


1 Introduction

Because of the excellent spatial resolution and relatively small pixel
occupancy Silicon Drift Detectors [1] ~are used in . many dif-
ferent experiments in relativistic nuclear physics ( NA45, WA98,
STAR et al.). The STAR Collaboration ( Solenoidal Tracker
at RHIC) is designing a microvertex detector, the Silicon Ver-
tex Tracker (SVT), which uses SDD to measure charge particle
hit position near the beam vertex [2]. The CERES/NA45 experi- -
ment [3] at SPS CERN measures low-mass pair production in nu-
clear collisions and to use a doublet of 3 inches cylindrical silicon
drift detectors [4] as a stand-alone vertex detector. The dublet of
silicon drift detectors provide external part tracking and increase
the ring finding efficiency pointing a ring centre candidates as
well as background rejection of conversion and close Dalitz pairs.

Due to an extremely high multiplicity of central Pb-Pb col-
lisions (up to 1500 tracks) the crucial point of this SiDD track-
ing system is the demand for the highest accuracy and speed of
any algorithm intended to determine the centre and the energy
of each, electron cloud detected by SiDD in conditions when over
30% of signals overlap each other in case of geometry of the SiDD
doublet in the CERES set-up. |

This note will cover some of the basic approaches in new al-
gorithms of overlapping peak resolution, which finally enables us
to cope with the high charged multiplicity environment in Pb-Pb
collisions taking into account both such factors as SiDD signal
asymmetry and the noise correlation.

2 Problem formulation

The SiDD detector has a disk shape with the active inner and
outer radii of R;, = 6 and R,,; = 32 mm, respectively. The 360
radially oriented anodes register signals, i.e. arrived charges of
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electron clouds appeared when particles hit the detector. While
drifting-of an electron cloud its size increases due to diffusion
and electrostatic interaction between electrons. As it was shown
in [6] the signal has a form of two-dimensional Gaussian with the
maximum amplitude A:

((’C - gof (r— Ro) )
N(z,7;A,z0,Ro) = Ae \ 20s 20, (1)
where z = r¢ is perpendicular to the radius direction, Ry,

zo = Ropp are the initial coordinates of the electron cloud,

o2 =2Dt 0,2 = 2DtR,.;/ Ry, D is the diffusion constant of elec-
trons in silicon, t = (Rouw — Ro) /Varist, the radial velocity Vais
supposed to be constant.

The single particle signal (electron cloud charge) could be con-
sidered as being registered by several adjacent cells of 2D grid
formed by 360 anodes in azimuthal direction and time-bins in
radius direction. So the charge distribution to each cell can be
calculated by 2D integration of (1) over this cell. If two signals are
‘ovelapped, their contributions to the same cell are superposed.

Recent measurements [5] show that the integrated front-end
electronics [7] did slightly disturb the assumption about the
Gaussian-like symmetrical shape of the registered signals. Thus
for each fixed radius R the values of o, and o, could be tabu-
lated during a special statistical processing of Pb-Pb experimen-
tal data. In our further consideration we assume these parame-
ters ¢, and o, to be known.

Besides, the front-end electronics produces an additional con-
tribution to every part of signal registered in each cell, which can
be considered as a correlated Gaussian noise with rms up to 10%
of the average signal amplitude. The correlation exists in the ra-
dial direction only and the covariance function vanishes after 3-4
time bins. By taking into account the information about this
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correlation one would improve estimations of signal parameters.
However, in our first aproach we simplify the situation assuming
noise in every cell to be independent. It should give us the upper
bound of these estimations. Further in section 6 we extend our
formalizm to the case of real signals with tlieir asymmetry and

“correlation.

Our aim is to estimate the center and the amplitude of
a digitized signal, which can be considered as two-dimentional
histogram {a;;} formed by extracting cluster of ajacent cells
with amplitudes exceeding a given threshold. The straight-
forward approach to our estimation is to fir to this hlstmga.m
2D Gaussian (1). How ever due to its factonzod view we can spht
this task in two steps:. . .

