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---1 · Introduction 
: . ; . • . • • ·• . ·,: . . . . ; .. ·. ·, . . . ·;_ :. ;'. . ,· •. . . .. \l _ 

f. coµv_e~tio11aLtra'ck rec~gnition.problem ca? ,be ~~d~~ed to ~h: searc_h ~o,: 'a "suffic · ,;/ :I 
c1ent" nuII1ber of data pomts, which must satisfy cond1t10ns of a ,' su_ffic1ent . smooth-. , fi! 
ii.es~· of their aligninent along a· st~aight line or a liigher~order c~r;e: The notion· ·; Y:'.'. 

, ., •· ' . ' - -- ! ,• j ~ • " .... ' i ' . . i _,) 

. "su!ficie~t-~ d~pends on the statisticaleffici_!!nfY.~f the track .recognition p~oblem for . -); 
"'a given experiment·-... , · . · : :• ·· : · . ·. · -. · . . ·. • ·: . · ·· •. , 
. •ln·CMes,when ~-he e~periment.aldata are-2D- or3D~coord1nates ~·egistered by. l 
·,, a. tr~~k ~~ambe_r, t~: ti:~ckrecogn_iti~11 prob!~~ is us~ally :solved by a~ e~~-a~stiv_e · ~-- : i 
· sortmg of all data pomt mto subsets,(track cl_l,nd1dates). Then the smoothness of t~e · ' . J 

dattloi~t ?}igiunenff'or each,im,bset is to b_e ~s.ti~atedby son:ie criterio~ (tis11aHy_ by · · 1y 
_ fitt1ig_· ~.5ec?nd ord:r c1;1rve tol ___ C>f ~D,~ro.Ject1~>n of. ·these p°.1}:tsan. d then app.}ymg /j 

,. ax,-:·cntenon). . ,. ·, .•.·. . . . . . . , .· ... ,·;·. ,. .· ... : , . -~ 
. The efficiencyof_ th;e track reconstrudion algorithm depends on reason'ability of. iJ 

: a·cJusteririg.inethod a.pplieg,to group data:pojnts ~ii.to track candidates, i.e;jO_IJ. the .• \J 
_ _,m~xim11m?osstble reducirigof ~hesearch:tri~ls m~de_ by. theuf:dmethod over ~11 · ·!11 

pomts. As examples ofsuch·reasonable algorithms, one can pomt out wen known. l 
.•. II1eth~d~Jike. ~ariabje. slbpe hisfograrl:IJJ.ing. oi'stripgirig. ( ~iack· foll~~!,ng) ,methods. . i 

.[1;-2],' as well as relatively .n~w approaches like Hopfield neural networks i3, 4], . ' ,;j 
. ~n.e of the.detect~r systems .:wid:ly .u __ s~~l in !Il.o1~rn ~x .. p. :eriment_s-of_high.en~rg.y · \! 
physics (ATLAS, EVA/E850) are high· pr_essµre drift tubes (HPDT1, Each time, '! 
when a passing particle track' hits .a ,tube, it registe;s·twodata: its own'center cooi:-. : ,' l 
dinate and'th~ d;if(;adius,·i.e. the drift distance_b~tween t~e p~i·ticl~ tracks and the. '\:I 
anode wire •placed in the center of this tube. Thus, a track passing.the _HPDT ·pro- ,··1· 

vides a set ofanod~ wire coordinates:arid ~orresponding drift radii: lJnfortunately; > • 

. soine of these data can be lost du~ to th~ st~aw, tube ineffidency, besides a ~i:i~ber of _1A1· 

. -~oise c~ordinates i; also registered addition~lly: However, the main problem;which . , 
. hinders applicati9ns·of-above mentioned ~ohventibn~l trad, .1:ecognition methods, is _ l ' 

. · _so-called left~~ight-ambiguity of drift r.adii. They do' not contain t~e irifomiation 013: ,1( 
·which _sid~of the ano<!e wire the track passed. Anode wire_coordinc1;t~s- themselves , (!J · 

_ 'are very r<;mgh indicators· of particle· locations, . So if one would everi · recognize a · · . ; '• • . • • . . . ., • . .· . . . '" . . . . . . l 
subset of these poipts: belonging to .a c<;mcrete track and wot1ld then _appro;icimate it \ 
by a seco~d-order curve ( circle •or parabola),;the resulting parameter accuracy wiH 
not be satisfactory. . . . · . - , . . . . · . . . - . · . 

