


1 Introduction

Conventional track recognition problem can be reduced to the search for a ”suffi-
cient” number of data points, which must satisfy conditions of a "sufficient” smooth-
ness of their alignment along a straight line or a higher-order curve. The notion

"sufficient” depends on the statistical efficiency of the track recognition problem for
a given experiment.

In cases, when the experimental data are 2D- or 3D-coordinates registered by -
a track chamber, the track recognition problem is usually solved by an exhaustive
sorting of all data point into subsets (track candidates). Then the smoothness of the
data point alignment for each subset is to be estimated by some criterion (usually
by fitting of a second order curve to some of 2-D projection of these points and then
applying the x2- criterion).

The efficiency of the track reconstruction algorithm depends on reasonability of
a clustering method applied to group data points into track candidates, i.e. on the
maximum possible reducing of the search trials made by the used method over all
points. As examples of such reasonable algorithms one can point out well known
methods like variable slope histogramming or stringing (track following) methods
(1, 2], as well as relatively new approaches like Hopfield neural networks (3, 4].

One of detector systems widely used in modern experiments of high energy
physics (ATLAS, EVA/ES850) are drift straw tube detectors (DSTD). Each time,
when a passing particle track hits a tube, it registers two data: its own center co-
ordinate and the drift radius, i.e. the drift distance between particle tracks and the
anode wire situated in the center of this tube. Thus a track passing the DSTD pro-
vides a set of anode wire coordinates and corresponding drift radii. Unfortunately,
some of these data can be lost due to the straw tube anefficiency, besides a number of
noise coordinates is also registered additionally. However the main problem, which
hinders applications of above mentioned conventional track recognition methods,
is so-called left-right-ambiguity of drift radii. They don’t contain the information
about, on which side of anode wire the track was passed. Anode wire coordinates
themselves are very rough indicators of particle locations. So if one would even
recognize a subset of these points belonging to a concrete track and would then
approximate it by a second-order curve (circle or parabola), the resulting parameter
accuracy will not be satisfactory.

In this report the algorithm of track recognition in an uniform magnetic field is
proposed for the DSTD system of solenoidal geometry. A problem solution is given
for (x,y) plane perpendicular to the magnetic field and anodes of drift straw tubes.
Our algorithm is elaborated on the basis of modifications of the Hough transform
and deformable template methods. However, the main features of the proposed
algorithm have the common character and are independent of the experimental
setup geometry.
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2 Formulation of the Problem

The DSTD system of solenoidal geometry consists of cylindrical modules formed by
several layers of straw tubes arranged in honeycomb order. In the middle of every
tube there is an anode wire with known XY '-coordinates. All tracks of some event
passing through these layers produce N signals, i.e. set M = {z;,y;;7;, 1 =1,N},
where (z;,y;) are coordinates of the hitt tube centers, r; are drift radii. Let us
suppose, first, that the recognition problem is solved, i.e. from the set M a subset
S was extracted of triplets (z;,y:;7;) produced by ene of tracks and, possible, by
also some of extra noise tubes. For the sake of simplicity let’s keep for S the same
notation, as for M, i.e. S = {z;,yi;ri, =1, N}. Geometrically the set S can be
considered as the set of circles on the plain with centers (z;,7;) and radii r;.

Thus the mathematical formulation of the problem is to draw the track -

line as a circle (a,b, R) tangential to the maximum number of these little circles
from S. Therefore this circle in question (a, b, R) is an envelope curve.

Let us introduce, as a measure of two circle tangency on the plain, the minimum
distance between crossing points of these circles with the straight line links centers of
both circles. If two circles are tangential, their tangency measure is, obviously, equal
to zero. Then our above formulated problem can be reformulated as the following: to
find such a circle (a, b, R) that minimizes the sum of its tangency measures
with all circles from-the set S.

Let us denote by D;(a, b, R} the distance from the center of the circle (x;, yi; ;)
to circle (a, b, R) '

Di(a,b;R) =R — \/(:1:, —a)?+ (y; — b)%
This variable can take both positive and negative values. Therefore the tangency

measure square of those two circles (z;,y;;7:) and (a, b; R) is twofold:

if D;(a,b; R) > 0, then
di = (Di(a,b; R) - r3)?,

otherwise
. df = (Di(a,b; R) +1:i)*.
As in [5] we define the two-dimensional vector & = (s},s7) with admissible
values (1,0),(0,1),(0,0). Let us denote by A the measurement error of the drift

radius and define a functional L depending of five parameters (a, b, R, s7,s¥) :

L=i{?£+ﬂ#+M@rmﬂ—nﬂ. (1)

It’s obvious that the circle parameters (a, b; R) corresponding to a track in question
would define a point in the parameter space, where our fuctional L reaches its global
minimum with the conditions that §; = (0,0) means i-th tube f{or the given track is
the noise tube and the combination 5; = (1,1) is forbidden, i.e.

st+s7 <L (2)

Thus to recognize a track one has to:

1. from the set of all measurement A7 extract a subset S. which as much as
possible contains all data for one of tracks;

2. find the L global minimum (although it would be enough to reach its close
vicinity).

