ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯЯЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

$96-444$
E10-96-444
G.Agakishiev ${ }^{1}$, O. Barannikova², F.Ceretto ${ }^{3}$,
U.Faschingbauer ${ }^{3}$, ${ }^{\text {P.Glässel }}$, E.Kolganova, G.
Yu.Panebratsev ${ }^{1}$, J.Rak ${ }^{3}$, N.Saveljic ${ }^{\text {a }}$, Th.Ullrich
J.P.Wurm

Submitted to «Nuclear Instruments and Methods»

[^0]
1 Introduction

The CERES experiment studies the production of low-mass electron pairs in proton-proton, proton-nucleus, and nucleus-nucleus collisions at the CERN SPS.

Vertex and track reconstruction in the experiment is based on the information of two silicon drift detectors SDD-1 and SDD-2 [1] situated about 9 cm behind the extended, segmented target (see Fig. 1). They cover the full spectrometer acceptance of 8° to 15° for all target disks. The specific target used for the $160 \mathrm{GeV} / \mathrm{u} \mathrm{Pb}$ beam is segmented into 8 individual disks of $600 \mu \mathrm{~m}$ diameter and $25 \mu \mathrm{~m}$ thickness, equidistantly spaced along the beam direction by 2.9 mm each. 'This target design allows a larger interaction rate while keeping the photon conversion probability within the spectrometer acceptance low $\left(X / X_{0}\right.$ $=0.37 \%$).

We are dealing here with two sets of hits from each detector. The target and SDD doublet are located in a low magnetic field region and the particle trajectories are straight lines connecting the corresponding hits in SDD-1 and SDD-2.

Fig. 1. Geometry of the SDD doublet and segmented target. The acceptance of the CERES spectrometer is indicated

2 Least Squares Formulation of the Problem

Let $\left(x_{i 1}, y_{i 1}\right), i_{1}=1, \ldots, n_{1}$ and $\left(x_{i 2}, y_{i 2}\right), i_{2}=1, \ldots, n_{2}$ be the measured points from SDD-1 and SDD-2, respectively, with some number of background points among them. In this case the conventional least-square method (LSM)
for estimating the vertex coordinates x_{v}, y_{v} and z_{v} can be based on minimizing the functions

$$
\begin{align*}
& L^{\prime}\left(x_{v}, y_{v}, z_{v}\right)=\sum w_{i} e_{i}^{\prime 2} \tag{1}\\
& L^{\prime \prime}\left(x_{v}, y_{v}, z_{v}\right)=\sum w_{i} e_{i}^{\prime \prime 2} \tag{2}
\end{align*}
$$

where e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are residuals and w_{i} are the weights assigned. The value ϵ_{i}^{\prime} is a measure for the deviation of a SDD-1 hit with coordinates $x_{i 1}, y_{i 1}, z_{i 1}$ from the line which passes through the vertex $\left(x_{v}, y_{v}, z_{v}\right)$ and its corresponding SDD-2 hit with coordinates $x_{i 2}, y_{i 2}, z_{i 2}$, in the SDD-1 position

$$
\begin{align*}
e_{i}^{\prime}= & \left(\left\{x_{i 1}-x_{i 2}+\frac{z_{i 2}-z_{i 1}}{z_{i 2}-z_{v}}\left(x_{i 2}-x_{v}\right)\right\}^{2}+\right. \\
& \left.\left\{y_{i 1}-y_{i 2}+\frac{z_{i 2}-z_{i 1}}{z_{i 2}-z_{v}}\left(y_{i 2}-y_{v}\right)\right\}^{2}\right)^{\frac{1}{2}} \tag{3}
\end{align*}
$$

The value $e_{i}^{\prime \prime}$ is a measure for the deviation of a vertex point x_{v}, y_{v}, z_{v} from the straight line, given by the corresponding hits from SDD-1 and SDD-2 in the z_{v} position of the vertex

$$
\begin{align*}
e_{i}^{\prime \prime}= & \left(\left\{x_{v}-x_{i 1}-\frac{z_{v}-z_{i 1}}{z_{i 2}-z_{i 1}}\left(x_{i 2}-x_{i 1}\right)\right\}^{2}+\right. \\
& \left.\left\{y_{v}-y_{i 1}-\frac{z_{v}-z_{i 1}}{z_{i 2}-z_{i 1}}\left(y_{i 2}-y_{i 1}\right)\right\}^{2}\right)^{\frac{1}{2}} . \tag{4}
\end{align*}
$$

