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.1 . Introduction 

The c~mplexity of functio~ appro~im~tion problems and main difficulties 'o£ the 
practical imple"mentation of methods for fitting of empiric data are well known. and 
have been studied extensively in recent years [6-13]. 

This paper is an outcome of further investigations on the new kind of 4-point 
transformations [1,2], called discrete projective transforma~ions (VPT or V- trans­
formations). A new approach based on VPT is proposed to function parametriza-
tion and to approxi_mation of smooth curves on the local segment. . . 

V PT are new operations. (direct and inverse) over the differentiable function 
defined by a formula or by a table. The VPT operation has the structure of the 
~three-point" convolution, using three reference points of the curve and three weight 
functions defined by the cross-ratio of four collinear points (CR~functions). The 
weight functions are projective invariants, i.e .. they are invariable functions with 
respect to a shift of the basis point and to,scaling of their parameters. · ' 

New results in function approximation and fitting have been obtained by us­
ing four-point transforms. VPT possess a number ofimportantproperties .. F~r 
example, the direct transform reduces the power of a polynomial by two and is 
stable to m~asurement errors everywhere except neighbourhoods of two "noisif. 
points. The inverse transform allows to use coordinates of reference points (the 
mark 'R.) as continuous parameters of the function: f(x) = f(x;'R.). Transforma­
tion of basis functions { xn r yields the new polynomial· basis with the boundary 
parameters; This basis provides ·a· uniform approximation on tlie ·local segin.ent 
and ensures· ~tability of computations for a vanishing argument .. In· addition, the · 
system of weight functions ha.S many useful properties [1,2], which allow to design 
new· effective algorithms for data processing. ' .. · : • ' 

VPT-approach has a number of advantages with· respect to. the· traditional 
polynomial approximation. Using V-transforms, the new cla.Ssof polynomials with 
a better approximation quality than in {xn} has been derived and a ·~three-point" 
model of a cubic 'spline with the single. free parameter is proposed. The model 
allows to reduce the numh~r of ll.nkno~~ parameters in twice and to-obtain an 
advantage in a computing process. : · 
. An additional point,to emphasizeis.that V~T-~pproach gives a new mathe­

matical tool- and a new possibility I in both practiCal applicationS and theoretical 
research of computational methods. The application of four-point transforms for 
fitting of.· empiric· data· is simple in practice and • provides a wide w:ay for design- . 
ing adaptive algorithms for digital signal processing, pattern recognition [3], image 
processing in high-energy physics [4] and so on. 

2 Defi~ition an4 prope~ti~s of transforms 

2.1 Definition and the geom~tric sense of'DPT 

Four-point tr~sformations were defined in [1;2]. VPT allow to map points of 
an arbitrary differentiable curve f(x) (the original) onto corresponding points of 
another curve h(r) (the image)by using three pivot points of f(x) and three weight 
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functions. The weight functions are yielded by the cross-ratio o(four collinear 
points: x-coordinates of three pivot points P0 , P1, P2 and of a single variable point 
P1• ~hree pivot points of the curve f(x) define the mark,?£ transformations n. 
The variable point P1 is mapped into the point Ph 

V :PI ~----+ Ph, (1) 

·where P1 = P,(x,J(x)), Ph= Ph(r, h(r)), and T ~ x- x0 : • 

f 

:l:f-P:_- ~·.n, ~1 : -h 1 'T 

The ordinate of Ph is defined as the point of 
intersection of the parabola or the straight line 
passing through three points (PhP2 and P,) 
with axis T = 0 (x = x0 ) (fig. I). ·The ba­
sis point Po remains as the immovable point. 
Pivot points P1 and P2 are transformed by an 
approximate limit, when x-+ x1 and x·-+ x2, 
respectively (see subsection 2.3). 

10 -~ ~-=-===-==-+ ~- 1 X 

Fig.l. The scetch ofthe geometric 
sense of VPT. . 

Let us denote X= x1 - xo,L = x2- xo, f>. = f(xo +A) and h = f(xo + L). 
Values A, L are parameters and R: {Po(xo,fo), Pt(xo +A,/>..), P2(xo + L, fL)} is a 
mark of the transformations. 

·. It is seen from the definition that the 4-point transformations depend on their 
parameters ancl' on the mark, i.e. the shape, and the position of the image-curve . 

. h(r) .are determined on a plane not only by the function f(x), but also by the 
choice·pf the mark n. 

In what follows the direct and inverse transformations will J:>e denoted as . 

r(x;R) ~ V[f(x);R] = h(r) (2) 

and 
h~(r;R) =: v-1 [h(r);R] :;= f(x). (3) 

These operations have the visual geometric sense (see fig.1). The image-curve 
h = r(x; R) is the geometric locus of points of intersection of the parabola II or 
the straight line A, passing through three points Ph P2 and P1 with the basis axis 
T = 0. In 'case of the inverse transformation, the ordinate h( T) is taken on the basis 
axis and the point of' intersection is taken on the perpendicular" r = x- Xo. · 

To express VPT in the analytical form, we use the scalar product for 3D vectors 
fi,ff,n and i: , . · · 
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r(x;R) = (P,F) = LPi(TjA,L)J;' (4) 
i=l 

and 
3 

h~(r;R) = (D,Z) = 'Ed;(r;A,L)z;, (5) 
i=l 
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. . . ~ T ~ · . . T ~ : · ·. ·. .T . ~ . . . . · T . 
·wh'<re P = (pi,p2,p3) ,D = (d1Jd2,d3) ;F = (f>,,Ji,J(x)) ,Z:;:;; (b.;JL,h(r)) : 
Functions 'p;(r;'A, L) and d;(r; A, L) are CR or weight junctions (see table 1).·. . 

1 . ' . ', ~ 

2.2 CR-functions and their properties 

; ' 

Unlike the ~lassical cross-ratio algorithm [5] of 4 c~llinear points (xh x2; x3 , x4) 
(fig.2), we use the algorithm with the rearrangement the position of two· points 

' [1,2] as the following: · · 
. 613 : 623' (6) 

624 614 
where 6;; denotes the algebraic distance between points i and j,l.e. 6;; = x;- x;. 
For the single fixed point the cross~ ratio· (6) yields only three various functions 
defined by the position of points in th~ quadruple on the number axis (fig.2). 

0 61 62 63 
X 

Xt X2 X3 X4 

Fig.2. 
' ·. ' . . ' ~ ' . 

For example, if x1 is· the fixed point and 6; = x;.f-1 - XIJ (j 1,2,3), the~ 
distances 6;; can be expressed through 6;: . 

'.\' 

613 = 62, _614 .=··63, 623 = 62.- Ll1and 6'24 = .6.3 -''61. 

Substituting 6;; in (6) and using index point functions.m(i) and n(i), CR-functions 
p;(617 6 2, 6 3) are written as the following: · . · 

.:· 

_ , 6m6n . , j = 1, 2, 3, 
p;(6) = (6; _ 6m)(6;- 6n) ' (7) 

,i 

where m = m(i) = 2- i + (i -1)!, n = n(i) = 4- (i- 1)!, and~= (6h 6 2, 6 3) . 
. From the above and eq.(7) it follows that C R-functions are dimensionless, scaling-
inv~~;riant and translation-invariant functions: · 

p;(pE) = p;(~), d;(lt~) = d;(~), 1' =f: 0, i,;, 1 + 3. 