To solve the first problem we modify the Hough transform method [6], which
we following to [7] call as the method of sequential histogramming by parameters
(SHPM). Besides of extracting of a subset S SHPM provides also starting values
of the circle (ao, bo; Ro) needed to solve the problem on the next step. The sec-
ond problem is solved by the deformable template method (DTM) with the special
correction of parameters of obtained tracks.

3 Sequential histogramming method

Let Q = {X;,Y;,i = 1, N} be a set of coordinates X;.Y¥; measured in the process
of registering of an event. So,to §2 belong both: coordinates of track points as well
as noise coordinates. A circle arch is supposed to be a good approximation of any
track .

Let us consider all triplets of points of the § set. 1l these three points do not
belong to a straight line, one can draw a circle through them. As a result a set of such
circle parameters is obtained W = {a;, b;; Rj,7 = 1, C}}. One could imagine a 3-D
histogram constructed on that 1¥-set as a hilly surface, where hills should most likely
correspond to tracks. This idea together with so-called sequential histogramming
approach [7] gives us the following algorithm for finding of initial track parameters:

1. Circles are drawn through all admissible point triplets. Then the first coordi-
nate a; of each circle is histogrammed.

2. The value a,, is obtained corresponding to the maximum of this histogram.

3. With the fixed a,, circles are drawn through all admissible pair of points from
Q. Then the second coordinate b; of each circle is histogrammed.

4. The value by, is obtained corresponding to the maximum of this second his-
togram.

5. With the fixed coordinates of the center am, bn all admissible points R; of the
set §) are histogrammed.

6. The value R, is obtained corresponding to the maxinumm of this third his-
togram. '



The admissibility in steps 1,3,5 above means testing of corresponding values by easy
cut-off criteria (for instance, each R; is tested whether it is outside of a prescribed
minimal radius R;n).

Then the obtained paraineters (ap, bn; Rim) are subjected to more sophisticated
tests and more precise definition. If results are positive, i.e parameters (@, bm; Rin)
are accepted as a true track, all measurements corresponding to it are eliminated
from the set §} and the whole procedure is repeated starting from the step 1. If
the circle (am,bm; Rn) is rejected by testing, then the maximum R,, of the third
R;-histogram is eliminated and the procedure is repeated starting from the step 6. If
there is no more peaks in the R;-histogram, then the peak b,, of the second histogram
is eliminated and the procedure is repeated starting from tlie step 4 and so on unless
the procedure would find a true circle or all peaks in the second histogramm would
be eliminated. In this case the peak a, of the first histogram is climinated and
the procedure is repeated starting from the step 2. It’s clear, that this method of
sequential histogramming by parameters (SHPM) gives us a possibility to "capture”
an area where tracks are likely situated and provides us by initial parameters of these
tracks. In order to apply SHPM the results of measurements must have a format
of the Q-set, i.e. to be a set of track point coordirfates. However, we have instead
the set Af of little circles {z;,yi;7i, ¢ = 1, N}, so we have to determine on each
of these circles a point associated with some of tracks. Supposing the vertex area,
from which all tracks of the given event are emanated, is known. one can roughly
determine such a point, as a tangent point of the tangent line drawn to each little
circle (z;,yi;7;) from the center of the vertex area. However there are two tangents
to each circle and, therefore, we have two possible track points, i.e. left-and-right
(or top-and down) uncertainty. It would not restrain us in applying of the SHPM,
but it should be kept in mind that the left-and-right uncertainty factor doubles the
elements number of the set = {X;,Y;,¢ = 1, N} in a comparison with the number
of elements in the original set Af = {:c‘,y,,r,,z =1, N}.

To decrease the histogramming searcli domain of the {)-set it is necessary to use
the maximum of a priori information, for instance, do not use data from drift tubes
mounted on different sides of the target, etc.

The SHPM-description given above stresses an importance of the way used to
extract a histogram peak from a background. Our experience shows that it is useless
to look for an universal peak-background threshold common for all events of a given
experimental run, since this threshold strongly depends on the informative load of a
given event. Aiming a statistical efficiency of our method we elaborated the following
heuristical formula for the peak-background threshold of a particular event:

Hde °
+ Hmean b (3)

where H,- — is the maximum value of the histogram, Houeqan - its mean value.

Choosing the bin size one should find a reasonable compromise between either
too small or too big size. The first could lead to the loss of a histogram peak, i.e.
one of tracks, while a big size decreases the accuracy.