1. According to the number of anodes Covenng b\ the given
cluster (let it be k) split 2D array {a;;} into & one-dimentional
histograms. Then for each fixed ¢; fit to the corresponding par-
tial histogram one-dimentional Gaussian

(r= R)Q
g(r; A, R) = Ae 20, (2)

with o, supposed to be a known counstant inside of the given
cluster. That gives you k estimations ( 41, R ) for cach &; = R;¢p;.

2. The wanted position of the signal (RRy. ) can be calculated
as the center of gravity of these & estimations:

L AR %A
Ry="1——: Ty = —— 3
4 T o) e
_ J J
To obtain its amplitude A we can minimize the functional
. - 2
L(A) = ¥ (A; = N(&j, Rj; A, . Ry)) (4)

J

where the function N(x,r; A, 20, Ry) is taken from (1). That
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gives

Unfortunately the main snag in this nice scheme is the very
probable case when the extracted cluster are created by two (or
even more) signals. For such cases we have to develop the fol-

lowing:

e a fast computational algorithm for the single signal case,
which would implement the fit of the Gaussmn (2) to one-

- dimentional histogram; 5

e a reliable criterion for making a decision whether we have a
single signal case or multi-signal one;

° genefalize the above methods and algorithms to multi-signal

cases.

These items are considered in the further sections.

3 Fast algorithm for fitting one-dimentional

histogram

Let us have the histogram {a;},i = I,n with the unit binsize,
ie. Ar = ri —r; = 1. We have to fit to this histogram the

function g(r; A, o) given by (2). The corresponding least square
functional

(A =3 (0= [ gl Aro)ir)’ (©)
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contains the unknown parameter ro under the integral sign. This
obstacle is avoidable by replacing each integral in (6) by its ap-
proximate mean value: g(7;; A, r9), where 7 = (7341 +7;)/2, so (6)
is simplified to

L(A,r0) =3 (a; —rg(ﬂ;A,To))?. M

Searching for its minimum one should solve the corresponding
system of normal equations obtained by equating to zero the
L(A,rg) partial derivatives. However, this system is, unfortu-
nately, transcendental. That requests to develop a sg)ecml it-
erative procedure to solve it. As initial values A(O) o 9 of un-

.known parametes for- this procedure in a single signal case we
- use A® = maxy, ¢; and its position (the center of gravity

o= (g (5 ®

is also admissible, since it is more accuraté). ‘Then considering
(7) as a function in 3D space of two parameters we approximate
it in the vicinity of A r(()o) by an elliptic paraboloid

r=ax’ + b +cay+do+ey+f, (9)

where z,y are current values of parameters r, A. To find six co-
efficients of (9) it is necessary to calculate the values of £(A,7()
in the point tem (glate i.e. in six specialy selected points sur-
rounding z° = 7 = A choosen as the base point of this
template. We use the simplest template design: the base itself,
step left, step right from it in each dimension and the last point
by step right in both dimensions. After solving the corresponding
system of six linear equations to find our paraboloid coefficients
its minimum coordinates are easily calculated

—2bd + ce 0, —2ae+cd

dab— @ Y=Vt T (10)
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The obtained coordinates are used as A(l),r((,l), i.e. as the
-base point for the second iteration. Although a few iterations,
is enough, as a rule, the iteration process is controlled by test-
ing of achieving either the maximum admissible accuracy of the
minimum position or the fixed maximal number of iterations.

Further we refer to this method as to Paraboloidal Approxi-
mation Method - PAM.

4 Criterion: one or more signals

It is not a hard problem to check if in the given cluster sam-
ple {a;;} we have more then one explicit and distinguished local
maxima. The problem arises when we have two (or more), but
so close each other that they are indistinguishable producing the
only one maximum.

Let us restrict ourself by one-dimensional case and assume
unprobable to have more then two peaks when a histogram has
the only one maximum. Then we could have two possibilities for
two close peaks:

1. their amphtudes are so different that the smallest is "hidden
under the wing” of bigger one;

2. their amplitudes are equal (very rare situation, but could
happened).

