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Doublet Resolution Algorithm without Reconstruction
of the Initial Signal

The doublet resolution algorithm without reconstruction of the initial signal
is developed. This algorithm has been applied to the resolution of the doublet
structure hidden by the noise in the output signal from physical device
with symmetrical or nonsymmetrical spread functions. The noise immunity
of the developed algorithm is analyzed.
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1.Introductioh

The resolving power of the physical device with symmetrical or non-
symmetrical spread function was considered in (1] on the basis of the
Fourier Transformation approach. It was shown that the physical de-
vice with nonsymmetrical spread functions has higher resolving power
than the physical device with symmetrical spread function with the
same halfwidth. The simulating calcnlations show that the advantage
of the physical device with nonsymmetrical spread function over the
physical device with symmetrical spread function is getting
pronounced for experimental quality 1/¢ > 3.5.

The effective pulse resolution algorithms for detectors with Gaus-
sian-like signals and for extremely high multiplicity of central ul-
trarelativistic nucleus-nucleus collisions have been proposed in [2].
The position and the amplitude of the initial signal have been cal-
culated with parabolic approximation method (PAM). The developed
procedure was generalized to the case of the correlated noise.

In this paper we consider the algorithm of the doublet resolu-
tion without reconstruction of the initial signal and without any
approximation calculation methods. This algorithm has been applied
to the resolution of the doublet: structure hidden by the noise in
the output signal from physical device with symmetrical or nonsym-
- metrical spread functions. The noise immunity of this algorithm is
demonstrated on some examples.

2. Theory

For narrow doublets we may use the Fourier algorithm of the
signal blurring described in (3,4]. According to this algorithm the
initial signal f(x) is subjected by blurring in  such a way that the
output signal from the device g(x) can be considered as convolution
of the initial signal f(x) with spread function of the device h(x):

f(z) = g(z) = h(z) ® f(z). (1)

2.

© O6penHHeHHBIH HHCTHTYT ANEPHLIX uccenosatuil. Hybua, 1997

{ I - . . .
In the Fourier Transform space the convolution operation is going
into the product operation: o

@ =HWFW @
where F(w), H (w) and G(w) are 'the Fourier Transforms of the
functions f(x), Ii(x) and g(x), respectwely For example,

Fw) = / f(x)exp(—zwx)dx B ¢)

In general case the unknown function f(x) can be estlmated from
its Fourier Tranbform as

F@= [Pt @)
where, ' - “
| j«@:%%. R ()

However the very simple algorithm, Egs.(4) and (5), involves many
difficulties typical for all linear solution algorithms of the inverse

‘problems [5,6]. Some of these difficulties have been removed by

regularization procedure (7).

In this paper we use another approach, whlch do not involve the
reconstruction stage, Egs. (4) and (5), at all. So the mformatxon
about the doublet structure of the initial signal can be deduced
dlrectly from the minima positions of the Fourier Transform of the -
detected signal G(w). :

- For example, the initial signal with narrow max1ma,

fol@) = 6z — A) + 6z + D), (6)

with doub{et splitting 2A is going into the Fourier Transform space

Fy(w) = cos(w/2L), (M

where the modulation period L of the Fy(w)- function  defines the
doublet splitting 2A  according to the simple relat;lon

2=V, : 'j‘ ®

or : , ,
o - A , lnA=—-lnL+m o o (9)
in the logarithmic scale.
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3. Noise
In the real experiment there are noises from various sources. For
the case of the additive noises we have

g(z) = @) ® f@)+n@). (10

To estimate the effect of the additive noise on the resolving power
of our algorithm we have made several computer simulations. From
the Eq.(9) we see that the relation between In A and In L in
the logarithmitic scale has the form of the stralght line with angle
(—45°) with respect to the (In-L) - axis.

If the doublet splitting A is small, the modulation period L is
very large, and due to this the corresponding minimum is lost in the
noise, the amplitude of which in the w-axis is practically constant
for all w.