If we denote 6; = X,L,r, for j = 1,2,3 ~espectively, then functions p;(~) and 
d;(~) are written for the quadruplet {0, A, L, T} by formulae in table 1. The im­
portant property of Pi and d; is the natural normalization 'of their sums: 

3 

LPi(r; A, L) = 1 (8) 
i=l 

and 
3 

Ed;(r;A,L) = 1. (9) 
i=l 

3 



To proof these' equalities, we can use an ordinary summation of corresponding 
functions from table 1~ . Main characteristics of weight functions and their graphs 
for fixed _\ and L ar~ indicated in t~ble 1 and in fig.3. , · 

p;(r; >., L) 
IQ 

Pr 'l'~~P3..j~ 
p3 V Pr P2~ P3 

IQ I I I I I I T 
lHla -60 a· 5a' 1aa 

,\ 

d;(r; ,\,/,), 

"' 
N 

": 

,\ L 

Fig.3. Graphs of p; and d; functions (fragments). 

To find the inverse transform functions d;(LS.),i = 1,2,3, we divide both parts 
of the equality (8) by P3 =I 0: 

Pr P2 1 
dl = --, d2 = --, d3 = -. 

P3 P3 P3 

The system of three functions {p;(r;,\,L)},i = 1,2,3 has the threefold sym­
metry and possesses a number of:· useful properties considered in ref. [1,2]. For 
example, functions PI and p2 are obtained from p3 by the formal rearrangement of 
parameters and the variable: i ,\ .= T and L .= T respectively. This symmetry. is 
shown in the form of the diagram for calculation ~f p; (fig.4). Here, the structure 
of the system is represented under condition as three overlapping triangles. 

Table 1. C R-:-functions and their characteristics. 

:CR- f , formulae zeros Te extremum h/ asympt. . v / asympt. 

PI 
L-r 0 no no PI= L~>. r=,\ (T->.)(L->.) 

P2 
-AT 0 no ->. r=L 

(T-L){L->.) 
no P2 = L->. 

P3 
>.L no ~. -4>.L P3 :== 0 . 7- = ,\,L 

(T >.)(T L) 2 (L->.)2 

di 
-T(T-£) O,L L -L• no no 
>.(L->.) 2 4>.(L->.) 

d2 T(T-Aj 0,,\ >. >.' no no L(L->.) 2 4L(L->.) 

d3 (T-Al(T-L) ,\,L ~ -(L->.)' no no 
>.L . 2 4>.L . 
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We see, that functions p;(r; ,\, L) are.calculated by division of quantities in the 
isolated vertex of the triangle into the product ·of differences, which disposed in the 
-other 'corners. . , . 

T-,\ 

LT 

"':'" I ............ ~T- L 

XL 

'As indicated on the' diagram, 12 operations 
are needed for citlculation of all three functions 
at the single variable point. Six operations of 
the first level are disposed at vertices of trian­
gles. On the second level we have 3 multiplica-·· 
tions of pairwised differences. Three divisioi!s 
are fulfilled on the third level of calculation. 
If these calculations are carried out for every 
level in a parallel way, then all three functions 
can be calculated in the time of fulfilling of 
three operations: -, x and+. 

Fig.4 .. The diagram for computing 
of p;(r;,\,L). 

\ 
\ 

2.3 The dpT algorithm 

Equatio,ns (4), (5) :and formulae from table 1 define the transformation rule 
for all curve points except of two pivot points, where functions p; have endless 
discontinuities. The basis point .is the fixed point: h(x0 ) = f(x0 ). One can find the 
values h(·) at pivot points by the substitution of p; in (4). Taking into account (8) 
for T =X;:- Xo, ,\ =X>.- Xo, L =XL-;- Xo and Xo = 0, we.find: 

.·, h(;) = tp;J; = '-__!:!__ )H "-- f(,\) + ,,\r J(r)- f(L) +f(r) .. 
' ' 'i=l L,.,.. ,\ ' T -:-, ,\ ' ' L-: ,\ ;, T·- L i ' 

He,nce, on the strength of differentiability J(r) under T --+ ,\ and T --+ L,; ~e find 
h(,\) and h(L):. · · · ·· · 

.. '· ' . . ,\L - ,\2 .· , . , .. 
h(,\),;, ~~h(r) =·- Hf'(,\)+ H 2 tl/L>.+ f(,\) .. (10) 

and 

. h(!-) =lim h(r) = ,\HL/CL) _:_HL:~/L>. + f(L), 
T-+L 

(11) 

where H = L- ,\, ~/L>. = I(L) ...:.. f(,\), .and if x~ f. O, parameters ,\ ~nd L are 
replaced by Xo + ,\ and Xo + L for f(-)' arid l (.) respectively. . 

For~ulae from table 1 and eqs.(4), (5), (10), (11) ~e basic formulae of the: 
dpT-algorithm for calculation'direct and inverse transforms of the smooth function, 
given by the formul~ or by the tabl~: . ' · 

.. ' . . ,\L ; . ~2 . . 

h(,\) =. -'-H f (x>.) + H 2 (h- />.) + />., 

,\L I ' L 2 

h(L) = Hf(xL)- H 2 (/L -/>.~ +fL, 

h(r) =PI(.&)/>.+ P2(3..)/L + PJ(LS..)f(x), 

5 



h(O) = f(xo),r = x- xo, H = L- >., (12) 

and 
f(x) = dt(Li)f>, + d2(Li)h + d3(Li)h(r), (12a) 

where.\= X>.- x0 ,L = i£:- x0 , and Li = (r; >.,L). 
To obtain relation between the derivative/(-) and J'"(·;'R) at the reference 

points, we use eqs.(10) and (11): 

'( ). 1 [ 2 . · 2( 4 · I f Xo + ~ = >.LH >. IJ.fL>. + H J>.- f (>.; n)) (13) 

and ~· 

/(xo+L) = >.~HW!J.h>. -H2(h- r(L;'R))). (14) 

Remark 1. The dpT_ algorithm gives the rule for realization of two reciprocal 
operations over the smooth curve f(x) for the given mark 'R. The outcom,e of the 
operation is the new function (the image), complexity of which differ by t~o orders 
from the initial function (the original). Subtracting f(x0 ) from both parts of'eq. 
(12) for.h(r), we find: · 

3 
·P(x;'R) = fo + L:tJ.f;p;(Li); where !J.f; = J;- fo. 

i=l 

This fonriula expresses the relation between function increments IJ.f; and argument 
increments !J.x;, defined by coordinates of three points· P~, P2 , Pf with respect to 
the point Po and by using the. cross-ratio of x- coordinates of these points. (The 
relation between !J.f and !J.x in case of the derivative is established by the existence 

'limit when !J.x .:__. 0 for the simple ratio of inc~ements with respect to ? 0; The ge­
ometric sense of the derivative is defined by the parameters of the tangent in P0 ). 

