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I. 

1.Introd uction 

The resolving power of the physical device with symmetrical or non
symmetrical spread function was considered in [1] on the basis of the 
Fourier Transformation approach. It was shown that the physical de
vice with nonsymmetrical spread functions has higher resolving power 
than the physical device with symmetrical spread function with the 
same halfwidth. The simulating calCJ.Ilations show that the advantage 
of the physical device with nonsymmetrical spread function over the 
physical device with symmetrical spread function is getting 
pronounced for experimental quality 1/ E 2:: 3.5. 

The effective pulse resolution algorithms for detectors with Gaus
sian-like signals and for extremely high multiplicity o_f central ul
trarelativistic nucleus-nucleus collisions have been proposed in [2]. 
The position and the amplitude of the initial signal have been cal
culated with parabolic approximation method (PAM). The developed 
procedure was generalized to the case of the correlated noise. 

In this paper we consider the algorithm of the doublet resolu
tion without reconstruction of the initial signal and without any 
approximation calculation methods. This algorithm has bee;:i applied 
to the resolution of the doublet· structure hidden by the noise in 
the output signal from plwsical device with symmetrical or nonsym
metrical spread functions. The noise immunity of this algorithm is 
demonstrated on some examples. 

2.Theory 

For narrow doublets we may use the Fourier algorithm of the 
signal blurring. described in [3,4]. According to this algorithm the 
initial signal f(x) is subjected by blurring in such a way that the 
output signal from the device g(x) can be considered as convolution 
of the initial signal f(x) with spread function of the device h(x): 

J(x) - g(x) = h(x) 0 f(x). (1) 
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In the Fourier Transform space the _convolution operation is going 

into the product operation: 

G(x) = H(w) • F(w) ' · (2) 

where F(w), lf(w) and G(w) are. the Fourier Transforms of the 
functions f(x), h(x) and g(x), respectively. For example, 

F(w) = j f(x)exp(-iwx)dx. (3) 
' . . . 

In general case _the unknown function f(x) can be estimated from 
its Fourier Transform as 

f'(x) = j F'(w)exp(iwx)dw (4) 

where, 
G(w) 

F'(w) = H(w)" (5) 

However the very simple algorithm, Eqs.(4) and (5), involves many 
difficulties typical for all · linear solution algorithms of the inverse 
problems [5,6]. Some of these difficulties have been removed by 
regularization procedure [7]. 

In this paper we use another approach, which do not involve the 
reconstruction stage, Eqs.( 4) and (5), at all .. S~. the 'information 
about the doublet structure of the initial signal can be deduced 
dir~ctly from the minima positions of the Fourier Transform of the . 
detected signal G(w). · 

For example, the initial signal with narrow maxima, 

fo(x) = 8(x - fl)+ 8(x + fl}, (6) 

with doublet splitting 2fl i~ going into the Fourier Transform space 
as 

F0(w) = cos(w/2L), (7) 
where the modulation period L of the F0 ( w) · function defines the 
doublet splitting 2fl . according to the simple relation 

2fl = 1/L, 

or 
lnfl = -lnL + m 

in the logarithmic scale. 

{~:::~---··:-::--:::-~~~ S ~;;,..,:;. .. !.!, •us~;b lw.?ti'fY:l ( 
j G!.;~?J~HY. ~\:C,'J~l::ltUll!1 ~ 
ii £;¥,~ flt-1,.. ... ..,.1:"IJ ,\ t 
t.~~ ........ ..._,,~ 

(8) 

(9) 



3. Noise 

In the real experiment there are n9ises from various sources. For 
the case of the additive noises we have 

g(x) = h(x) ® f(x) + n(x). (10) 

To estimate the effect of the additive noise on the resolving power 
of our algorithm we have made several computer simulations. From 
the Eq.(9) we see that the relation between ln /),,. and ln L in 
the logarithmitic scale has the form of the straight line with angle 
(-45°) with respect to the (ln L) - axis. 

