


1 Introduction

The CERES experiment studies the production of low-mass electron pairs in
proton-proton, proton-nucleus, and nucleus-nucleus collisions at the CERN

SPS.

Vertex and track reconstruction in the experiment is based on the information
of two silicon drift detectors SDD-1 and SDD-2 [1] situated about 9 cm behind
the extended, segmented target (see Fig. 1). They cover the full spectrometer
acceptance of 8° to 15° for all target disks. The specific target used for the
160 GeV/u Pb beam is segmented into 8 individual disks of 600 pum diameter
and 25 pm thickness, equidistantly spaced along the beam direction by 2.9
mm each. This target design allows a larger interaction rate while keeping the
photon conversion probability within the spectrometer acceptance low (X/X,

= 0.37%).

We are dealing here with two sets of hits from each detector. The target
and SDD doublet are located in a low magnetic field region and the particle
trajectories are straight lines connecting the corresponding hits in SDD-1 and

SDb-2.

SDD-1 SDD-2
/L// °
20mm P e | Tmax
BEAM 7’ U U |"min '
umm
b 85 mm
TARGET
(8x25 WmAu)
-‘—h

15mm

Fig. 1. Geometry of the SDD uoublet and segmented target. The acceptance of the
CERES spectrometer is indicated

2 Least Squares Formulation of the Problem

Let (zi1,y0), 21 = 1,...,n1 and (22, ¥i2), 22 = 1, ..., ny be the measured points
from SDD-1 and SDD 2 respectively, with some number of background points
among them. In this case the conventional least-square method (LSM)
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for estimating the vertex coordinates z,,, ¥, aud z, can be based on minimizing
the functions

L xU)yU ZU Ewl 3! (1)

L"(xu, Yo, zv) = E wie:',2’ (2)

where e! and e are residuals and w; are the weights assigned. The value €} is a
measure for the deviation of a SDD-1 hit with coordinates z;1, y:1, 2;1 from the
line which passes through the vertex (z,,%, 2,) and its corresponding SDD-2
hit with coordinates z;,, ¥iz, zi2, in the SDD-1 position
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N Zi2 — 2y .

The value €/ is a measure for the deviation of a vertex point z,,y,, 2, from
the straight line, given by the corresponding hits from SDD-1 and SDD-2 in
the z, position of the vertex
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The fundamental LSM assumption is that the residuals, or the deviations from
the measured point, are normally distributed. However, this is true only in the
case of a clean sample which is not contaminated with background. The dis-
tribution of residuals including a background fraction e can be approximated
as in the gross-error model invented by J. W. Tukey:

fle) = (1 —e)d(e) + eh(e)
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with a normal distribution ¢(e) = exp(—e?/20?)/o+/2n and a background
h(e), which is assumed to be uniform (h(e) = ho in some interval of the
width o <« 1/hg). The background level ¢ varies considerably depending on

the experimental environment. 1t is evident that in this case the weight of

distant background points in the LSM functions (1) and (2) is inappropriate
and leads to unnecessary large errors in the estimated parameters z,, y, and

Zy. A possibility to cut-ofl large residuals is to introduce a new parameter and
take only residuals smaller than this parameter into account. However, in such
a case the obtained result would be strongly influenced by the initial values
of z,, ¥y, and z,.

3 Summed Gaussian Weights

To avoid the problems mentioned above, the LSM function can be replaced by -
another one, which introduces a smooth cut-off for distant hits. In particular,
in [2] it was proposed to minimize the following function

L(Im Yu, Z'U) == E emp[—ei2/20'2] (6)

which has been used up to now for determination of the vertex for CERES
data. A suitably chosen o is assumed to be constant for all data points. The
reason for the choice of function (6) can be illustrated by the expansion of L,
which shows the similarity between this estimation and an unweighted least
square method with w; = (202)_1 for small e;,
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xu,yu,~u)——n+2202 ‘E:ﬁ-{-..., (7)

while for larger e; the corresponding summands L; decrease exponentially,
suppressing the influence of strongly deviating hits. As one can see, the second
term in the previous expansion corresponds to the function which follows from
the unweighted least square method. Since the residuals for the hits that truly
belong to the particle track are normal-distributed the obtained minimum
can, to some extent, be interpreted on the basis of a x* distribution. Looking
for the minimum of function (6) and differentiating it with respect to cach
coordinate of the vertex one obtains a system of non-linear equations. The
function itself cannot be: linearized without loosing its properties. Therefore,
a traditional function minimizing package had to be used. The initial values
for z, and y, are set to 0, which should be the position of the center of target
disks in the xy-plane. In order to obtain a starting value 22 for the extended
target, prior to fitting, a scan is performed by stepping a + 2 cin region (in z)
around the center of the target. The found minimum of L defines the starting
value for z.
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4 Robust Method for Vertex Reconstruction

As was mentioned before we are dealing with a contaminated data set of
points in a sense thal some points ("outliers”) lie far from the track to be
reconstructed. Such outliers can spoil the estimates of vertex coordinates .,
y, and z, if their weights w; are compatible with the weights of useful points.
For this case we propose the robust estimation of 2., y, and z, based on the
iterative reweighted least square estimation of z,, y, and z,.