From the geometric point ofview, the curve I"(a;;'R) is defined by the position and 
by the shape (the slope) of the parabola (the straight line) passing through three 
points onto "the body" of the curve (frg.1). Thus, we can assu~e the operation 
I"(x; n) aS it was "the projective derivative': of the function for the given mark n 
defined by three reference points P~, P1 and P2 on the original curve. · 

2 . .{ The relation between C R and LQ f11;nctions 

The family of linear and quadratic (LQ) functions y(x) = ax2 + bx+ c, (a, b, c­
real numbers) has particular interest from the viewpoint of 1J PT. In this case 

. vectors .ff and Z for every term (t~ :within multiplier) ha~e the following' form: 

~· k k kT ~ k k kT ' Y=(>. ,L ,x) ,Z=(>. ,L ,x0 ) ,k=0,1,2. . .. , 

Shifting the origin of coordinates at the point P0(x0 ,y0 ) and substituting p; andY 
in (4), we obtain h = 0, i.e. P andY are orthogonal vectors. 

(P,Y) = o. (15) 

The property (15) affects the projective nature of 'DPT and plays the impor­
tant role in their structure. Eq.(15) establishes the coupling between projective 

6 

I 
i 

invariants (7) and four points of the LQ-fun'ction {Y; :;,:c;i] +bx;},j. :::::o,.i.. 3 on 
an Euclidean plane. In particular, eq.(15) yields the error equation in transforming 
the LQ-function given by experimental points: 

(P,Y+ E)= (P,Y) + (P,E) = o + f, q6) 

where E = ( e>., eL, eT )T is· the error vector, and ds the total error o£, the tran~for­
mation. Hence, if random errors have the LQ-dependence at the 4-point system, 
then the error f becomes zero.at th~ transformation point. . . · 

If we denote emar = max{ I e>. I, I eL I, I e(r) 1}, then th~·transformation error 
fh(r) can be estimated by the following inequality: · · 

fh(r) $ Uemar, (17) 

where 
3 

U(r;>.,L) =I: I p;(r;>.,L) 1- •! 

i=l 

In particular, taking into account horizontal asymtotes of p; (table 1 ), the function 
U-+ 'N~W in r-+ oo and if ),L < O,.then U-+ 1, Le. the'.transformation error is 
not greater than ema:r· · . . . · 

The example of the graph of the function U( Tj >.,'L }for fixed >. ::,; ~50,L ,:, 
. 25 and xci,; 0 is shown on fig.5. "Noisy~ (U(r;'-'-50,25) :> 1) zories are showri 

on the scale under axis i. The example ofthe noise'irarisfer' n(x) ~ Jv(O,u) 
in transforming !>f the five order polynomial M5(x) ;, -(x5 - 5x3 + 4x)+ n(x) 
(xo = O,>. = -1 and L = 2) is ,shown in the right·part of fig.5. The result of the 
transformationisthe noised cubic curve l.(x) = 2(x3 + x2 - 2x) + n4 (x), which has 
" rejection~". in n~ighborhoods of>. and 1.· ' . .': . ,, ' ; ::' .. ' 

ISJUUi{i;>.,L) h(:~),;,,_(M5(~)fn(x)]
4 

~ ~ 

: • 

0 

•. n(r) 

IS> T m X 

-. '·'' 

-too-sa 0 • s0 100 '-4-3-2-10 t .. 2 3 4 .· 

1 liM!! !Mil 1+-'U > 1 
>. 

Fig.5. The graph of U( r; 50, 25) and the effect of the nois~ transformation. 
. ' ' . 

It follows from (15) - (17) that the operation: f'"(x; 'R) suppresses· the' error 
almost everywhere with the exception of neighborhoo'ds of "noisy'\points X and 
L. This property of lJ PT plays the important ·role and. can be very usefuL in. 
data processing. As we known, the derivative and the difference scheme are highly 
unstable in this case even to small measurement 'errors. . ' ' . ' \ 

The above formalism is the useful means f~r function parametrization. The use 
of 'DPT for obtaining the special class of polyno~ials (monosplim!s) with the good 
approximation quality is conside;~d in the next' se~tion. . . . • . . ... : 

7 



3 The transform of {xn} 

3.1 Basic function parametrization {the direct transform) 

Power functions (or monomials) {xn}, n = 0, 1, 2, · ·· piay ~he important role 
in the calculus. first of all as the ·linearly independent basis for the power-series 
expansion of. main elementary functions. The class of power functions has the 
special interest from point of view of our transforms. 

· The'formula for"D[xn;n,.) in xo:= 0 ~nd F,;,;, [Xn,Ln,xnJT was derived in 
, ref.[1): •' 

n-1 n-i-1 , . 

hn = [xn;'Rn)~ = XL:t L xi-1 I: Lk-1xn:..i-k-1 = .\LxGn(x; X,L), (iS) 
i=;1 k=1 

where n = 0,1,2,···, Gn(x;X,L) are elementary symmetric furictionsand 'Rn is 
the mark for xn · 

'Rn :{'Po, 'Pf, 'PL}, {A, L # 0; X4 L), 'P'j =:= 'Pi(j,r),j = 0, X, L. {19) 

It follows from (18) that hn are homogeneityfunctions with re~pect to X, L, x .of 
the power ;; and n..:... 2 po~er functio~~ rel~tiv~ to x. So, in general, the operation 
M~( ·) decreases the polyn~mial p~wer by two: . · · · · · ··· 

,. ' ' ' . ' \ ~ ·' '{,- . 
.! ·~ ; 

[Mn(f); n)~ ~ A(-2(~; X, L), ·t, 

, where;Mn.:.2(x~ X,L )is then: ..:...2 power polynomial depending on X. In particular, 
the straight line and quadratic parabola are mapped into a constant, the cubic 
parabola into a straight lirie arid sO ori (Go:= G1 = G2 = 0). Eq.(18) can be noted 
also as recursi,on relations: ' .. 

hn(x; X, L) '== ha(x; X, L )Gi(xi X~ L ), Gn(x; X, L) = 9n(x; L )+ XGn-1 (x; X, L), 

9n(x;L) = ~9n-1(x;L)+Ln-3 , h3 = XLx, 93 =1, Ga = 1; n = 4,5,···. (20) 

Thus, the polynomialMn_;(x; X, L) can be repr~sented as a product of the 
polynomial related to {Gn(x; X,L)_}, (n;:::: 3) and the function ha = XLx, i.e. 

n n 

V[Mn; 'R) = L aj[xi; 'Rn)~ = ao + .\Lx L ajGj(x; X, L), 
j=O ; . . ' · j=3 

where.{Gn(x; A, L)} is the continuously parameterized basis by parameters X and 
L~· For the symmetric choice of parameters (X = -L). functions Gn(x; X) depend 
on the single parameter A and have a more simple form:. 

. . . ·: . . . c-1>-.;-3+1 .·: .;·· . 
Gn(x;A) = xGn-1(x;X) + ~. An-3, n = 3,4;···; G1 = G2 = 0. · (21) 

. . ... . . 2 ., ' 

Fo~mulae'f~r. Gn(xi X, L), n. = 3; 4;::::; ~ are given in table 2. 