The fundamental LSM assumption is that the residuals, or the deviations from the measured point, are normally distributed. However, this is true only in the case of a clean sample which is not contaminated with background. The distribution of residuals including a background fraction ϵ can be approximated as in the gross-error model invented by J. W. Tukey:

$$
\begin{equation*}
f(e)=(1-\epsilon) \phi(e)+\epsilon h(e) \tag{5}
\end{equation*}
$$

with a normal distribution $\phi(e)=\exp \left(-e^{2} / 2 \sigma^{2}\right) / \sigma \sqrt{2 \pi}$ and a background $h(e)$, which is assumed to be uniform $\left(h(e)=h_{0}\right.$ in some interval of the width $\sigma \ll 1 / h_{0}$). The background level ϵ varies considerably depending on the experimental environment. It is evident that in this case the weight of distant background points in the LSM functions (1) and (2) is inappropriate and leads to unnecessary large errors in the estimated parameters x_{v}, y_{v} and
z_{w}. A possibility to cut-off large residuals is to introduce a new parameter and take only residuals smaller than this parameter into account. However, in such a case the obtained result would be strongly influenced by the initial values of x_{v}, y_{v} and z_{v}.

3 Summed Gaussian Weights

To avoid the problems mentioned above, the LSM function can be replaced by another one, which introduces a smooth cut-off for distant hits. In particular, in [2] it was proposed to minimize the following function

$$
\begin{equation*}
L\left(x_{v}, y_{v}, z_{v}\right)=-\sum \exp \left[-e_{i}^{2} / 2 \sigma^{2}\right] \tag{6}
\end{equation*}
$$

which has been used up to now for determination of the vertex for CERES data. A suitably chosen σ is assumed to be constant for all data points. The reason for the choice of function (6) can be illustrated by the expansion of L, which shows the similarity between this estimation and an unweighted least square method with $w_{i}=\left(2 \sigma^{2}\right)^{-1}$ for small e_{i},

$$
\begin{equation*}
L\left(x_{v}, y_{v}, z_{v}\right)=-n+\sum \frac{e_{i}^{2}}{2 \sigma^{2}}-\frac{1}{2} \sum \frac{e_{i}^{4}}{4 \sigma^{4}}+\ldots \tag{7}
\end{equation*}
$$

while for larger e_{i} the corresponding summands L_{i} decrease exponentially, suppressing the influence of strongly deviating hits. As one can see, the second term in the previous expansion corresponds to the function which follows from the unweighted least square method. Since the residuals for the hits that truly belong to the particle track are normal-distributed the obtained minimum can, to some extent, be interpreted on the basis of a χ^{2} distribution. Looking for the minimum of function (6) and differentiating it with respect to cach coordinate of the vertex one obtains a system of non-linear equations. The function itself cannot be linearized without loosing its properties. Therefore, a traditional function minimizing package had to be used. The initial values for x_{v} and y_{v} are set to 0 , which should be the position of the center of target disks in the xy-plane. In order to obtain a starting value z_{v}^{0} for the extended target, prior to fitting, a scan is performed by stepping a $\pm 2 \mathrm{~cm}$ region (in z) around the center of the target. The found minimum of L defines the starting value for z.

4 Robust Method for Vertex Reconstruction

As was mentioned before we are dealing with a contaminated data set of points in a sense that some points ("outliers") lie far from the track to be reconstructed. Such outliers can spoil the estimates of vertex coordinates x_{v}, y_{v} and z_{v} if their weights w_{i} are compatible with the weights of useful points. For this case we propose the robust estimation of x_{v}, y_{v} and z_{v} based on the iterative reweighted least square estimation of x_{v}, y_{v}, and z_{v}.

