


\;clent” number of data points, Wthh must satrsfy condltrons of a; sufﬁcrent smooth-
' ess of their alignment ‘along. a stralght line ora hrgher-order curve.” Th° notion’

T "sufficient” depends on the statlstrcal efﬁcrency of the track recognrtron problem for :

S f,;*'a grven experlment i S e e R ; :
o+ Incases, when the experlmental data are. ‘7D- or 3D- coordrnates 1eglstered by
.a track chamber, ‘the track recognltlon problem is usually solved. by an “exhaustive

a. x — crltenon) i“".

»

[1 2]y as well as relatlvely new approaches llke Hopﬁeld neural networks 13, 4]..

One of the’ detector systems w1dely usecl 1n modern experlments of ‘high ¢ energy R

- Jphysrcs (ATLAS EVA/ESSO) are “high- pressure drrft tubes (HPDT). Each time,

when a passing partlcle track h1ts a tube; it regrsters two data:: ‘its own “center coor- i
: dmate and the drift. radrus ie. the dr1ft dlstance between the pa1t1cle tr acks and the: "
: .-+~ anode wire placed in the center of this’ tube. Thus; a tracl\ passmg the HPDT pro-," -
' “vides-a set’of anode wire coordmates and correspondmg drrft radiiz: Unfortunately,ﬁ
: some of these data can be lost due to the straw. tube- meﬂ‘icrency, besldes anumber 6f - :
‘noise coordlnates is also reglstered addltlonally However, the main problem;" whrch 5
h1nders appllcatrons of above mentioned conventronal track 1ecogn1tron méthods, is

- so-called left- rlght ambrgulty of drift radii. They . do not contain the information on

‘ wh1ch side of the anode wire the track passed. Anode wire coordmates themselves ff»‘ e
o tare very. rough 1nd1cators of partrcle ocations: - So if- one would even 1ecognrze a: .

: subset of these ; pomts belonglng to.a concrete track and. would then apprommate it

by a second-ordér: curve (clrcle -or parabola) the resultrng paramet r.\accuracy wrll,: ’

not be satlsfa.ctory . z,

..~ In this report the algorlthm of track recogmtlon in’ an umform magnetrc ﬁeld 1s' :
oY proposed for the HPDT in the ATLAS design for the- muon spectrometer experrment .
- A solutjon’ of the problem  is ‘given for (x,y) plane’ perpendrcular to. the. magnetrc SR
" field and anodes ‘of drift straw tubes.” Our algorithm is elaborated on the basrs of /-

e ';v(modlﬁcatlons of the Hough transform and deformable template methods e
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sortmg of all data point into subsets. (track candrdates) ‘Then the smoothness of thei =
- data. pomt allgnment for each subset is to.be estimated by some criterion (usually by
ﬁttlng a second order curve toa of 2D prOJectron of these points’ and then applyrng S

The eﬂicrency of the track reconstructron' algorrthm depends on reasonabrlrty of 7

ia clusterlng method applled to group ' data pomts into track candrdates Le.;on the ™

;- _maximum. possrble reducmg of the search trials made by the use(l method over:all Thh
pomts As examples of such reasonable algorlthms one can point out Well l\nown

' methods hke var1able slope hlstogramnung or strmgmg (track followmg) methods"
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2 Formulation of the Problem

The HPDT system for the muon spectrometer consists of the modules formed by
several layers of straw tubes arranged in honeycomb order (see Fig.1). In the middle
of every tube there is an anode wire with known XY-coordinates. All tracks of an

. event passing these layers produce N signals, i.e. set M = {z;,yi;m, i =1,N},

where (z;,y;) are coordinates of the hitt tube centers, r; are drift radii. Let us
suppose, first, that the recognition problem is solved, i.e. from the set M a subset S
was extracted of triplets (2:, yi; i) produced by one of tracks and, probably, also by .
some extra noise tubes. For the sake of simplicity let’s keep for S the same notation,
as for M, i.e. §= {zi,yi;m, i=1,N}. Geometrically the set S can be con51dered
as the set of circles on the plain w1th centers (z;,y;) and radii r;. .

Thus, the mathematical formulation of the problem is to draw the track
line as a parabola y = Az?+ Bz + C tangential to the maximum number of these
little circles from S. .

Let us introduce as a measure of tangency a circle (z;,yi;r;) and a parabola
y = Az? + Bz + C the difference between the distance from the center of the circle
to the parabola and the radius ;. If the circle and parabola are tangential, their
tangency measure is, obviously, equal to zero. Then our problem above formulated
can be reformulated as the following: to find such a parabola (4, B,C) that
minimizes the sum of its tangency measures with all circles from the set

S.