8 

,I 

·, 

·'' 

Table~2"-. -----....:...,;.--,:-~~-~----:-----:;;;~~---:-
n Gn(x;X;L) G.;(x;X) 

3 1 
4 -(x + L) +XG~ 
5 x(x+L)+L2+XG4 

6 x(x(x + L) + £ 2
) +£3 + XG5 

7 x(x(x(x + L)+ £ 2
) + L3

) + L4 + XG6 · 

8 x(x(x(x(x +It)+ L2) + L3
) f £ 4

) + L5 + XG1 

1 
X 

x2 +X2 
x3 + xX2 

x4 + x2X2 + X4 
~5 f. x3X2 + iX4 

3.2 Basic function parametrization (the inverse transform} 

Let us consider functions {xn}, n = 0, 1, 2, ... and their representations by using 
the inverse VPT. Using marks 'R;; (19) ;,tnd eq.(5), we obtain. ' .. 

xn =: And1 + Lnd2 + h~(x;. X, L)da, n = 0, 1,2, .... 

We shall denotethi!'third term by Sn(x;A,L) and after substitution of hn from 
(IS}' and d3 (x; X,.L) into the above expression we ~btain: , · · · ' 

• - l ' '~ • ' ' '·.·· . ' - . : -

Sn(x; ~;'i)::::, x(i _: X)(x':_ L)Gn(x;·~, L);' 'n ·,; 3, 4, 5/ .. : 
' ' ' ., . ., .. '. ·, ·, .. --, . ' 

'(22) 

Eqs., (22) define the ~lass.of the functions; having zeros X, ~Land 0. Fr'om here; we 
have for S~(A) ~Sn(L)',;, 0: · '· · , 

~ ' f 

' [ S~; 'Rn)~ = Opt + Op2 + SnP3 = XLiG~ ( x; X, L) ;,; hn = [xn; 'Rn)\ 
' - ' : : ' • ' ' " • :' • • "'-. 0. - ~: •• ~ • \ t . ,. ~ ~ . 

Le. . V-:- transformations of Sn and .of.' xn' coincide.. The connection between 
Sn(x; X,L) and xn aregiven by the following relation: · ,,. · ,; : 

. .. . . . ·. . ·., An-,1 .. , . : .. £n":'l, ... • .·· ;·. 

Sn(x; A,L) = xn- And1-' Lnd2 = xn + (:..:.1tJ{~(x .:..:. L) ~ H;,,x(x.~_A), (23); 

n = 3, 4, 5, ... ,where H =7 L :_A, ~nd dt, d2' are taken from table L The equation' 
(23) for. the symm~tric c~e has the simpl~r ~xpre~sion: · 

e ' -· '' • "I 

"'' 
'·, 

· . ' n. n-m .m . '· •,, (.;:.1)n + 1 · ' 
·Sn(x;X)=x -·X_ x ,m=1+ 

2 
, n=3,4,5, .. :. . (23a) 

Fig.6 shows fragments of graphs of such functions in the form of surfaces Sn(x; A) 
(x,AE[-1,1]). GraphsofSn(x;l)forn=3,4,5,6areshownonfig.7: . ' · 

Polynomials Sn(x; A, L) have the structure of nth. order ~onosplines,:whic1t 
play, in the known sense, the same role in the approximation theory as Chebyshev 
polyn~mials do in the classical function approximati~n theory [9). From geometric 
point of view; functions Sn ( Xj x; L) are obtained by means of the a!gebrci.c summa­
tion of tlie monomia!-x.n. "'ith.:the· LQ-function, depending on. the value an'd the 

1. ,- ' . . '. . ; :' '·, j \ ~;; ·- _: '' : ' 
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parity of the number n and on pivot coordinates A, L. 

Sg Sw Su 
8ftx -1 ~ x,A ~ +1; t::..x =!::.A= 0.15 

Fig. 6. Surfaces Sn(xi A) for x, A E [-1, 1). 

The· behaviour of Sn(x; A, L) has the quality differenc~ from the behaviour ofxn 
for vanishing x. It is well known, the polynomial model, based on {xn}leads to ill­
conditioned matrices and to the round~off error accumulation in solving a number 
of statistic tasks for. the large dimen~ion n and th~ large sa:inple in vanishing x. 
Functions {Sn(x; A, L)} do not suff~rso from. shnilar. situations, since they have 
the damping terms, which provide the computing stability. The position· of the 
roots on the plain should .be taken into consideration .. Comparing with x" r~ots, 
we see that'the polynomial Sn ( x; A, L) has roots 0, A,L and roots of the equation 
·Gn(x; A; L) = 0, which, in generally, are complex-valued.· 

Using DPT (12a} in x0 = 0; the arbitrary function f(x) E C(a, b) can be 
decomposed in the· following way: / 

f(x) ::i: f(x; 'R.)::::: j(A)d1(x; X,L) +J(L}d2(x; A, L) + r(x; 'R.)d3(x; A, L). · (24} 

Sj(x; A) 

X 

(I xI$ 1.2;A = l;l:l.x = 0.1 
Fig._7·, Graphs of S;(x; 1). 

So, in general, if we have three reference points on 
the curve f(x) ·E C(a, b) and the image-function 
h(x; A, L) '= r(:;;i 'R.) is known, then wecan offer 
th«;!,function f(x) in the parameterized form (24). 
The formula (24) is very useful in processing of-the 
curve given by a table or by experimental points 
{jk} because of jk(x;'R.) can be calculated through 
measurement points. 

Eq~ '(18) anldecomposition (24j allow to change the behaviour of the error in 
local function approximation by the modified truncated power-series. For example, 
using (24) five terms of tlieTaylor-serie;forf(x) ='e:r:,x E (~A)] 'and Gn(x;A) 

10 

; 
:I 

fro~ table21 ~eobt~in: 

' ., '· . ·. s xk . 1 . . . . ..· . 
e:r: ~ ft'(x; A) = e-J..d1 + eJ..d2 +_I{; k!; A) 4 d3 = 

2
A

2 
:z;(e-J..(x- A)+ eJ..(x +A)] 

: . .. 2 .2 2 ' 2' . 
. -[1 0 . 0- A2x(.!. .=_ (x +A ))J(x -A ) . 

+ + . · 6 +24 :- 120. A2 . 