In this report the algorithn,i of track recognition· in an_ uniform magnetic field is 
proposed for-the _HPDT in the ATLAS design for them_uon'spec~rorrieter_experim~nt .. 
A so.lution of ~he· problem· is given for (x,y) plane perpendicular to.the magnetic 
field and anodesof dri~tstraw tubes: Our algorithm is elaboratedon the basis of 
modifications of the Hough_tran~form and deformable template methods. 
• ' , •• 1 •// ·:·- •• ¥ ~-.,' ,. , • , • .·: •, , .'. •• '·,: .. I • ' ., ~ • • • '. 
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2 Formulation of the Problem 

The HPDT system for the muon spectrometer consists of the modules formed by 
several layers of straw tubes arranged in honeycomb order (see Fig.I). In the middle 
of every tube there is an anode wire with known XY-coordinates. All tracks of an 
event passing these layers produce N signals, i.e. set M = {x;,y;;r;, i = I,N}, 
where (x;, y;) are coordinates of the hitt tube centers, r; are drift radii. Let us 
suppose, first, that the recognition problem is solved, i.e. from the set M a su_bset S 
was extractelof triplets (:r;, y;; r;) produced by one of tracks and, probably, also by 
some extra noise tubes. For the sake of simplicity let's keep for S the same notation, 
as for M, i.e. S = {x;,y;;r;, i = 1,N}. Geometrically the set Scan be considered 
as the set of circles on the plain with centers (x;, y;) and radii r;. 

Thus, the mathematical formulation of the problem is to draw the track 
line as a parabola y = Ax2 + Bx + C tangential to the maximum number of these 
little circles from S. 

Let us introduce as a measure of tangency a circle (x;, y;; r;) and a parabola 
y = Ax2 + Bx+ C the difference between the distance from the ~enter of the circle 
to the parabola and the radius r;. If the circle and parabola are tangential, their 
tangen<;y measure is, obviously, equal to zero. Then our problem above formulated 
can be reformulated as the following: to find such a parabola (A, B, C) that 
minimizes the sum of its tangency measures with all circles from the set 
s. 

Let us denote by D;(A, B, C) the distance from the center of the circle (x;, y;; r;) 
·to parabola (A, B, C) 

D;(A, B, C) = min{x,y}{ /(x; - x)2 + (y; - y)2} 

where (x,y) E Ax2 + Bx +C. 
In this form the distance D;(A, B, C) does not satisfy the solving of the problem 

mentioned above. Replacement the part of the parabola near the drift tube on the 
straigt line and then for this distance obtained the next form: 

D;(A, B, C) ~ IA(x; + R~ubf 4) +Bx;+ C - y;I 

J(2Ax; + B)2 + 1 

where RM - radius of the drift tube. 
This variable can take both positive and negative values. Therefore, the tangency 

measure square of those circles (x;, y;; r;) and parabola (A, B, C) is twofold: 
if D;(A, B, C) > 0, then 

otherwise 

d'i' = (D;(A,B,C) - r;)2, 

dt = (D;(A, B,C) + r;)2 
• 
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Fig. 1. Example·of the event. 
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As in [5, 6] we define the two-dimensional vector s; = (st, s;) with admissible 
values (1, 0), (0, 1 ), (0, 0). Let us denote by ,\ the measurement error of the drift 

. radius and define a functional L depending of five parameters (a, b, R, .,-; , st) : 

N 

L = L { di S; + dt st + ,\( ( S; + st) - 1 )
2

} • (1) 
i=l 

It's obvious that the parabola parameters (A,B,C) corresponding to a track in 
question would define a point in the para~eter space, where our functional L reaches 
its global minimum with the conditions thats;= (0,0) means i-th tube for the given 
track is the noise tube and the combination s; = ( 1, 1) is forbidden, i.e. 

sf+ s'; $ 1. (2) 

Thus, to recognize a track one has to: 

1. from the set of all m~asurement Af extract a subsPt s·. which as much as 
possible contains all data for one of the tracks; 

2. find the L global minimum (although it would be enough .to reach its close 
~icinity). 