A’baund =5

4 Deformable template method

After obtaining by SHPM initial values of track parameters and choosing an area
where this track could lie, we proceed to look for the global minimum of the func-
tional L ( 1). One of the main problems here is how to avoid local minima of L
provoked by the stepwise character of the vector §; = (sf,s;) behaviour. One of
known way to avoid this obstacle is the standard mean field theory (MFT) approach
leads to the simulated annealing schedule [8]. Our system is considered as a thermo-
stat with the current temperature T [9]. Then as it was shown in [5], parameters
s u si of the functional L with fixed (a,b; R) can be calculated by the following

formulae, where the stepwise behaviour of the vector §; is replaced in fact onto
sigmoidal one:

Si’ _= a7 -dt? . (4)
14 e T + e T :
1

d¥r =X
l+e’ T 4e 7

The L global minimum is calculated according to the following scheme:

-

1. Three temperature values are taken: high, middle and a temperature in a
vicinity of zero, as well as three noise levels corresponding to them [5, 9].

o

According to the simulated annealing schedule our schemeis started from the
high temperature. With initial circle values (ao, bo; Ro) parameters s, s; are
calculated by formulae ( 4), ( 5).

3. For obtained sf,s; new circle parameters a, b; R are calculated by a modifi-
cation of the standard gradient descent method. This modification consists of
individual updating of L parameters and of holding a condition

L(ax, by Bp) < L(@rsry brgr, Rigr)- (6)

4. The ending rule is as follows: either

|L(ak, b, Ri) = L(ars1, besr, Ria)| < e (7
holds or the iteration number exceeds a prescribed number k& = const.

5. If the conditions of the step 4 are not satisfied, then with the new circle
parameters {ar41,bk41, Req1) next values of sf,s7 are again calculated by
(4),( 5) and we go to the step 3.



6. After converging the process with the given temperature, it is changed (system
is cooled), values of (a, b, R) achieved with the previous temperature are taken
as starting values and we go to the step 2 again.

7. With each temperature value after completing step 5 the condition

L < Lew, (8)

is tested. If it satisfied, then our scheme is completed and the algorithm
proceeds the next stage of correcting of obtained track parameters (a,b, R).
Otherwise, if with the temperature in a vicinity of zero we obtain

L > Lcuh (9)
then a diagnostic is provided that the track finding scheme is failed.

5 Procedure of the track parameter correction

Deformable template method provide us by track parameters (a,b; R). However
these parameters, even if they are satisfied to ( 8), could appear rather apart of
the L global minimum. Therefore we have to elaborate an extra stage for the track
parameter correction. Its idea is in improving the procedure described in section 3
for converting measured data from the set A format to the 21— set. Determination
of two points on each little circle of the set M. was there done too rough and pro-
_duced a left-and-right (or top-and down) uncertainty. Now having track-candidate
parameters (a,b; R) and concrete values of vectors §; = (s7,s]) we can make this
procedure more accurate. On each circle of the set § = {zy,y;;7i,1 = 1, N} taking
in account corresponding values of §; a point is found nearest to the track-candidate.
Then all these points are approximated by a circle and x? value is calculated as a
criterion of their smoothness and fitness quality.

If it is hold

X2 < X‘cz:utv
then the approximating parameters (., bc; R.) are accepted as true. Otherwise the
track-candidate is rejected.

While statistical testing of our algorithm efliciency it was found uselul to apply
this procedure yet before the deformable templates to track-candidate parameters
obtained on the SHPM-stage. The only difference is that, if one would obtain
x? > x2,,, as the result of this preliminary testing then process is not stopped, but
passed to the stage of deformable templates.

6 Results

Proposed track finding algorithm of tracks detected by DSTD system in a magnetic
field was tested on simulated events. 990 tracks have been modelled as circle arches

100

80

60

0.1
0.08
0.08
0.07
0.06
0.05
0.04
0.03

0.02

0.01

h ) 20
. Entries 955
Mean 0.1033E-03
- RMS 0.1100E-03
C i 1.1 l ) I l 1 1 N‘O—ﬂ-—h l IJ] L l.—h IS l h 3 % Ll 1k l ) U
0 0.0t 0.02 0.03 0.04 005 0.06 0.07 0.09 0.1
x 10
Fig. 1. Relative error DR/ R distribution for all radii.
E 1D 22
E_ ENTRIES 955
E 0. 38.0 0.
= 0. 917. 0.
?_;_ 0. 0. - © O
E LT Sl The
A i sphirtee e U2 D04 PO PR T IR DO T
BRSSPI N ';;3'=‘!:'AJ‘=::I..’.‘,!"‘.| 1iiae - l: - l-l‘
500 1000 1500 2000 2500 3000 3500 4000 450 5000

DR/R FROM R

Fig. 2. Relative error DR}/ R distribution as a function of R.



with radii in the range from 40 cm to 5 m emanating from a target under various
angles. 955 tracks from 990 have been recognized correctly that means 96,4% of the
algorithm efficiency. The distribution of the relative error of radius
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is presented in fig.1. Fig.2 shows the distribution of AR as the function of radius.
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