This notion in ·A= 1 gives the residual r =I e:r:- ft'(x) I< .0007, x E (-1, 1] with 
zeros at bomidary points, whereas the result for the original series with the same 
conditions makes up r < .00153, mainly on interval borders. The error in the 
central part of the segment for the original series is less than for the transformed 
series. We see that this simple and clear way leads to the error redistribution on · 
the segment. The above exampleshows'that DPT andpolynomials Gn(x;A,L) · 
provide a useful tool to operate ~ith trU:ncated p'ower-series. · · 
. ' Eq.(24) hM a:number of advantag~sin solving local ;;,pproximation tasks at least 
in two aspects: a) the number of unknown parameters in (24) is smaller' by. two; 
than· in presentation of .f(x) by the traditional polynomial; b) when the function 
is given by the array of measurements {jk}, k =:= 1, 2, ... ,the <;hoice-~f pi~ot points 
allows many variations, that are the source of the flexibility in the practicaT use 
of the IIlethod, especially for pattern recognition and for adaptive digital signal 
processing. . : 1

• :• 

On 'the other hand; formulae (12), (23), arid '(23a) aliow to aeri~e the approx­
imation of the smooth single-valued fiu1ction f(x) trougldunctions d1 (x; A,' L ), 
d2(x;A,L) a~d 'the parameterized basis ·{Sn(x; A, L)}; n ··::·· 3,'4,; · ·, yielding. by 
DPT of the basis {xn} for marks (19). · . ' 

For example, if the ftiiictio'ii. r( x; n) is unk'nowri, . then taking parameters A 
and Las boundaries of the interval, assuming r(x; 'R.))~·Lk akGk(x;'A, L), and 
using (24}; we Obtain the expansion of f(x) on [A, L) by polynomials d~> d2 and 
{Sn},n=3,4,···withunknowncoefficientsnk';;,ok('R.k):· :.:'u · · 

J(x) ~ f(x;'R.) ~ n+'s3(;;·A,L{t:~A,Gk(x; A:L) = P:+ t 0:kS~(x; ~:L),;'(25) 
. . ... k=3 . ' •· . k=3 ·. . ' ' 

where IT= II(x; A, L) == fo +>f(xJ..)dl(x; A, L) +I(xL)d2(x; A, L}. · . 
. ·' As mentioned above, the transformatio~ of basis functions {xn}, properties 

of D_PT and formulae (12) ~· (14}, (20), (23)- (25) should be utilized for solving the 
wide class ofthe practical problems, which use function approximation and data 
fitting. This approach can be fruitful for processing both analytical and tabulated 
functions. The conception of "three pivot points on the curve" yield~ u;e ~ew 
possibility-for designing adaptiv~ algorithms for finding and recognizing of curves 
of a complex shape with errors and backgrounds. · 

4 · FUnction approximation and fitting 
>' < • A C, 0 , .• , ,• 

in this section weconsider some applicati~ns of DPTand {Sn(x;A,L)} for 
function approximation, interpolation and fitting. 

11 



It is known [6,7], the traditional polynomials have a number of'disadvantages, 
appearing in interpolation of the functions which have the peculiarity ~f the be­
haviour in a local zone. 0. Runge function is the example of such a situation [6]. 
Recently, spline methods enjoy _a wi~e application for function approximation [&-
10]. The splines devoid of this lack and heing by the efficient tool both in theoretical 
research and in applications.- Many papers concerned with function interpolation 
and approximation are appe~ed up to now [12,13]. The cubic model of Hermite 
spline S(f; x) has become most frequent in practice. Let us consider this model in 
the analytical form [9]:. 

(
, )2( . . . 2 ' · I .. . . • 2 . I . , 2 , . 

8(!; x) = f; 1 - t 1 + 2t) + fi+tt (3- 2t) + f;h;t(1- t) - f;+1 h;t (1 - t), (26) 

where h; = Xi+t - x;, t = (x -.x;)hi1
, x E [x;, x;+1J, i = 0, 1, 2, ... , N- 1. _ 

These splines are used for interpolation of sufficien~ly smoothed functions f(x), 
given on some points of interpolation D.N. : a= xo < Xt_ < .··· < XN = b in 
fulfillment following cortditions: · · · · 
a) the power 8(f;x) ·~ 3,x E [x;,Xi+t]i 
b)8(f;x)EG2[a,b]; . . ... 
c) 8(x;) = f(x;),i := 0,1,2,' ... ,N;N·2:: 2 with the different kind of boundary 
conditions. . 

To fin-d unknowns f; :and f;+t, the c'ondition of.continuous second derivatives -
·at ,points of interpolation should be used, Both these conditions and boundary 
conditions allow t'o obtain the system of.N + 1 equations for determination of 
N +JunimownsJ;;i,;, 0,1,2, ... ,N. It.'is well known, the matrix of this system 
is the nonsingular matrix· with a diagonal predominance, Le. unknowns f; are 
defined identically. Different variants of the cubic spline construction have been 

/. 

inv~tigated in theextensive bibliog~aphy [9)0]. . ·· . . .. · . 
Since the. spline-·(26) i~ the polynomialof the power no higller than three, 

eq.(25) will be fulfilled.exactly for ,8(!; ~}'in n ~ 3. Therefore, this spline can 
be represented as decomposition by functions dt, d2 and by the cubic polynomial 
83( r"; A, L ), provided that the single additional point between adjacent points of 
interpolation will be given. In this case we obtain the new model ~f the. cubic 
sp~ine, which uses three points and is equival~nt for the two-point spline (26). We 
will call this model the three-point model of the cubic spline or T P 8. As the T P 8 
model depends on the single free parameter (a ='a(f;,J;+I,f;,J;+t,h;)), then it 
has the important advantage with respect to the model (26) (see below). 

Further, examples of algorithms b~ed on the VPT approachforfunctio~s ap-
proximation, interpolation and fitting are discussed. 

0 

..f.J Local function approximation by the cubic parabola 

Cubic splines play the key role in the function approximation. The theory and 
applicatio!l of cubic splines are widely covered in the extensive literature [8-11]. We · 
shall consider the peculiarity of 1YPT for the cubic parabola on the local segment: 

. . ~ . . 

y(x)~ax3 +/Jx2 +1x+6,'a:rf0, xE[a,b]. · (27) 

Let us fix the mark non this curve at points (x>., Y>.), (~o, Yo), (xL, YL)· By using 
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') 
{) 
1 
!' 

eq.(4) and p;(r; A, L), i =,1, 2,3,we obtain: 

y"(x;'R) ;,· h(,:p: aALr +Yo· 

Shift the origin at the basis point (x0 ,-y0 ), the last expression rel:luces to the fol- ' 
lowing form: ·. . . 

h(r) =·V(ax3 + ... ;'R) = aALr. (28) 

We see that the V-transform converts the ~ubic'parabola into thestraight line 
with the slope aAL, and vice versa,' the inverse transformation of (28) with the 
same mark n yieldsthe original' cubic ~urv~. In' accord (24), (28) a:rtd table 1 the 
equation of the cubic curve is written in the parametric form: ' 

-g(A) g(L) · · 
g(r;A,L)= .. AH r(r-L)+ LHT(T-A)+ar(r-A)(r-L), (29) 

where H = L-A. In contrast to formulae (26) and (27), eq. (29) contains only the 
one free parameter a (the.coefficient iri x3). To determine this parameter, we lise 
the summation (13) and (14), taking into account h(A) = aA2L and h(L) = aAL2

• 

from (28): 
1 , 0 , 2 . 

a= H 2 (g (L) + g (A)- H(g(L)- g(A))]. (30) 

Up to the constant, the formula (29) presents the three-point model of the cubic 
spline (T PS) on the segment [A, L]. The pivot coordinates are fixed parameters of 
this model and a is the free parameter defined by (30). ' . · · · . 

0 

• • 

. As indicated on flg.8 the T P 8 -model has the visuit.I geometric c~nstructi~n. 