If the doublet splitting /),,. is small, the modulation period L is 
very large, and due to this the corresponding minimum is lost in the 
noise, the amplitude of which in the w-axis is practically constant 

for all w. 
. The additive noise used in our calculation wa.<; found according to 

the following scheme. At first we construct the function 

N(x) = (k%) • max(A) • (i) (11) 

in every x-point, where i-is the quasirandom positive definite number 
taken from the computer for O < i < 1, max(A) is the maximum 
value of the signal amplitude, and (k%) is the valu~ of the accepted 
level of the noise. · 

We have repeated this operation m times and then the . average 

value ·. 1 n 
n(x) = - · L Nk(x) (12) 

m k=l 

ha.<; been calculated. The accepted realization of the noise signal 

n(x) = N(x) - n (13) 

was a positive definite function. 
The computer program, developed for computer simulation, hold 

· all the values jF(w)I in the special part, and then, another 
routine searches the minimum in the IF(w)I values. The absolute 
value of jF(w)I at the second point is with the previous and the 
subsequent ones. If for negative values of w the following condition 

JF(wm - l)J > JF{wm)J < JF(wm + 1)1 {14) 
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is .fitlfilled, then the wm valve is stored. The analogous condition 
has been m;ed. for positive values of w .. The corresponding wn value 
is stored. The distaiice between two minima is equal . to 

. L k:: Wn - Wm.= Wn + JwmJ · (15) 

4. Results 

The ,simulati~n calculations have been performed according cited 
algorithi~1, for. four. t.ypical spread functimi~: sym~netrical gaussian, 
symmetrical lorentzlai1, noi1symmetricaJ 'gaussiai1 and· nonsynni1etrical 
lorentzian. . 

,Th~ results for symmetrical . gaussian . spr~ad ·· function. are show11 
in Fig.l. In Fig.la th~ symmetrical gaussian spread functioi1 with 
u:/2.7G is :,hown for. !xi-< 6G. The Fourier. Tran:,form of this spread 
functicm is shown hi Fig.lb for Jwl < 16.5 in the. logarithmic :,caie. 
In Fig. le we see the initial :,ignal in the form of the doublet with 
doublet' 8plitting Ll = 3.0. In Fig.lei WC :,ee it8 Fourier Transform 
with .tw(>' :,harp minima. The distance· 21 between these minima i:, 
equal to 21 =HW. The ·foitial doublet . signal ~ith additive noise 
5% is shown in. Fig.le, and its Fourier Transfoiim in Fig.lf. The 
distance 21 between Iiiinima e:,timated according program described 
in §3, is . equal to (2£ )~;;'. =, 19.0. · The initial doi1blet. signal with 
additive noise 12% is shown· in -Fig.lg and its Fourier Transform 
in Fig.lb.' The estim~ted distance 21 between minima is equal to 
{2L)!;'f ,= 19.0. The distance 21 estimated for different additive 
noise at various doublet splittings Ll is presented in' Fig.2a and 2b. 
We see that at extremely sniall. doublet splitting .1, /),,. ~ 2 -c- 4, .the 
estimated . distance 21 bet.ween minima does not coii1cide with real 
of 21 in the absence of noise. For /),,. = 3 the error 6!),,.::::.: 0.G. 

The result:; for symmetrical lorentzian :;pread function are given in 
Fig.3. '!'he symmetrical lorentzian spread function with ·u = 2.7G is 
shown for JxJ < 65 in Fig.3a. The -Fourier Transform of this spread 
function is :,;hown in Fig.3h for JwJ < 50. in the logaritlui1itic scale. 
In Fig.3c we see the initial signal in the form of the doublet with 
doublet splittings /),,. = 3.0. In Fig.3d we see its Fourier Transform 
with . two sharp minima. The distance 21 between these minima is 
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equal to 2L = 19. The initial doublet signal with additive noise 
5% is shown in Fig.3e; and· its Fourier Transform in Fig.3f. The 
distance 2L between minima estimated according program described 
in §3, is equal to (2£ )~;1 = 19.0. The initial doublet signal with 
additive noise 12% is shown in Fig.3g and . its Fourier Transform 
in· Fig.3h. The estimated distance 2L between minima is equal to 
(2L)!;fo = 19.0. 