Having the only one maximum in both such cases we should
apply PAM to fit one Gaussian. However, since it is not a case
we have to obtain too big value of £L(A,#;) (see (7)). According
to the theory of mathematical statustics this functional in the
point of its minimum should obey to the y2-distribution with the
degree of freedom equal to the number of bins minus the number
of parameters. It could give us, in principle, a threshold for
testing hypotheses about peak numbers. Unfortunately, due to

the violation of theory assumptions for real and even simulated
data it was found that the distributions of £( A, 7o) for a single
and double peaks ovelap each other too much to use any tleshold
to distiguish them confidently.

So we have to look for a more comprehensive criterion
analysing both cases enumerated above. In the first case we
should have a histogram asymmetry. The easiest test of it is the
difference between the positions of maximum and the center of
gravity (8)

Aasynun = 1111__;_1x a; — (Z (lifi) / (Z (li) . (11)

More cumbersom is the known expression for the third central
momentum Mj = (Z ai(Ti — Aeog)’ ) / (Z a )
1
In the second case of two close peaks with equal amplitudes

they produce a symmetric, but much wider histogram. Its width
can be tested by calculating of the second central momentum

My = (Z a;(F; — Acog)?) / <Z_j a,-) , which must considerably differ

from the given o2.

5 Double peak resolution method

The shape of a histogram produced by two superposing peaks
can be described like
B e L T )
"_——_——)'_ .
f(:L‘,-;Al,ag ),Ag,arg )) = Aje 20° + Aye 207 (12)

This expression depends on four parameters. To find them we
have to minimize a functional generalizing the view of (6)

]

£4=Z(ai'—f(‘luAIaL1 Ana (0))) L a3
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A direct generalization of the PAM procedure on four-parameter
functional (13) would lead to treating 5D elliptic paraboloid. To
avoid that we take into account that the partial derivatives of £y4
in respect to A;, A; are linear, so we can easily calculate both
amplitudes by solving the system of two linear equations

0L
aAl;g

Then we can apply the above iterative PAM—procedule for mini-
mizing L4 in respect to two resting parameters rl ,:Lgl).

The cardinal problem of this way of solution is the most ac-
curate choice of initial values of parameters, since it deter-
mines the convergence and the speed of the iteration process.

In the easiest case, when our histogram has two explicit and
distinguished local maxima, we can take as initial values the am-
plitudes and positions of both of them. However, when we have
the only one maximum, but it does not satisfy the single peak
criteria, we need a special procedure for determine the starting
values for the ”invisible” peak.

The first approach (next called as sequential elimination
method - SEM) consist in applying the PAM procedure with the
functional (6) for obtaining A;,z; and then use them to gener-
ate an artificial the01et1cal histogram nmtatmg the first peak:
a; = [F+ g(x; Al,xl )d:L with g(r; Al,a,l ) from (2). After sub-
stracting @; from original histogram we dete1 mine from the resid-
ual histogram the starting values Ag ) , :1,2 as the maximum am-
plitude and its position. Then we apply PAM again to the resid-
ual histogram. This process can be continued iteratively for get-
ting better accuracy, but for our purpose the first iteration is
enough.

After inserting the pair of initial values zl ) Lg‘” to the linear
system (14) we can solve it to obtain AP ),A(O) and then, as it
was noted above, apply PAM- plocedme for minimizing £4 to

calculate next iterative values of a,§ ) , :Lgl) .

= 0. | (14)
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The second approach for calculating more accurate approx-
imations of parameters further called as Linearization Method -
LM is based on the iterative solution of the linearized system of
trascendental equations:

0Ly |

—==0. 15

8:1:(1?% . (15)
The linearization of (15) is done as follows. Taking the initial

as maxjy, a; we calculate :cgo)

value of xﬁ‘”

(see (11)). Both differencies Az; = z; — :c( ) Azy =3y — xg ) are
assumed to be small enough to have any of their products to be
the higher order of smallness. Thus, we can substitute in (15)
each parameter by the sum of its initial value and corresponding
delta-correction and omit all members of the second and higher
order of smallness obtaining a linear equation system

Ax1C+ Ao D =G (16)
Az E 4+ AxoF = H.

as 7;(0) + 3stgnasymm

Here we denote

(0) (zi20y Tl W 2 i
d 1+ ! +A1 L e e 20¢ e 202

(@i=?  (5=2H?