~ 

(S) 

~ r ·'r.· ·, I I I -, 
'-5 -3 -1 1 3 6 7 

f ==II+ 83, (a< 0) 

N 

lD 

_, ~·' ' ' ' ~! 
1-5 -3 -1 1 3 5 7 

:ifJ=A+83,(a>O) 

Fig.8. The geometric _serise of the T P 8~model. 

T 

The pivot coordinates are singled out on the graph. Arbitrary cubic curves f 
and rp are obtained as the algebraic sum of the cubic monospline 83 ( Ti A, L; a) and 
thequad~atic parabola II(;; A, L) or the straight line A(T; A,L), depending on the 
location of the pivot ,points on the plane. Now we shall show examples of using 
eqs. (29) and (30) for the function approxi~ation. 

0 

: • • • ,., 

. TasKT1: Among curves(29), having three pivot points, a curve '!t( Tj AiL) 
should be found, .whiCh satisfies following conditions. . . ' 

0 

dkrp(r) dkg•(r;A,L) .. 
• dTk ,,.=>.,L = dTk. ,,.=>.,L, k = 0, 1. (31) 
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and is the approximant for the given functi~~ <p(r) E C[A, L]. 
Usually, these conditions are used for deriving cubic splines. If derivative values 

<p'(·) at boundary points are known 'and the mark non the curve <p(x)'is given, 
then the solution of the task.(T1) is given by formulae (29) and (30). 

Without loss of generality, let us consider the symmetric case in the choice of 
· the segment borders (a= -Aib =A); x0 = 0 and <p(O) = 0. To obtain the equation 

of the approximant, we must "substitute these. values into (29): 
' ~ . ~ 

g*(x; ..\) = (2A}-':2[<p( -A)x(x- A) +<p(A)x(x+ A)]+ ax(x2
- A2), 

' ·' " ' ' 

· . .1 

1 [ , , 1 
Q = 4A2 <p (-A)+ <p (A)- A(<p(A)- <p( -A))]. 

where 

If <p(-A) = -<p(A), then the equation of the cubic curve is simplified: 

g*(x; A) = <p(A) x + ax(x2 - A2), 
, A . 

(32) 

where-the parameter n is found by means of (30): 

A<p' (A)- <p(A) 
Q = / 2A3 . (33) 

Thus, the sol~tion for (T1) is given by formulae (29) and (30). Equalities (32) 
and (33) present the solution of the same task_ for the symmetric odd function 
<p(x) E C[-A,A]: . 

g*(x· A)= <p(A) x + A<p'(A)- <p(A) x(x2 - A2) . 
' A . 2A3 -- . (34) 

Example 1. Let <p(x) = Sinx and\=~· Then; taking into ac~ount Sin~= 1, 
Si~' (~) = 0 and eqs. (33), (34), we obtain: l> · 

' 
4' . 3 4 3 [ 7r 7rl 

n = -- and Smx ~ -x- -x x E -- -
' '7r3' . - 7r '7r3 ' 2 ' 2 . 

This re~ult is.the same, as we shall obtain in approximation Sinx, x E [0, 21r] for 
the five points grid: {0 < · ~ < 1r < ?f < 21r} by using the cub!c interpolation 
spline. It is seen from this example that the decision for the T P S model coincides 
completely with the classical decision for the cubic spline. 

../.2 The mean square cubic approximation of <p(x) E .C2[a, b] 

Let <p(x) E .C2[a, b] ap.d let the mark 'R.:: {(0, 0), (A,<p(A)), (L, <p(L))} be given 
on t~e segment X : [A, L] ~ [a, b], A =f. L. We will solve the next task: . 
· Task,T2:-The cubic approximant S(x;A,L,a) for the smooth function <p(x). 

should be found inform of (29) provided the functional J(x; a) achieves the mini-
mum: 

mJnJ(x; n) = mJn 1[<p(:x) ~ S(x; A,_L,aWd:C. (35) 
X· 
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The necessary condition of the minimum 

oJ(x;a) ' as ' ' . 
, = 0, where ..,-- = ALxd3(x; A, L), 
un un . 

allows to find the required solution, i.e .. to derive the parameter n: 

. 1 1 <p(A) <p(L) 
a(A,L) = C(A,L)[ x(x-A)(x-~)<p(x)dx+ AH A(A,L)- LH B(A,L)]. (36) 

X . . 

Values A,B,C are.determinedby formulae: 

A(A,L) _= 1 x2(x- A)(x- L?dx :;= t ak(A,L)(Lk+2
- Ak+2

), 

X k=l 

B(A, L) = jx2(x .:_-A)2(x- L)dx = t bk(A, L)(Lk+2 - Ak+2 ), 

X k=l 

5 - ..• 

C(A, L) = 1 x2(x- A)2(x- L)2dx = L ck(A, L)(Lk+2
- Ak+2

), 

X · k=l 

where coefficients ak; bk, q are expressed ·via A; L: 

AL2 L2 + 2AL 2L + A 1 
az = -3, }12 =. . 4 ', a3 = --5-, ~~-:= 6' 

b = _ LA
2 

_ " = ,A2 
+ 2AL b = _ 2A + L b = ! .. 

' 
1 

' 3 ' "2 ,' ' 4 ' ' 3 
' ' 5 ' . 4 6'' .· 

. ,A2L2' AL(L+i) . xi_+4A.L'4-L2 • -/ .. (L-t'A),' , . 1 
Cz = ~,c2 =:= 2 _,.c3 = 

5 
,c4 = ---

3
-_,cs = ;::;. 

, . ' .· . .. . ... :•·. . . - : . ·, .. · I :• 

If we take symmetric borders of the segment; then terms with even powers of 
A disappear for A( A), B(A) and C(A).)n this case eq: (36) has the form: .. 

). 

f (x3 - A2x)<p(x)dx- (azA + a3A3)ip( -A)_...;;. (b1A + b3A3)<p(A) 
' -,\ 

n= 
2(czA3 + c3A5 +~sA7 ) 

. ~ (37) 

Example 2. Again we consider the function <p(x) = Sinx, x:E [-;-A,A].,The 
cubic curve S(x; A, n) should be found, which approximates Sinx in the metriC £ 2 

(the criterion (35)). Using eq.(37), we obtain: · · 

n(A) ~ ~~~[(A- 3)SinA + 3ACosA] . 

Taking into account that Sin( -x) = -Sinx and eq.(~9) we have:' 

Sinx ~ S(x; A) ~ n(A)x(x2 
-c- A2

)). 

If we se_t A = 1r' in the expression for n( A), we find: ·-

. ·, 315 . 
0:(7r) =-47r6' 
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Substituting this o:{1r) into eq.(38), we obtain the following solution: 

_,. . 315 2 2 . 
Smx ~ --x(x - 1r ). . 47r6 

Plots of Sinx,S(x;1r), c:(x) = Sinx- S(x;1r,o:)and o:(A),A E [0.1,7r] are show~ 
on fig.9. 

r-----------------------~----------~--------~ 

.... 
n 

.; a- l~g(l a( A) D 
IS) 

.... 
IS) 

A -+------,.-----""'!-
0.01 

X 
I 

-3.14. .1.51 3.01 '-0.00 3.14· 

a b 

Fig.9. Sinx,S(x;1r);the errorc:{x) (a) arid.the p~rameter a(A) (b). 