Let us denote by D;(A, B, C) the distance from the center of the circle (z;, y;; ;)

to parabola (A4, B, C)

Di(A, B, C) = mingey {y/(z: — 2)* + (3 — )7} ;

where (z,y) € Az? + Bz +C.
In this form the distance D;(A, B,C) does not satisfy the solving of the problem -

mentioned above. Replacement the part of the parabola near the drift tube on the

straigt line and then for this distance obtained the next form: ‘

A + B /4) + Bz; + C — il
V(2Az; + B2 +1

’D(AB C) =

where R;,; - radius of the drift tube.
This variable can take both positive and negative values. Therefore, the tangency
measure square of those circles (z;, yi; r;) and parabola (A4, B,C) is twofold:
-if Dy(A, B,C) > 0, then

d; = (D.(A,B,O) - r‘.)2,

otherwise

df = (Di(A, B,C) +13)°.
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As in [5, 6] we define the two-dimensional vector 3 = (s}.s7) with admissible
values (1,0),(0,1),(0,0). Let us denote by X the measurement error of the drift

. radius and define a functlonal L depending of five parameters (a,b, R, s7,s}) :

L=§Z{ Fsp A dbst M7+ - 17 (1)
i=1 . N

It’s obvious that the parabola parameters (A, B,C) corresponding to a track in
question would define a point in the parameter space, where our functional L reaches
its global minimum with the conditions that §; = (0,0) means i-th tube 101 the glven
track is the noise tube and the combmatlon &=(,1)is forbidden, i.e.

s+sT <L | @
Thus, to recognize a track one has to:

1. from the set of all measurement A extract a subset S. which as much as
" possible contains all data for one of the tracks; '

2. ﬁnd the L global minimum (although it would be enough to reach its close
vicinity). o

To solve the first problem, we modify the Hough transfortn method [7]. which -
we following to [8] call as a method of sequential histogramming by parameters
(SHPM). Besides of extracting of a subset § SHPM provides also starting values
of the parabola (Ap, Bs, Co) needed to solve the problem on the next step. The
second problem is solved by the deformable template method (DTM) w 1th the special
correction of parameters of obtained tracks.

3 A sequential histogramming method

Let © = {X;,Y;,i = 1, N} be a set of coordinates X;,¥; measured in the process.
of registering an event. So to {2 belong both: coordinates of track points as well as
noise coordinates. A parabola arch is supposed to be a good appm\nnatlon of am ,
track .

Let us consider all triplets of points of the ) set. If these t.hrce points do not,
belong to a straight line, one can draw a parabola through them. ' \s é. result a
set of such parabola parameters is obtained W = {A;,B;,(},j = X} One
could imagine a 3-D histogram constructed on that W-set as a hilly sulface where
hills should most likely correspond to tracks. This idea together with the so-called  ‘
sequential histogramming approach (8] gives us the follomng algorithm for finding
initial track parameters:

1. Parabolas are drawn through all admissible point triplets. Then the parameter
C; of each parabola is histogrammed.



2. The value C,, is obtained corresponding to the maximum,of this histogram.

3. With the fixed C,, parabola are drawn through' all admhsxl)le pair of points
from Q. Then the second parameter B; of each parabola is histogrammed.

4. The value B,, is obtained corresponding to the maximum of this secoud his-
togram.

5. With the fixed parameters C,,, B, parabola are drawn through all admrssrble
points from 2. Then the third parameter A; are lnstogramme(l

6. The value A, is obtained corresponding to the maximum of this third his-
togram. :

Then the obtained parameters (A, Bm,C,,) are subjected to more sophisti-
cated tests and a more precise definition. If results are positive. i.e parameters
(Am, Bm, Cn) are accepted as a true track, all measurements corresponding to it are
eliminated from the set ' and the whole procedure is repeated starting from the
step 1. If the parabola (A, By C) is rejected by testing, then the maximum A,,
of the third A;-histogram is ellmmated and the procedure is repeated starting. from
the step 6.’ If there are no more peaks in the A;-histogram, then the peal\ B,, of
the second hxstogram is eliminated and the plocedure is repeated starting from the
step 4 and so on unless the procedure would find a true parabola or all peaks in

the second histogramm would be eliminated. In this case the peak ', of the first

- histogram is eliminated and the procedure is repeated starting from the step 2.  It’s
clear; that this method of sequential histogramming by parameters (SHPM) gives
us_a possibility to "capture” an area where tracks are likely situated and plovrdes

us by initial parameters of these tracks. In order to apply SHPM the results of .

measurements must have a format of the {1-set, i.e. to be a set of track point coor-
dinates. However, we have instead the set M of little circles {xy,yi;7ms, =1 1, N},
so we have to determine on each of these circles a point associated with some of

tracks. It would not restrain us in applying.of the SHPM, but it should be l\ept:

in mind that the left-and-right uncertainty factor doubles the elements number of
- the set @ = {X;,Y;,i =1,2N} in a comparison thh the numbex of elements in the

original set M = {z;,4i;ri,i =1, N}, where X; = z;and Y = g; +v; or Yi = y; —ri.