4.1 Optimal choice of the weight function in the weighted least square

Since the residuals ¢; are non-Gaussian distributed we use a more general
approach, i.e.,the maximum likelihood (ML) method. An analogous approach
was successfully used by P. Huber [3] and leads to the so-called M-estimates of
the parameters in question. But we carry out our approach in a different way.
Keeping in mind that the corresponding ML-functional is strongly non-linear
(leading to considerably computing difficulties), we transform the functional
partial derivatives in a view, which allows to reduce the problem to optimal
choice of the weight function in the weighted least square sum. The logarith-
mic likelihood function for measured deviations e; distributed according to
equation (5) is

n n (1 —_— i2 V
lngf(ei) :;ln(‘:\—/a_%exp(—;?)—f-fho). (8)

After differentiating eq. (8) with respect to z,, y, and z, and dividing by

(1 — 6)0'"1(2%)'%exp(—ei2/202),

we obtain a conventional LSM system of normal equations

de;
Ewiogeié“zv =0
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with the optimal weight function
1+c¢

SEEEL L. (10)
1+ c-exp (g—)

Wopt(t) =

where with t we denote the ratio e/g. The only parameter

¢ = (1 — ¢y echoV2n

is the ratio of the mean number of noise hits to the mean number of useful hits
within an interval ov2x. Thus it is determined by the contamination of data
not in the whole range of the sample but within its essential part where all
useful observations are concentrated. Like in our case. the value of ¢ is often
ronghly known in experimental models. The factor (1 + ¢} is introduced to
fultit w(0) = 1. The approximation of wep(t) by a fourth order polynomial
Jeads to the famous Tukey's bi-squared weights [4]

A < e
(1) = (l—(//(I)) f|f|< 7 (n

0-  otherwise
Here, with e we denote Tukey's constant.

4.2 Cdleulalion of vertex coordinates with robust approach

To tind the vertex coordinates x,. g, and =, we need to solve the LSM system
(9) for either of the residuals ¢/; or ¢”; given with eq. (3) and (4). respectively.

Dealing with function L'(y, Yo, ), €., with €/; residuals we get a system of
equations which is not simple to solve because they contain a term (2,2 —z.) in
the denominator. To avoid this problem function L'{a .. yu. 20) can be linearized
by multiplying it with an approximately constant term (22 — 2.}, so we can
deal with the function

~2
L&y Yus Z0) = Zw;l"i, (12)

where ¢, = (zip — zu)el

In this case, evaluating e; from equation system (9) with ¢/;, one has to solve
the corresponding system of linear equations:
Alx, + Bz, =
Ay, + E'z, =F (13)
Ba,+ By, + 'z, = 1,



where we denote

A= Ywilziz —2a)"s B'= L wi(ra — xi2)(zi2 — 2i1)
' = Y wilzialra — va)(ze — 2a) + L2z — 2a)’]

E' = Ywilya — ya)lza — za)

F' = Y wilzialya — y2)(z2 — 2a) + yaalz — za)’]

G = Twil(za — ca) + (ya — y2)’]

H' = Cwilzialzan — 22) + rizie — 2a)(xa — ) + zalya — y2)'+

yir{ 2i2 — za )y — ¥i2)-

From the equation system {13) we have

z, = ("= B'z,) A,
¥y, = (F' = F'z,) A"

where

2

5, = (AH' — E'F' — B'C")/(AG' — B" — E?).

Dealing with €”; residuals we go straight to the solution. In this case one
should solve the following system of linear equations
A”I + Bllzu — PII
A”y,, + D”Zv —_ Q” (15)
B”.’Eu + D”yu + F”ZU — RH,

where we denote

" __ . "o__ 21 12, " o__ i .
A" = E wy; B = E wi———; " = E W;iiy;

22— 2

D" = Z wi__yn — y.'z; E' = Zwiyn;
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P = P Bu + C”; Q” — ZlD” + E”; RII — Z]F” + ar.

z; is the z-position of the SDD-1.
From the equation system (15) we have

T, = [B”(Z] — zu) + CII]/AII;
Yy = [D”(Zl — zu) + E”]/A”;

(16)

Zy = 21 + (AHGII _ D”E” _ B”C”)/(A”F” _ B”2 . D”Z).4

The weights in the above expressions are computed iteratively using Tukey’s
weight formula

(1= (e /(er + 66=0))2)2 if [eP)] < cp # 54D

0 otherwise

where e.,(k) is the residual of either of the deviations e or ¢"; obtained at the
k-th iteration, and &(*~1) is the estimate of variance which is evaluated as [5]

B2 = Z wl(k)(e'(.k))Z/ Z wi(k).