To solve the first problem, we modify the Hough transform met hod [i]. which 
we following to [8] call as a method of sequential histogramming by parameters 
(SHPM). Besides of extracting of a subset S SHPIVI provides also starting values 
of the parabola (A0 ,B0 , Co) needed to solve the problem on tlw 1wxt step. The 
second problem is solved by the deformable template method(DTJ\I) with the specia.l 
correction of parameters of obtained tracks. 

3 A sequential histogramming method 

Let n = {X;, Y;, i = 1, N} be a set of coordinates X;, 1·; measmed in the process 
of registering an event. So to n belong both: coordinates of track points as well as 
noise coordinates. A parabola arch ·is supposed to be a good approximation of a1iy 
track. · · 

Let us consider all triplets of points of the n set. If these three points do not 
belong to a straight line, one can draw a para.bola through thPm. As a result a 
set of such parabola parameters is obtained W = {Aj,Bj,C\,j = l. CR,J. One 
could imagine a 3-D histogram constructed on that IV-set as a hilly smface, where 
hills should most likely correspond to tracks. This idea together with the so~called 
sequential histogramming approach [8] gives us the following algorithm for finding 
initial track parameters: 

1. Parabolas are drawn through all admissible point triplets. Then the parameter 
Ci of each parabola is histogrammed. 
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2. The value Cm is obtained corresponding to the maximum of this histogram. 

3. With the fixed Cm parabola are drawn through' all admissiblr pair of points 
from n. Then the second parameter Bi of each parabola is histogrammed. 

4. The value Em is obtained correspon_ding to the maximum of this second his­
togram. 

5. With the fixed parameters Cm, Em parabola are drawn through all admissible 
points from n. Then the third parameter Ai are histogrammed. 

6. The value Am is obtained corresponding to the maximum of this thi~d hiss 
togram. 

Then the obtained parameters (Am, Bm, Cm) are subjected to more sophisti­
cated tests and a more precise definition. If results are posit.in·. i.e parameters 
(Am, Bm, Cm) are accepted as a true track, all measurements corresponding to it are 
eliminated ·from the set !1 and the whole procedure is repeated starting from the 
step 1. If the parabola (Am, Em; Cm) is rejected by testing, then the maximum Am 
of the third Ai-histogram is eliminated and the procedure is repeated starting.from 
the step 6. If there are no more peaks in the Aj-hist~gram, then the j)Cak Em 'of 
the second histogram is eliminated and the procedure is repeated starting· from the 
step 4 and so on unless the procedure would find a true parabola or all peaks in 
the second histogramm would be eliminated. In this case the pea.k C,,, of the first 
histogram is eliminated and the procedure is repeated starting from the step 2. It's 
clear; that this method of sequential histogramming by parameters (SHPM). gives 
us a possibility to "capture" an area where tracks are likely situated and provides 
us by initial parameters of these tracks. In order to apply SHPM the results of 
measurements must have a format of the !1-set, i.e. to be a set of track point coor­
dinates. However, we have instead the set M of little circles {x;, y;; r;, i = 1, N}, 
so we have to determine on each of these circles a point associated with some of 
tracks. It would not restrain us in applying of the SHPM, but it should be kept 
in mind that the left-and-right uncertainty factor doubles the elements number of 
the set n = {X;, Yi, i = 1, 2N} in a comparison \vith the numb~r of elements in the 
original set M = {x;, y;; r;, i = 1, N}, where X; = x; and Yi = y; + 1-; or Yi = y; - r;. · 

To decrease the histogramming search domain of the !1-set it is necessary to use 
the maximum of a priori information. 

The SHPM-description of the stres~es given above an importance of the way used 
to extract a histogram peak from a ba~kground. Our expedence shows that i~ ,is 
useless to lool<for an universal peak-background threshold common for all events· of 
a given experimental run, since this threshold strongly depends on the informative 
load of a given event. Aiming a statistical effi~iency of om' method, we elaborated 
the following heuristical formula for the peak-background threshold of a particular 
event: 

Hmax 
Nbound = 5~ + Hmean, (3) 
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where Hmax - is the maximum value of the histogram, Hmean - its mean value. 
Choosing the bin size, one should find a reasonable compromise between either 

too small or too big size. The first could lead to the loss of a histogram peak, i.e. 
one of tracks, while a big size decreases the accuracy. 