D= AZZ< — oM@ — 2y e w
(z.-z‘ I
E = 45(a— 2 (@i —of)e e w
O\ (o0
F =E (d(O) 1 + !1‘,-—22 ) ) +A2!zi—l:2£0))2e £__2_a_2__)_) e_i_.?‘;g—)
i i

(si-=()?

G=%xd 0)(.’II - :cgo))e'~ e
' ("'x-"'( ))2
H = 50 (o — o) 5
wherez
0) (zi=2{? (zi=a)?
dS =a; — A7 2= — Age™ T % :
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After solution this linear system we add obtamed corrections
to the initial values of parameters 1ece1v1ng ml . Inserting them

to the linear system (14) we obtain A1;2 and repeat the whole
procedure iteratively until the corrections become less than a
prescribed value or the number of iterations attains its limits.

6 Asymmetrical signals and correlated noise
modifications

On the representative sample of central Ph-Pb collisions the
pulses were fitted using a composition of two gaussians with
widths o9 — A below the maximum, and g9 + A above the max-

imum: \
—(z — x9)
A ;
f@)=—a—e 2 .
V2moyg

where r = z; are time bins, A4 is amplitude, ¥y is a position of
the gaussian maximum, and

_Jo—-A for z<x

oo+ A for x> xg.

(17)

The results from fitting a selection of pulses which have
only small admixture of double pulses yields g9 = 1.73 time
bms at £ = 50 time bins and o9 = 2.09 time bins at
zg = 220 time bins The dependence is rather linear, namelly

= 1.626 + 0.2097 - 102 - zg. The delta parameter drops, A =
0.18 at g = 50, and A = 0.02 at 2y = 220.

To take this asymmetry into account in our calculation scheme
(see egs.(2) and (12)), it is necessary to use ¢ from (17) in cor-
responding ranges of x.

To handle a problem of the noise correlation it is necessary to

include in our model the following formalism.

In order to simulate a normally distributed vector Y (yi, ...yn)

with the given covariance matrix C'(c;j) we should start from
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modelling a normally distributed vector X(xy, 22, ... Za) with in-
dependent components. Then one can convert it into the sought
vector Y (yi,...y,) by using a triangular transformation

yr = by s+ b o+ b k= 1,n,

where the coefficients b;; can be obtained by the recurrent for-

mula: .
j—1
— = bitby;j
k=1
b,']' = .
it
cjj — X Vit
\ I k=1 Jk
Now if we have measured points (x;,y;).i = 1,n with the
known covariance matrix ¢;j,4,j = 1,n, then in order to fit a

curve y = f(z;b) to these data we have to minimize a functional

L(b) Ewu(Jt (117 ))(yj—f(ljb))

where w;; is the element.s of the matrix which is inverted to C' =

llessl-
Equating to zero the first derivative of L(D) by b one obtains
dL(b) & Of(x;:0)
= ; — f(xi0))—F%—" 18
db 211] (( yi — f(xi;D)) b + (18)
Of(x;;0)
(i~ S LG —o

If b is a vector of parameters we have a sy stem of such equations.

In our case, when f(x; Al, ,A2 .l ) given by formula (12),
we should obtain after the hneauzat.lon of this system the linear
system, which is exactly the same as (16), but with the more
complicate coefficients

{02
C =Y wj (dS'O) (1 + E'—?_.;)) +
ij

A (0) NN s G s
+;}(:c,- —ay Naj—ay e T @ Jem T2
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In the next section results of comparative analysis SEM-PAM,

LM-PAM and MINUIT applications for simulated data are given.