The graph shows the uniformly character of th~ error approximation on the 
· ·whole of the interval. . . · . · . 

.. p A;proximation ofcp(~) E C(nJ[A,L]in the {Sn(x;A,L)} basis 

. The eq.(25) and conditions (31) for k ::, 1, 2, 3, ... allow to derive the dec~mpo­
sitionof the function f(x)- f(O) = cp(x) E C(n)[A,L] via the parameterized basis 
{Sn(x;A,L)}:(eqs. (23), (23a)). 'In this case it is necessary to solve thesystem of 
equations (31) for finding parameters ak, k = 1, 2, 3, .'... It foll~ws from (23). and 
(25) that starting from k = 3,; kth derivatives of basidunctions { sk} and { xk} 
coincide, whereas kth derivatives of functions d1 'and d2 are equal to.zero .. 

Applying thfs scheme to approximation of the smooth function cp(x) on the 
segment [-A, A], for x 0 = 0, we obtain coefficients O:kJ depending on cp(kl(x,.), 

d(kJ( ) d(kJ< . ) (k) . . [ 1 - . . - I 1 x,., 2 x,. and S;+2(x,.), where x,. E -A, A, p. - 1,2,k - -1,2, ... ,n 2. 

Matrix elements SJ~2 (x,.) can be expressed trough indices of the power (j + 2) and 
the derivative order· (k) as the following: ' ' 

. : . k-1 
s!k>.( ) -II<· 2. ·_ - ·) i+2-k k- ·1 2 < -· /2· · -·1 2 J+2x,.- J+ v mkJx,. ,-,, ... ,n,J-,, ... ,n, (39) 

v=O 

where 
mk; = {(2- k) + kc5(j), k = 1, 2, 

0, k = 3,4, ... ,n/2 

and c5(j) = [1 + ( -1)i]/2. Indices k and p. depend on the rowof matrix index i: 

k ~ k(i) = [i+ c5(i- 1)]/2, p. = p.(i) = 1 + c5(i), i = 1, 2, ... ,~. 

Example 3. Using the 9th power polynomial of Sn(x, A), find the approximation of 
Sinx,x E [-1r,1r]. 
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Solution. Taking into account that Binx is odd function equal to zero at points 
-1r,1r, 0 and using eqs. (22), (25), (39) inn_ =9, we obtain: · · ·· 

4 .· • 

Sinx ~ 0 + 0 + 0+ L:a;S2i+I(x;1r)~ 
. i=1 . 

Coefficients a; are found as solution of eqs.(31):in k = 1, 2, 3, 4. As the result 
the approximation of the sine'has th~ following form: 

Sinx ~ -iU6579347{x3
- x,;.2) .+ 0.00815272(x5 ,--x~4)- . 

0.00017948(x7
- x1r6

) + 0.00000173(x9
- x1r~). ,: · .. · {40) 

The quality of the approxi~atio~ ofSinx, x .E [-:-?i, 1r]by, the VP:r-method 
and by the truncated Taylor-series for n = 9 is.shown on fig;10., ' 

. 'c 

.. c:(xiT9
) .. 

X· 

,;._l 

a. ~ ·: b 

Fig.10. The ~rrors behaviour for S9(x; 1r) (a) and T 9(x) (b). 

It is obvious, the error of approximation for (40) has the uniform behavi~ur; 

Sfn(x), N=-4 · 1e~3 

. 

This error is smaller almost by two or­
ders inthe ~orne region, out ofthe seg~ent 
[..:..1r,1r] than the Taylor expan~ion error, 
and yet it concedes appreciably to the lat~ 
ter at the center of the segment.' 
The experimental stU:cly of the error fo~ 
Sinx approximation by the use of Sn(x; A), 
x E hA, Aj has been carried out, using the 
MAPLE program, desigm;d by C. Torok 
(TUK, Slovakia). As indicated i~ fig.ll', 
the value and the shape of the error Sinx­
S2/V+1(x;A)for N = 4,X= 1r.essentially 
depend upon what points (x,.) for comput­
ing of the derivative in eq.(31) are picked, 
out.:, we can ~ee th~t theoehaviour ,of the 
~rror is best'.one far· x,. =:=-:i:~· 

L--__;_.:..:._ ____ .:..:._ __ .:..:.___;_~' . . ••• . '. ' '. ·'' .. 

Fig.ll. The error dependence of 
the choice o(the·pointfor Sin'(·). ,· -;- ~ ,._ 
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..f.,pnterpoldtion by cubic splines (the TPS-inodel) 

Now we consider the use of the T P S-model in an interpolation. Let values of 
the sufficiently smooth function fk = f(xk), k = 0, 1, 2, ... , n be given on the grid 
Don : a ~ Xo < Xt < X2 < .:. < Xn = b. 

It is required to construct the cubic spline, which interpolates the function f(x) 
in points x E [xk, Xk+I]· It is known the solution of this task is obtained by using 
of the spline-interpolation [8,9]. We still found the solution on the base of the 
TPS-model, which uses the single intermediate point in the kth link. 
. The model (29) is an algebraic equivalent to the model (26). Really, if to assume 
that the cubic spline S(f; x) is known on the kth link, i.e. f~ and f~+i are founded, 
then the value S(J; Xok) for the arbitrary point Xok E [xk, Xk+tl and eqs.(29), (30) 
allow identically to construct the polynomial of the power no higher than three 
and coinciding with the cubic spline (26) at every points' X E [xk, Xk+I]: Due to the 
intermediate point Xok this polynomial has the single unknown parameter a, which 

·in accord (30) depends on derivatives on the boundary of the link. 

0 X 
xo. %el x. X.. 

x, x. x. x. x. 

Fig.12. The scetch of spline­
interpolation for T P S -model. 

Let us consider the use of the T P S-model 
(29)-(30) in function interpolation more ex­
piicitly. We assume the odd number of points 
{xk}(k = 0,1,2, ... ,N;N :::; N;) has been 
selected as knots of the grid in a suitable 
way from the given system of points {x;}, 
(j = 0, 1, 2, ... , N;). 

W~ reindex grid points an'd as~rille to every link the index i SO 'that X; < Xoi < . 
x;+l,i=::: 1,2, ... ,N;, where N; = (N- 1)/2. Then, using x 0; as basis points and 
the shift operation, we construct in every link the local coordinate system with the 
origin at thep<?int (x0;, f 0;) (fig.i2). In this system theequation of the cubic spline 
has.the form of(29) and boundary points of the link, are parameters of this spline: 

A(= x;·:... xo·;,.L; = Xi+1- xo;,H; = L;- A;,,P; = J; ~ fo; an-d 'f'i+I = fi+t- fo;. 

Aft~r th~t for r ~ x,- x0; and x E [i1, Xi+t] the T PS'equation·in the ith link will 
be written as . ' . - . . . . 

