. The 'wait
gystem objec:s' opperation WAITS(BETA) is necessary to make sure

that data transfer is finished before the assignment at line

190 is performed.A similar function has the 'wait file' WAITF(SEC)

operation. The VIRI'UAL mode has been declared for array OULCOM
since the subprogram VERIFY needs the whole array to check the
correct ness of experimental data and their consistency.
Several things must be pointed out in connection with user

gdef'ined data structures:

- 8. As far as the syntax of a 'define data struciure block!
is concerneds the following rules must be observeds
-~ USING statements must provide to the compiler all the informa-

tion about the type of data used when defining the structure.
- a model (a protAtype) of the data structure must be given

and the names of all structural elements must be supplied.
- computational relations for each element of the structure

are to be included in the definition block.

-~ b. Only one array can appear in a data structure element.
While to simple substructure elements we refer specifying

their name as given in the DEFINE block ,to the array elements

we refer with the structure name followed by one or two subscripts

(one if it is a simple data structure and two if an array of

data sitructures).

- 8. Arrays of data structures can be used as soon as the data

24

structures have been defined. As an example the program XSEC
uses the array OUTCOL(100) with 100 elements; each element is

a data structure of the type D.EVENL.
- 4+ A data structure defined in a DEFINE block cannot be
used as a basic element when defining other data structures.
From examples given here the construction of the detine

data block for bidimensional arrays is straightforward.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to
Dr, V.P.Shirikov and to A.A.Hoshenko for many valuable

suggestions and for the friendly help.

BIBLIOGRAPHY

/1/ K.Thompson - A survey of real time language standards for
industrial use, in iinicomputer Forun
1975 Conference Proceedings.

/2/ Iann M.Barron - The decline.and fall of the computer,
in Minicomputer Forum.

/3/ C.H.A.Koster - CDL a compiler implementation languaye,
University of Berlin Report,1375 . .

/4/ an - CDC; BASIC language reference manual

/5/ bl - CDC; INTERCOM reference manual

Received by Publishing Department
3 May, 1976.

25