The addltlve noise used in our calculatxon was found accordmg to
the following scheme. At first we construct the function

N(z) = (k%) - max(4) - (i) i (11)

in every X-pcint where i-is the quasirandom positive definite number
taken from the computer for 0 < i < 1, maz(A) Is the maximum
value of the 51gnal amplitude, aud (k%) 1s the value of the accepted

level of the noise.
We have repeated this operation m tunes and then the average

value :
i(z) = Z Ny(z) (12)
has been calculated The accepted realxzatxon of the noise signal '
n(z) = N(z) =7 (13)

was a positive definite function. :
The computer program, developed for computer simulation, hold
-all the values |F(w)| in the special part, and then, another

routine searches the minimum in the |F(w)| values. The absolute

value of |F(w)| at the second point is with the previous and the
subsequent ones. If for negative values of w the following COIl(llthIl

|F(wm — )] > |F(wm)] < |F(wm +1)] (14)

is fulfilled; then the wmn valve is. stored. The analogous conditicuv
lias been used for positive values of w. The correspondmg Wn value
is stored The (hstance between two minima is équal | to

L= wy — W = wp + (W ' : (15)
o 4 Results -

"The . sunulatlou calculations have been performe(l accordmg cited
algontlnu for four. typlcal spread functionis: syuunetrxcal gaussian,
svnunetncai lmeutmau, nousymmetncal gausslau and uonsyuuuetucal‘
lorentzian.” : \

The results for .synuuetrl( al gausSIau sprea(l fllllCthll are shown
i, Flgl T Fig.1a the svmmetrlcal gaussian spread - function with
o.= 2.75 is shown for |z} < 65. The Fourier. Transform of. this spread
function is shown in Fig.1b for |w| < 16.5 in the, logarlthuuc scale.
In Fig.lc we see the initial signal in the form of the doublet with
doublet’ splitting A = 3.0. In Fig.ld we see its Fourier - Transform
w1th two sharp uuuuna The distance 2L between these minima is
equal to 2L =19.0. The ‘initial doublet signal with .additive noise
5% is shown in Fig.le, and its Fourier Transform in: Fig.1f. The
distance 2L betweeu niinima’ estunate(l according program' described
n §3, is equal to (2L)§Z§’ = 19.0. The initial doublet signal with
additive. nolse 12% is shown in- Flg lg and- its. Fourier Transform
in F1g; 1l The estimated distance 2L between minima is equal to
(2L)1%° = 19.0. The distance 2L estimated for . different  additive-
noise at various doublet splittings A is presented in’ Flg 2a and 2b.
We_see that at. extremely small - doublet splitting A, A ~ 2 +4, the
eetunated .distance 2L between minima does not coincide with real
of 2L in the absence of noise. For ‘A =3 the error A = 0.5

‘The results for symmetrical lorentzian spread functmu,axe given in
Fig.3. The symmetrical lorentzian spread function with ‘o = 2.75 is
shown for |z] < 65 in"Fig.3a. The Fourier Transform of this spread
function is shown in Fig.3b for [w| < 50. in the logarithmitic scale.
In Fig.3c we see the initial signal in the form of the doublet with
doublet splittings ‘A =30. In Fig.3d we see its Fourier Transform
with two sharp minima. The distance 2L between these ninima is



equal to 2L = 19. The initial doublet signal with additive noise
5% is shown in Fig.3e, and its Fouriér Transform in Fig.3f. The
distance 2L between minima estimated according program described
in §3, is equal to (2L)3% = 19.0. The initial doublet signal with
additive noise 12% is shown in Fig.3g and -its Fourier Transform
in Fig.3h. The estimated distance 2L between minima is equal to
(2L)12 = 19.0.