For our calculations we have varied the comstant ¢z and obtained the best
resolutions of vertex coordinates for cr ~ 3. Instead of scanning the 8 targets
to determine the initial parameters, as it was done for the Gaussian summed
weights (SGW), the center of the target region with z, = y,(9 = 0 and %,
was used as the starting value for the first iteration.

5. Calculation Results

In this section we compare the results for the vertex reconstruction obtained
with the Summed Gaussian Weights (SGW) approach and the robust ap-
proach.The underlying sample consists of 4000 Pb + Au events. In the fol-
lowing, the results for the SGW method were obtained by using €] residuals
in function (6), the results for the robust approach were obtained by using’
¢! residuals in equation system (9). It should be noted that the usage of e!

residuals leads essentially to the same results.
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Fig. 2. Reconstructed z-coordinates of the vertices fitted with eight Gaussians cor-

responding to eight target disks obtained with the SGW approach
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Fig. 3. Reconstructed z-coordinate of the vertices fitted with eight Gaussians corre-
sponding to eight target disks obtained with the robust approach

Figures 2 and 3 show the vertex z-coordinate distribution for the case of the
SGW and the robust method, respectively. As one can see from the resulting
histograms, both distributions reflect nicely the target region. Each of the
disks is clearly seen as a peak in the distribution. All peaks have Gaussian
form, which is illustrated by the fitted Gaussians.

The different resolutions obtained by fitting each of the peaks individually are
shown in Table 1 for both cases. The robust approach gives a slightly better
resolution for each disk. This was confirmed by tests of both methods with
Monte-Carlo generated data, which also resulted in a better resolution of all
vertex coordinates, obtaned with the robust approach.
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Fig. 1. Reconstructed x coordinate of the vertices obtained with the SGW and the
robust approach fitted by Gaussian -
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Fig. 5. Reconstructed y coordinates of the vertices obtained with the SGW and the
robust approach fitted by Gaussian

The distributions of the x and y coordinates of the vertex obtained by each
algorithm are shown in Fig. 4 and Fig. 5 respectively. Here, the two methods
give very similar results both in the mean .and  inthe- width of the
obtained distributions.

lu practice, a reasonable accuracy of the geometric position of the vertex,
obtained by the robust approach, is already achieved after several iterations.’
FFig. 6 shows the distribution of number of iterations per event for the robust
weights approach. As one can see, 5 iterations on average are enough to find
the minimum. It means that the robust iterative procedure for vertex recon-
struction is about an order of magnitude faster than standard general purpose
packages for minimization (for example MINUIT[G]).
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Fig. 6. Number of iterations per event with the robust approach

Table 1.
z-resolutions obtained with SGW and robust fit
disk No. | rms (SGW) [um] | rms (robust) {j2m)]
1 307 264
2 322 287
3 361 289
4 327 329
5 386 344
6 396 337
7 409 372
8 461 395
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Fig. 7. Local track accuracy of the silicon drift detectors, radial and azimuthal
residuals in SDD-1 for tracks defined by the vertex and a hit in SDD-2 (SGW: solid
line, robust: dashed line)
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Local track accuracy of the silicon drift chambers, radial and azimuthal resid-
uals in SDD-1 for tracks defined by the interaction vertex and a hit iu SDD-2,
are shown in Fig. 7. Results obtained with both algorithms are shown. As can
he seen from the tigure. hoth approaches lead to almost the same distributions
of Ar and Ay residuals (o, ~ 6 mrad, o, ~ 100 gm). The track resolution
results from the combined effect of the intrinsic resolution of the chambers.
the vertex resolution and -the multiple scattering.

.

6 Conclusion

We presented results on vertex reconstruction for CERES data obtained with
SGW approach and robust approach. Both algorithins give good results clearly
reflecting the target region profile. The vertex x-y coordinate resolutions ob-
tained by both methods are almost the same. the z-resolution is somewhat
improved by robust method.

"The advantage of the robust approach. as an iterative method. is its insensi-
Livity to the choice of initial values for the parameters in question. Starting
from the middle of the seginented target we come to the right position after
~ b iterations. The robust fitting approach allows to reconstruct the vertex
coordinates without using standard general purpose packages for minimiza-
tion. This results in a cousiderable increase in speed, a very important factor
for the time consuming mass-production stage of the analysis of huge data
samples.
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