The distance 2L estimated for different additive noise at various 
doublet splittings fl is given in Fig.4. We see that at extremely 
small doublet splittings fl, fl ~ 2 + 4, the estimated distance 2L 
between minima does not coincide with real · value of 2L in the 
absence of noise. For fl = 2.5 this error oil = 0.4. To show 
the influence of the different noise realizations on the error oil we 
have calculated the relation L = L(Ll) for four different (10%) noise 
realization (Fig.5). We see that ·the weighted error (oil)Av :::; 0.5 for 
all doublet splittings fl. 

The results for non- symmetrical gaussian spread function are 
' ' 

shown in Fig.6. In Fig.6a the non;.synimetrical gaussian spread 
function with uL/uR = 54 is shown for lxl < 65. The Fouder Trans
form of this spread function is shown in Fig.6b for lwl < 16.5 in 
the logarithmic scale.· In Fig.6c we see the initial signal in the form 
of the doublet with doublet splitting fl = 3.0. Iii Fig.6d we 'see its 
Fourier Transform with two sharp minima. The distance 2L between 
those minima is equal to 2L = 19. The initial doublet signal with 
additive noi<,;e 5% is shown in Fig.6e, and its Fourier Transform in 
Fig.6f. The distance 2L between minima estimated according pro
gram described in §3 is equal to (2£ )~_;t = 19.0. The initial doublet 
signal with additive noise 12% is shown in Fig.6g and its Fourier 
Transform in Fig.6h. The distance 2L between minima estimated 
according our program is equal to (2L)!;i° = 19.0. 

The relation between L and fl, estimated in the presence of the 
additive noise for non-symmetrical gaussian spread function is given 
in"Fig.7 for additive noises up to 12%. The weighted error (Llo)Av:::; 
0.25 for doublet splitting fl > 3. 

The results for non-.symmetrical loren~zian spread function are 
shown in Fig.8. In Fig.Ba the non-symmetrical lorentzian spread 
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function with uL/uR = 54 is shown for !xi< 65. The Fourier Trans
form of this spread function is shown in Fig.Sb for lwl < 16.5 in 
the logarithmic scale. In Fig.Be we see the initial signal in the form 
of the doublet with doublet splitting fl = 3.0. In Fig.8d we see its 
Fourier Transform with two sharp minima. The distance 2L between 
those minima is equal to 2L ~ 1_9., The initial doublet signal .with 
additive noise 5% is shown in Fig.Be, and its Fourier Transform in 
Fig.Bf. The distance· 2L between . minima estimated according pro
gram described in §3 is equal to (2£)~~ = 19.0. The initial doublet 
sig1ial with additive noise 12%- is shown in Fig;8g and its Fourier 
Transform in Fig.8h. · The distance 2L between · minima estimated 
according our program is equal to (2L)!;t% = 19.0 .. 

The relation between L and fl, estimated in the presence of the 
additive noise for non-symmetrical lorentzian spread function is 
given in Fig.9 for additive noises up to 15%. The weighted error 
(oil)Av :::; 0.2 for doublet splitting fl > 3. 

To compar~ our. results of· the 'computer simulation we present 
two parameters: 1) The relative noise level of the Fourier Transform 
of the initial signal for different noi<ms N(rel), and 2) The numb_er of 
minima k in· the Fourier Transform, up; t.o which we may . distinguish 
them in the w - axis. This comparison is presented in Table 1. 

Table 1 

·% Gaussian Lorentzian 
Noise Symm Non-symm Symm. Non-symm 

5 8.8 10 2.8 -
Nre1Xl04 12 19 22 6.0 0.7 

15 - - - 1.4 
5 1 1 2 -

k 12 1 1 1.5 3 
15 - - - 3 

From Table 1 we see that the best results give· the noise immune 
spread function in the form of the non-symmetrical lorentzian. 
This behavior can be explain by the fact that this spread function 
gives the intense Fourier Transform components in the region of high 
frequency w. 
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5. Conclusions 

1. The doublet resolution algorithm without reconstruction of the 
initial signal has been simulated, for four different spread functions 
of the physical device. 

2. It is shown that the best result and highest noise immunity 
give the physical device with non-symmetrical lotentzian function. 

3. The re::mlts of this paper are in accordance with general recom
mendations which have been presented in paper [1]. 
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