4.1 Optimal choice of the weight function in the weighted least square

Since the residuals e_{i} are non-Gaussian distributed we use a more general approach, i.e., the maximum likelihood (ML) method. An analogous approach was successfully used by P. Huber [3] and leads to the so-called M-estimates of the parameters in question. But we carry out our approach in a different way. Keeping in mind that the corresponding ML-functional is strongly non-linear (leading to considerably computing difficulties), we transform the functional partial derivatives in a view, which allows to reduce the problem to optimal choice of the weight function in the weighted least square sum. The logarithmic likelihood function for measured deviations e_{i} distributed according to equation (5) is

$$
\begin{equation*}
\ln \prod_{i=0}^{n} f\left(e_{i}\right)=\sum_{i=0}^{n} \ln \left(\frac{(1-\epsilon)}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{e_{i}^{2}}{2 \sigma^{2}}\right)+\epsilon h_{0}\right) \tag{8}
\end{equation*}
$$

After differentiating eq. (8) with respect to x_{v}, y_{v} and z_{v} and dividing by

$$
(1-\epsilon) \sigma^{-1}(2 \pi)^{-\frac{1}{2}} \exp \left(-e_{i}^{2} / 2 \sigma^{2}\right)
$$

we obtain a conventional LSM system of normal equations

$$
\left\{\begin{array}{l}
\sum w_{i} \frac{1}{\sigma^{2}} e_{i} \frac{\partial e_{i}}{\partial x_{v}}=0 \tag{9}\\
\sum w_{i} \frac{1}{\sigma^{2}} e_{i} \frac{\partial e_{i}}{\partial y_{v}}=0 \\
\sum w_{i} \frac{1}{\sigma^{2}} e_{i} \frac{\partial e_{i}}{\partial z_{v}}=0
\end{array}\right.
$$

with the optimal weight function

$$
\begin{equation*}
w_{o p t}(t)=\frac{1+c}{1+c \cdot \dot{\exp }\left(\frac{t^{2}}{2}\right)} \tag{10}
\end{equation*}
$$

where with t we denote the ratio e/ σ. The only parameter

$$
c=(1-t)^{-1} t \sigma h_{0} \sqrt{2 \pi}
$$

is the ratio of the mean mumber of noise hits to the mean number of useful hits within an interval $\sigma \sqrt{2 \pi}$. Thus it is deternined by the contamination of data not in the whole range of the sample but within its essential part where all useful observations are concentrated. Like in our case. the value of r is often ronghly known in experinnental models. The factor $(1+c)$ is introduced to fultil $w(0)=1$. The approximation of $u_{\text {opt }}(t)$ be a fourth order polynomial leads to the famous Tukey's bi-squared weights [4]

$$
w(l)=\left\{\begin{array}{r}
\left(1-(l / c \tau)^{2}\right)^{2} \text { if }|t|<c \gamma \tag{11}\\
0 \cdot \text { otherwise }
\end{array}\right.
$$

Here, with ra we denote Tukey's constant.

4.2 (alculation of vertex coordinates with robust approach

To find the vertex coordinates $x_{1,}, y_{n}$ and z_{2}, we need to solve the LSM system (9) for either of the residuals ϵ_{i}^{\prime} or $\epsilon^{\prime \prime}{ }_{i}$ given with eq. (3) and (4), respectively.

Dealing with function $L^{\prime}\left(x_{v}, y_{v}, z_{v}\right)$, i.e., with ϵ_{i}^{\prime} residuals we get a system of equations which is not simple to solve because they contain a term $\left(z_{i 2}-z_{1}\right)$ in the denominator. To avoid this problem function $L^{\prime}\left(x_{v}, y_{v}, z_{v}\right)$ can be linerarized by multiplying it with an approximately constant term $\left(z_{i 2}-z_{x}\right)$, so we can deal with the function

$$
\begin{equation*}
\widetilde{L^{\prime}}\left(x_{v}, y_{v}, z_{v}\right)=\sum w_{i} \overline{\mathfrak{e}}_{i}^{\prime 2} \tag{12}
\end{equation*}
$$