+ To decrease the hlstograrnrnmg search dornaln of the Q-set it is necessary to use
the maximum of a priors information. ‘

The SHPM-description of the stresses given above an 1mp01tance of the way used "

to extract a hlstogram peak from a bacl\glound Our e\penence shows that it is

useless to lool(for an umversal peal\ background threshold common for all events of v

a given experlmental run, since this threshold strongly depends on the informative

load of a given event. Aiming a statistical efficiency of our method, we elaboratedk_ ‘
the following heuristical formula for the peak-background threshold of a particular -

event:

Nbound = 5 + Hmea.n’
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. where Hpoz - is the maximum value of the histogram, Hpcan — its mean value.

." Choosing the bin size, one should find a reasonable compromise between either
too small or too big size. The first could lead to the loss of a histogram peak, i.e.
one of tracks, while a big size decreases the accuracy.

4 Deformable template method

After obtaining by SHPM initial values of track parameters and choosing an area

~where this track could lie, we proceed to look for the global minimum of the func-

tional L (-1). One of the main problems here is how to avoid local minima of L
provoked by a stepwise character of the vector 5; = (s},s;) behaviour. One of
the known way to avoid this obstacle is the standard mean field theory (MFT) ap-
proach leads to the simulated annealing schedule [9]. Our system is considered as a
thermostat with the current temperature T [10]. Then as it was shown in {5, 6],
parameters s7 u s; of the functional L with fixed (A, B,C) can be calculated by
the folloWing formulae, where the stepwise behaviour of the vector §; is replaced in
fact onto sigmoidal one:

S;-_ = i d.+ 2 (4)
1+ e T + e T T

1 .
3?— = at at_a- ’ K - (5)

l4e' T e 7

The L global rnlmmum is calculated accordmg to the followmg scheme ’

S 1"."' Three temperature values are taken: high, middle and a temperature in-a
vicinity of zero, as well as three noise levels corresponding to them  [5, 10]."

2. According to the simulated annealing schedule, our scheme is started from the
. high temperature. With initial parabola values (Ao, By, Co) palameters s,*, si
are calculated by formulae ( 4), ( 5).

3. For obtained s¥,s; new parabola parameters A, B, C are calculated by a mod-
~ "ification of the standard gradient descent method. This modification consists
of individual updating of L parameters and of holding a condition '
L(@i, b B) < L{oktt, besr, Rir)- (6)
4. The ending rule is as follows: either
1L(aks e B) — L(@kan by, Rep) < (D)

holds or the iteration number exceeds a prescribed number k = const:



5. If the conditions of the step 4 are not satisfied, then with the new parabola
parameters (Ag41, Bi1,Cry1) next values of sf,s; are again calculated by
(/4),( 5) and we go to the step 3.. :

6. After converging the process with the given temperature, it is changed (systenvlb
is cooled), the values of (A, B, C) achieved with the previous temperature are
taken as starting values and we go to the step 2 again.

7. With each temperature value after completing step 5 the condition

L < Lcuh i . (8)

.is tested. If it satisfied, our scheme is cc;mpleted and the algorithm proceeds A
the next stage of c orrectmg of obtained track parameters (4, B, C). Othelw1se, ‘

~ if with the temperature i in a vicinity of zero we obtain |
. L>Los BN )
then a diaignostic is provided that the track finding scheme failed.

5 Procedure of the track parameter correction

- The deformable template method provides us with track parameters (A4, B, C). How-

“ever, these parameters, even if they satisfy ( 8), could appear rather apart of the
L global ' minimum. Therefore, we have to elaborate an extra stage for the track
parameter correction.

On each circle of the set S:= {z;,y;;r:,i = 1, N} taking in account the corre-
sponding values of §;, a point is found nearest to the track-candidate. Then all these
points are approximated by a parabola and y? value is calculated as a criterion of
their smoothness and fitness quality. :

If lt is hold

‘XZ < XZuta
then' the approximating parameters (A,p, Bap, C’ap) are accepted as true. Otherwxse
the track-candidate is rejected.

While statistical testing of our algorithm efficiency it was found useful to apply
this procedure yet before the deformable templates to track-candidate pa.ra.meters
obtained on the SHPM-stage. The only difference is if one would obtain x? > xZ,,
as the result of this preliminary testing, then the process does not stop, but passes
to the stage of deformable templates

6 Results

The proposed track ‘finding algofithm of the tracks detected by the HPDT system

in a magnetic field was tested on different series of simulated events. The number
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of the tested events = 1000. Example of the tested events you can see on the Fig.
1. The efficiency of correctly recognized events kept in the range 94%-96%. Fig.2,
Fig.3 and Fig.4 shou the distribution of the error for the parameter A, B, C, i. e. ;

|Afind = Amodetls |Bfind = Bmodetls |Ctind = Crmodet|-
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