H=g w,-,-dﬁ-o)(z,- -
1]

__ where d§0)

7 Results

The method was tested using both Monte-Carlo simulated data
and data from 160GeV /u Pb-Au collision fron 1995 CERES run.
For the sake of brevity we present here only results of com-
pared methods testing on double overlapping signals, since they
are most critical for the SiDD data handling. To provide a data
set for testing a simple routine was written, which simulates his-
tograms according to (12)-(17) for two overlapped ”asymmetri-

* Gaussians with 0y = 1.626 + 0.2097 - 102 - 25 and corre- .
spondmg A. Contributions of every Gaussian into each bin are
superposed (summed).

Then to each bin a random noise is added with the normal
distribution with o = 10%, A,eise is 10% of the mean amplitude
value of pulses. Two versions of the noise distribution were sim-
ulated: first, the independent gaussian noise; second, when the
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noise counts in adjacent bins were correlated according to the
given covariance matrix. However, it should be noted that data
processing in the accordance with the formulae of the previous
section of the model simulated by the second version showed a
very weak influence of the noise correlation due to the covari-
ance matrix obtained by special measurements. Simulating two
overlapping signals we chose the different set of both distances
between two gaussian maxima and their amplitude ratios.

In this note we present results of comparison of only MINUIT
and LM-PAM performances, since LM-PAM procedure shows
results obviously better then SEM-PAM or some other of being
tested. :

0.5[#
Our calculations show that in
comparison with MINUIT LM- 0'45_
PAM algorithm has thesameor 1 *
even better accuracy for a dou- i +
ble peak parameter reconstruc- |
tion being 5-7 times faster in |
the range of distances from 7  osf .
timebins up to gyg. 25 3 36 4 45 5 55 6

distance

Fig 1. Distributions of o.

We studied on a simulated data sample the dependence of
the algorithm efficiency upon the gap between pulses and found
that efficiency of double pulse reconstruction is on the level of
93% for gaps greater than 1.5¢ and decreases to the level 8% for
gaps smaller than 1.50 (one half of the mid-pulse-width). The
dependence of the accuracy of the pulse reconstruction algorithm
upon the distance between pulses is shown in fig. 1. Besides, we
would like to stress here, that while PAM-LM can proceed events
with gaps between pulses equal even to 2 , the MINUIT method
could not proceed any case when this distance is smaller or equal

13



to 2.5.
The small systematic shift in pulse positioning by both meth-
ods - within of the calculation errors should be mentioned.
Fig.2 shows distributions of mean value of \? as a function
of the distance between pulses (normalised to ¢) in MINUIT
a121d ROBUST methods for Pb-Au’95 data. As one can see, the
1)\(/1 I— 1\;13111’11?5 n::t}l;(l)\ill—.PAM are much lower than such values for the
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Figure 1: x? distributions.
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8 Conclusion

Various approaches to the effective and precise determination of

characteristics of signals detected by the SiDD tracking system
of the CERES spectrometer were studied in conditions of the
high multiplicity of Pb-Pb collision experiment. The study was
focused on the most delicate problem of the fast and most accu-
rate resolution of overlapping signals. In the assumption of the
symmetrical gaussian-like signal shape the problem was reduced
to the case of handling of one-dimentional histograms. For the
majority of cases when digitized signals are overlapped, but still
distinguished the parabolic approximation method (PAM) is pro-
posed for the effective calculation of sucl signal parameters as its
position and amplitude. The linearization method (LM) was de-
veloped for providing the initial parameter values for the PAM
iteration scheme. One of the PAM advantages is its possibility to
be generalized for a non-gausidn shape of the signal. One more
SEM procedure for sequential one-by-one signal elimination was
developed, which features are promising for processing of multi-
peak clusters. '

The developed procedures were then generalized on the case of
correlated noise. In the most complicate cases of overlapping sig-
nals when they are undistinguishable producing an unimodal his-
togram the comparable analysis of three computational schemes:
SEM-PAM, LM-Pam and MINUIT was fulfilled on simulated
data. It shows that for the acceptable precision (~ 0.1 of time-
bin) LM-PAM procedure is the fastest (one order of magnitude
faster then MINUITE) with the confident resolution of two sig-
nals, if they are not closer then o, (otherwise oue would has a
dramatic lost of accuracy and increase of computing time).
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