where $\tilde{\mathrm{e}}_{i}=\left(z_{i 2}-z_{v}\right) c_{i}^{\prime}$.
In this case, evaluating ϵ_{i} from equation system (9) with \tilde{c}_{i}, one has to solve the corresponding system of linear equations:

$$
\begin{cases}A^{\prime} x_{v}+B^{\prime} z_{v} & =C^{\prime} \tag{13}\\ A^{\prime} y_{v}+E^{\prime} z_{v} & =F^{\prime} \\ B^{\prime} x_{v}+E^{\prime} y_{v}+G^{\prime} z_{v} & =H^{\prime}\end{cases}
$$

where we denote

$$
\begin{aligned}
& A^{\prime}=\sum w_{i}\left(z_{i 2}-z_{i 1}\right)^{2} ; B^{\prime}=\sum w_{i}\left(x_{i 1}-x_{i 2}\right)\left(z_{i 2}-z_{i 1}\right) \\
& C^{\prime}=\sum w_{i}\left[z_{i 2}\left(x_{i 1}-x_{i 2}\right)\left(z_{i 2}-z_{i 1}\right)+x_{i 2}\left(z_{i 2}-z_{i 1}\right)^{2}\right] \\
& E^{\prime}=\sum w_{i}\left(y_{i 1}-y_{i 2}\right)\left(z_{i 2}-z_{i 1}\right) \\
& F^{\prime}=\sum w_{i}\left[z_{i 2}\left(y_{i 1}-y_{i 2}\right)\left(z_{i 2}-z_{i 1}\right)+y_{i 2}\left(z_{i 2}-z_{i 1}\right)^{2}\right] \\
& G^{\prime}=\sum w_{i}\left[\left(x_{i 1}-x_{i 2}\right)^{2}+\left(y_{i 1}-y_{i 2}\right)^{2}\right] \\
& H^{\prime}=\sum w_{i}\left[z_{i 2}\left(x_{i 1}-x_{i 2}\right)^{2}+x_{i 2}\left(z_{i 2}-z_{i 1}\right)\left(x_{i 1}-x_{i 2}\right)+z_{i 2}\left(y_{i 1}-y_{i 2}\right)^{2}+\right. \\
& \quad y_{i 2}\left(z_{i 2}-z_{i 1}\right)\left(y_{i 1}-y_{i 2}\right) .
\end{aligned}
$$

From the equation system (1:3) we have

$$
\left\{\begin{array}{l}
x_{v}=\left(C^{\prime}-B^{\prime} z_{v}\right) / A^{\prime} \tag{14}\\
y_{v}=\left(F^{\prime}-E^{\prime} z_{v}\right) / A^{\prime}
\end{array}\right.
$$

where

$$
z_{v}=\left(A^{\prime} H^{\prime}-E^{\prime} F^{\prime}-B^{\prime} C^{\prime}\right) /\left(A^{\prime} G^{\prime}-B^{\prime 2}-E^{\prime 2}\right)
$$

Dealing with $e_{i}^{\prime \prime}$ residuals we go straight to the solution. In this case one should solve the following system of linear equations

$$
\left\{\begin{array}{r}
A^{\prime \prime} x_{v}+B^{\prime \prime} z_{v}=P^{\prime \prime} \\
A^{\prime \prime} y_{v}+D^{\prime \prime} z_{v}=Q^{\prime \prime} \tag{15}\\
B^{\prime \prime} x_{v}+D^{\prime \prime} y_{v}+F^{\prime \prime} z_{v}=R^{\prime \prime}
\end{array}\right.
$$