4 Deformable template method 

After obtaining by SHPM initial values of track parameters and choosing an area 
where this track could lie, we proceed to look for the global minimum of the func­
tional L ( 1). One of the main problems here is how to avoid local minima of L 
provoked by a stepwise _character of the vectors; = (st ,sn behaviour. One of 
the known way to avoid this obstacle is the standard mean field theory (MFT) ap• 
proach leads to the simulated.annealing schedule [9]. Our system is considered as a 
thermostat with the current temperature T [10]. Then as it was shown in [5, 6], 
parameters sf tt s-; of the fuµctional L with fixed (A, B, C) can be calculated by 
the following formulae, where the stepwise behaviour of the vector s; is replaced in 
fact onto sigmoidal one: 

Si= d:-->. d;'"-dT' 

1 
(4) 

l + e-½,- + e-'-y-1-

1 
sf= --------. 

i d->. d-c 
1 + e-½,- + e-'-y-1-

(5) 

The L global minimum is calculated according to the following scheme: 

1. Three temperature values are taken: high, middle and a temperature in a 
vicinity of zero, as well as three noise levels corresponding to them [5, 10].: 

2. According to the simulated annealing schedule, our scheme is started from the­
high temperature. With initial parabola values (Ao, Bo, Co) parameters st, s-; 
are calculated by formulae ( 4), ( 5). · · 

3. For obtained sf, s-; new parabola parameters A, B, C are calculated by a mod­
ification of the standard· gradient descent method. This modification consists 
of individual updating of L parameters and of holding a condition 

L(ak, bk, Rk) < L(ak+l, bk+i, Rk+i)-

4. The ending rule is as follows: either 

IL(ak, bk, Rk) - L(ak+i, bk+i, Rk+i)I < E 

holds or the iteration number exceeds a prescribed number k = const. 

7 

(6) 

(7) 



5 

5. If the conditions of the step 4 are not satisfied, then with the new parabola 
parameters ( Ak+l, Bk+i, Ck+i) next values of s;, s-; are a.gain calculated by 
( 4),( 5) and we go to the step 3. 

6. After converging the process with the given temperature, it is changed (system 
is cooled), the values of (A, B, C) achieved with the previous temperature are 
taken as starting values and we go to the step 2 again. 

7. With each temperature value after completing step 5 the condition 

L < Lcut, (8) 

is tested. If it satisfied,. our scheme is c~mpleted and the algorithm proceeds 
the next stage of correcting of obtained track parameters (A, B, C). Otherwise, 
if with the temperature in a vicinity of zero we obtain 

L > Lcut, (9) 

then a diagnostic is provided that the track finding scheme failed. 

Procedure of the track parameter correction 

The deformable template method provides us with track para.meters(.{ B, C). How­
ever, these parameters, even if they satisfy ( 8), could appear rather a.part of the 
L global· minimum. There~ore, we have to elaborate an extra stage for the track 
parameter correction. 

On each circle of the set S = { x;, y;; r;, i = I, N} taking in account the corre­
sponding values of s;, a point is found nearest to the track-candidate. Then all these 
points are approximated by a parabola and x2 value is calculated as a criterion of 
their smoothness and fitness quality. 

If it is hold 

X
2 < X~ut, 

then the approxiµiating parameters (Aap, Bap, Cap) are accepted as true. Otherwise 
the track-candidate is rejected. 

While statistical testing of our algorithm efficiency it was found useful to apply 
this procedure yet before the deformable templat_es to track-candidate para.meters 
obtained on the SHPM-stage. The only difference is if one would obtain x2 > X~ut, 
as the result of this preliminary testing, then the process does not stop, but passes 
to the stage of deformable templates. 

6 Results 

The proposed track finding algorithm of the tracks detected by the HPDT system 
in a magnetic field was tested on different series of simulated events. The number 
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of the tested events ::::: 1000. Example of the tested events you can see on the Fig. 
1. The efficiency of correctly recognized events kept in the range 94%-96%. Fig.2, 
Fig.3 and Fig.4 shou the distribution of the error for the parameter ..-\, B; C, i. e. ; 

IAJind - Amode,I, IBJind - Bmode,I, IC/ind - Cmod,,I. 
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