The distance 2L estimated for (llfferent additive noise at various
doublet splittings A is given in Fig.4. We see that at extremely
small doublet splittings A;A ~ 2+ 4, the estimated distance 2L
between  minima  does - not - coincide with' real "value of 2L in"the
absence of noise. For A = 2.5 this error A = 04. To show
the influence of the different noise realizations on the error JA we

have calculated the relation L = L(A) for: four  different (10%) noise

realization (Fig.5).  We see that ‘the welghte(l error (6A) av < 0.5 for

all doublet splittings A...

The results for  non-symmetrical gaussian spread function are
shown in Fig.6. In Fig.6a the non-symmetrical gaussian spread
function with o./or = 54 is shown for |[z| < 65. The Fourier Trans-
form of this ‘spread function is shown in Fig.6b for |w| < 16.5 in
the logarithmic scale.” In' Fig.6c we see tlhe initial signal in the form
of the doublet with doublet splitting A = 3.0. I Fig.6d we see its
Fourier Transform with two sharp minima. The distance 2L between
those minima is equal to 2L = 19. The initial doublet signal with
additive noise 5% is shown'in Fig.6e, ‘and its Fourier ‘Transform in
Fig.6f. The distance 2L between minima estimated according pro-

gram described in §3 is equal to (2L)3% = 19.0. The initial doublet

signal with additive noise 12% is shown in Fig.6g and its Fourier

Transform in Fig.6h. The distance 2L between minima estimated
according our program is equal to (2L)}%° = 19.0. ’

The relation between L and A, estimated in the presence of the
additive noise for non-symmetrical gaussian spread function is given
in"Fig.7 for additive noises up to 12%. The weighted error (Ad) av < <
0.25 for doublet splitting A > 3.

The results for non-symmetrlcal lorentzian spread function are
shown in Fig.8. In Fig.8a the - non symmetnca.l lorentzian spread

fuuction with o1/0g = 54 is shown for |z| < 65. The Fourier Trans-
form of this spread function is shown in Fig.8b for |w| < 16.5 in
tlie logarithmic scale. In Fig.8c we see the initial signal in the form
of the doublet with doublet splitting A = 3.0. In Fig.8d we see its
Fourier Transform with two Sharp minima. The distance 2L between
those minima is equal to 2L = 19. The initial doublet signal with
additive noise 5% is shown in F1g 8e, and its Fourier Transform in
Fig.8f. The distance' 2L between . minima estimated accordmg pro-
gram described in §3 is equal to (2L)3;7;’ = 19.0. The initial doublet
signal with additive noise 12% is- shown in Fig:8g and its Fourier
Transform in Fig.8h. The distance 2L between ‘minima estlmated
according our program is equal to (2L)2% = 19.0..

The relatlon between L and A, estimated in the presence of the
additive noise for  non- symmetrical lorentzian spread functlon is
given in Fig.9 for additive noises up to 15%. The weighted error
(6A) 4y < 0.2 for doublet splitting A > 3. "

To compare our. results of the computer simulation we present
two. parameters: ‘1) The relative noise level of the Fourier Transform
of the initial signal for different noises N(rel), and 2) The number of
minima k in the Fourier Transform, up;to which we may distinguish
them in the w - axis. This comparison is presented in Table 1.

) Table 1
% Gaussian | Lorentzian «
Noise | Symm | Non-symm | Symm - | Non-symm
5 8.8 10 2.8 -
Npazl10* 1 12 19 22 6.0 0.7
- 15 - - - 1.4
5 1 1 2 -
K 2 [ 1 1 15 3
15 - - - 3

From Table 1 we see that the best results give the noise immune
spread function in the form of the
This behavior can be explain by the fact that this spread function
gives the intense Fourier Transform components in the region of high

frequency w.

non-symmetrical lorentzian.
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- 5. Conclusmns

1 The (loublet resolutlon algorlthm w1thout teconsttuctlon of the
initial signal has been simulated, for four. (hfferent sptead functlons
of the physical device.

2. It is shown that the best result and highest noise immunity
give the physical device with non-symmetrical lorentzian ‘function.

3. The results of this paper are in”accordance with general recom-
mendations which have been presented in paper [1].
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