where we denote

$$
\begin{aligned}
& A^{\prime \prime}=\sum w_{i} ; B^{\prime \prime}=\sum w_{i} \frac{x_{i 1}-x_{i 2}}{z_{i 2}-z_{1}} ; C^{\prime \prime}=\sum w_{i} x_{i 1} \\
& D^{\prime \prime}=\sum w_{i} \frac{y_{i 1}-y_{i 2}}{z_{i 2}-z_{1}} ; E^{\prime \prime}=\sum w_{i} y_{i 1} \\
& F^{\prime \prime}=\sum w_{i}\left[\left(\frac{x_{i 2}-x_{i 1}}{z_{i 2}-z_{1}}\right)^{2}+\left(\frac{y_{i 2}-y_{i 1}}{z_{i 2}-z_{1}}\right)^{2}\right] \\
& G^{\prime \prime}=\sum w_{i}\left[x_{i 1}\left(\frac{x_{i 1}-x_{i 2}}{z_{i 2}-z_{1}}\right)+y_{i 1}\left(\frac{y_{i 1}-y_{i 2}}{z_{i 2}-z_{1}}\right)\right]
\end{aligned}
$$

$$
P^{\prime \prime}=z_{1} B^{\prime \prime}+C^{\prime \prime} ; \quad Q^{\prime \prime}=z_{1} D^{\prime \prime}+E^{\prime \prime} ; \quad R^{\prime \prime}=z_{1} F^{\prime \prime}+G^{\prime \prime}
$$

z_{1} is the z-position of the SDD-1.
From the equation system (15) we have

$$
\left\{\begin{array}{l}
x_{v}=\left[B^{\prime \prime}\left(z_{1}-z_{v}\right)+C^{\prime \prime}\right] / A^{\prime \prime} \tag{16}\\
y_{v}=\left[D^{\prime \prime}\left(z_{1}-z_{v}\right)+E^{\prime \prime}\right] / A^{\prime \prime}
\end{array}\right.
$$

where

$$
z_{v}=z_{1}+\left(A^{\prime \prime} G^{\prime \prime}-D^{\prime \prime} E^{\prime \prime}-B^{\prime \prime} C^{\prime \prime}\right) /\left(A^{\prime \prime} F^{\prime \prime}-B^{\prime 2}-D^{\prime 2}\right)
$$

The weights in the above expressions are computed iteratively using Tukey's weight formula

$$
w_{i}^{k}=\left\{\begin{array}{r}
\left(1-\left(e_{i}^{(k)} /\left(c_{T} * \hat{\sigma}^{(k-1)}\right)\right)^{2}\right)^{2} \mathrm{if}\left(e_{i}^{(k)}\right) \leq c_{T} * \hat{\sigma}^{(k-1)} \\
0 \text { otherwise }
\end{array}\right.
$$

where $e_{i}^{(k)}$ is the residual of either of the deviations e_{i}^{\prime} or ${\widetilde{e^{\prime \prime}}}_{i}$ obtained at the k -th iteration, and $\hat{\sigma}^{(k-1)}$ is the estimate of variance which is evaluated as [5]

$$
\hat{\sigma}^{(k) 2}=\sum w_{i}^{(k)}\left(e_{i}^{(k)}\right)^{2} / \sum w_{i}^{(k)}
$$

For our calculations we have varied the constant c_{T} and obtained the best resolutions of vertex coordinates for $c_{T} \simeq 3$. Instead of scanning the 8 targets to determine the initial parameters, as it was done for the Gaussian summed weights (SGW), the center of the target region with $x_{v}{ }^{(0)}=y_{v}{ }^{(0)}=0$ and $z_{v}{ }^{(0)}$ was used as the starting value for the first iteration.

5. Calculation Results

In this section we compare the results for the vertex reconstruction obtained with the Summed Gaussian Weights (SGW) approach and the robust approach. The underlying sample consists of $4000 \mathrm{~Pb}+\mathrm{Au}$ events. In the following, the results for the SGW method were obtained by using e_{i}^{\prime} residuals in function (6), the results for the robust approach were obtained by using $e_{i}^{\prime \prime}$ residuals in equation system (9). It should be noted that the usage of \vec{e}_{i}^{\prime} residuals leads essentially to the same results.

Fig. 2. Reconstructed z-coordinates of the vertices fitted with eight Gaussians corresponding to eight target disks obtained with the SGW approach

Fig. 3. Reconstructed z-coordinate of the vertices fitted with eight Gaussians corresponding to eight target disks obtained with the robust approach

Figures 2 and 3 show the vertex z-coordinate distribution for the case of the SGW and the robust method, respectively. As one can see from the resulting histograms, both distributions reflect nicely the target region. Each of the disks is clearly seen as a peak in the distribution. All peaks have Gaussian form, which is illustrated by the fitted Gaussians.

The different resolutions obtained by fitting each of the peaks individually are shown in Table 1 for both cases. The robust approach gives a slightly bettel resolution for each disk. This was confirmed by tests of both methods with Monte-Carlo generated data, which also resulted in a better resolution of all vertex coordinates, obtaned with the robust approach.

Fig. 4. Reconstructed x coordmate of the vertices obtained with the S(iW and the robust approach fitted by Gaussian

Fig. 5. Reconstructed y coordinates of the vertices obtained with the SGW and the robust approach fitted by Caussian

The distributions of the x and y coordinates of the vertex obtained by each algorithm are shown in Fig. 4 and Fig. 5 respectively. Here, the two methods give very similar results both in the mean and in the width of the obtained distributions.

In practice, a reasonable accuracy of the geometric position of the vertex, obtained by the robust approach, is already achieved after several iterations. Fig. 6 shows the distribution of number of iterations per event for the robust weights approach. As one can see, 5 iterations on average are enough to find the minimum. It means that the robust iterative procedure for vertex reconstruction is about an order of magnitude faster than standard general purpose packages for minmization (for example MINUITT[6]).

Fig. 6. Number of iterations per event with the robust approach
Table 1.
z-resolutions obtained with SGW and robust fit

Fig. 7. Local track accuracy of the silicon drift detectors, radial and azimuthal residuals in SDI)-I for tracks defined by the vertex and a hit in SDD)-2 (SGW: solid line, robust: dashed line)

Local track accuracy of the silicon drift chambers, radial and azimuthal residwals in SDD-1 for tracks defined by the interaction vertex and a hit in SDD-2, are shown in Fig. 7. Results obtained with both algorithms are shown. As can be seen from the figure, both approaches lead to almost the same distributions of $\Delta \mathrm{r}$ and $\Delta \varphi$ residuals ($\sigma_{\varphi} \simeq 6 \mathrm{mrad}, \sigma_{r} \simeq 100 \mu \mathrm{~m}$). The track resolution results from the combined effect of the intrinsic resolution of the chambers. the vertex resolution and the multiple scattering.

6 Conclusion

We presented results on vertex reconstruction for (ERES data obtained with SGW approach and robust approach. Both algorithus give good results clearly reflecting the target region profile. The vertex $x-y$ coordinate resolutions obtained by both methods are almost the same, the z-resolution is somewhat improved by robust method.

The advantage of the robust approach, as an iterative methed is its insensitivity to the chuice of initial values for the parameters in question. Starting from the middle of the segmented target we come to the right position after ~ 5 iterations. The robust fitting approach allows to recoustruct the vertex coordinates without using standard general purpose packages for minimization. This results in a considerable increase in speed, a very important factor for the time consuming mass-production stage of the analysis of huge data samples.

References

[1] U. Faschingbauer et al., Nucl. Instr. and Meth. A 377 (1996) 362.
[2] G. Agakichiev et al., Nucl. Instr. and Meth. A 371 (1996) 243 .
[3] P. Huber, Robust Statistics, I. Willey \& Sons, NY (i98i).
[4] F. Mosteller, W. Tukey, Data Anatysis and Regression: a Second Course in Statistics, Addison - Wesley (1987).
[r] (i. A. Ososkov, Proc. Second International Tampere Conference in Statistics (Tampere, Finland 1987).
[6] MINUIT - Function Minimization and Error Analysis, (:ERN Program Library entry D506

[^0]: ${ }^{\text {IJINR, }} 141980$ Dubna, Russia
 ${ }^{2}$ JINR and Ivanovo State University, Ivanovo, Russia
 ${ }^{3}$ Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
 ${ }^{4}$ Universität Heidelberg, 69120 Heidelberg, Germany
 ${ }^{5}$ JINR and University of Montenegro, Podgorica, Yugoslavia