. :.S;(r;A;,L;) = TI;(r; A;,L;) + a;S3;(r; A;,L;) = 
-cp· . 'f''+l 
A-Il. r(r- L;) + L:H. r(r- A;)+ a;r(r- A;)(r- L;), 
'·I I • I I 

(41) 

wh~re ~ E [A;,L;H] and a; is the unknown parameter. 
This cubic spline and his first derivatfve are continuous in (x;, Xi+t] and on the 

whole segment (a, b). For determination of a; vye use the continuity condition of 
the second derivative of the spline at the joining point, i.e. 

s;'(L;;A;,L;) = s;~1 (A;+J;Ai+t,Li+t)· 
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By fulfilling th~se conditions at points Xi+i for' the spli~e( 41 ), we obtairitli;;;~tem 
of N;- _!equations f~r determination ofN; unknowns' in the forih: 

JI;O;- Jli+tOi+J = q;, i = 1, 2, ... , N;.::... 1, . :(42)· 

where p; = L;+ H;, 'Jli+t = Ai+t -H;+J, q; := (/3;.+.1 - {3;)/2, N; = (N -1)/2, 

{3; =' ,·_L
2
·H·· (A;cp; .-'-: L;'f'i:-t) arid f3itt- = A· L~ H- (A;+.t<r'i+t - L;-tt<r>;): 

AI I I ·' •• ·-,· '1 ,. • t+l t+l s+l 

For uriamblguous definition .ofaf it is necessary to add another equation:' This 
equation one can obtain, if only th~'single bounda~y condition is given, for instance 
s~ (Atj At, Lt) = !p

1 

(At). This condition'allows to find the parameter Ot in the form' 

1 ' .. '' . • . . i • f. • , • • <f'l • . <f'2 '· ' ' 
OJ= '2 \ ('PI- Til), where nl = :-' H (2At ::- Lt) + L HAt. 1- AJ£1 . . . A1 1 . . 1 1 

Equations (42) together with the equation for a 1 allow to find all parameters a; as 
follows · 

. IIi . . q; . . 1 2. N. 1 
Oi..f-t = --a; - --, t = , , ... , i - . 

Jli+I . l'i+l • . . 

Under the comparison of two models .(26) 'and (29) it is seen that the last' model is 
significantly economic, first of all, in the ~oniputing aspe~t. · 

Example 4. We consider the T PS-interpolation of f(x) = Sinx•for the sevenc 
points grid 

A 7r 7r · · · .37r • · 5JT ' 
l.J.T : -2 < ·0 <. 2 < ll" < 2 < 27!" < 2 . . 

As basis points we take 0, 1r H 21r. Then A; = - ~. L; ::::; ~ and H; :=:= 1r,for i = 1, 2, 3. 
Let us use these data for calculation of a'1: ·. · ·· · · · · · 

2 ••. 2 2 37r 2 7r) :_2 ,,:3 .. 1' 4 
OJ= -(0 -IT)=-(-.-(--)--(-:--)=-(--+-)=--. 7r2 I 7r2 7r2 , 2 7r2 2 . 7r2 .. ll" ll" 7!"3 

Values.Jt; ;::= ¥,Jii+I=, -¥,(3; = {3;+1 = 0 i.e. q; = 0. Substituting the_data into 
{42), we fin<~ Oi+1 = .. :-a;,(;, 1;2,3, which allow'to obt~.i~ the ternJinaJ-decision 
on the every link of the segment. . . ' . . . ' ,. .. ' 

\,, "" '. . . ' . 
'· 

..{;5 Loc(ll fittir:g ~fthe cubic cu~ve ' 
i 

Possibilities of the 'DPT for fitting experimental:data,~ere shO\vn'hi solving the 
track finding problem (2]. This problem is an,urgent issue in patt~rn recognition 
and iri particle physics. To solve this issue, 'the algorithm' o'f aditptive projective 
filters (APF) was develf:?ped. This algorithmis based on; the LQ-!nodd of.the, 
track~segment: , , . · ' · · · 

y(x) = -y(x~ +A) x(x- L) + y(xo+L)x(x ~A)+ y(.ro)(x _i ;;(;·~-~), (43)' 
AH LH . . . •AL . · ·· 

• > .- :; ':... c<' • • 

where H '= L-A. The APF-algorithm can be extended aiso fo~ complex form! 
curves tracking, for exai)lple, in contours processing (3]. . -, ; ' . 
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We consider theuse of 4-I>ointtransforms and theT PS-model (29)Jor smooth~ 
ing of 'dispersed points. This approach allows. to incre~e the processing speed, 
which is the actual problem for ad~ptiv~ signal digitlzation, for mod~rn data pro-
cessing systems and so on (4]. ,. 

The T P S-model of the cubic curve can be used as the flexible structural element 
for. the development of adaptiye algo_rithms in several fields of applications. Three 
parameters of this model are selected from input data with the accuracy of the 
measurement error, which no affect on the visible distortions of the contour, for 
the suitable· choice of the value H = L - ,\. Thus; ih~ T P S-model has only the 
single free parameter o:. Th~se properties allow to reduc~ s.everal times the number 
of arithmetical operations under. conservation of the admi~sible accuracy, hence, to 
incre~e the speed of computations. We consider the standard fitting process for 
the cubic mo'del. · · · · · 

Task T3. On the given segment let us find the cubic parabola, describing the 
relation between measurement coordinates in the best way ' 

{xi} and {jj},j = 1,2, ... ,N;N"';:t> 3, 

where li = h + ej, ej,...., .N(O, u), and Xj are measured ~ithout errors. 
The classical decision of this task for the model (27) is obtained by using a least 

squares,fitting (LSF). Estimates of four parameters are found as a result of the 
decision. Using eq. (25), we obtain the adequate decision ofT3 for the model(29) 
from the condition· 

N 
L: {cpj- cp(,\)dti- cp(L)d2i- o:.\Lrid3j}2

-+ min 
i=l . 

' in the form of LSF~estimate of the parameter o:: 

N N N N 

a= (.\L·2>Jt1 (L:cpizi- cp~ L: zidw-: cpL L: zid2j),_ (44) 
i=l i=l i=l i=l 

wherez/= rjd3i = Tjd3(ri;.\,L):' Values.rj'and cpj are obtained in the shift of 
the origin into the basis point (xo;lo) witli' the simultaneous change of errors fj = 
ej- eo. Parameters,\ and L are determined through coordinates x0 , X.\!XL E {xi}· 
so that X,\< Xo <X£. Coordinates X,\ and XL are taken on borders of the segment. 

· Thus, the estiri-tate of the parameter (44) 'gives the decision of the task T3 for 
the T }'S=model (29) in the form of j(x) = fo+ rj;(x- x0 ),where 

,·, ' ' , ',. . . 

cp(x .:.::.··x~) = rp( r) = cp(.\)dt(i; .x; L) + cp(L)d2( Tj .X,'L) + aALTdJ(T; ,\, L). (45) 

It is seen from eqs. (44) and (45) that "the number of arithmetical operations in "the 
model (29) is significantly less than in the case of the model (27). Furthermore, 
tabulation of·seven functions d~, d2, d3 , zd~, zd2, z and z2 at points of interpolation 
Tj E [.X, L] reduces in addition the number of dynamically operations. The estimate 
has shown that even if functions xj, (m = '1 + 6) are tabulated; the number of 
dynamically operations for the model (27) is 3-4 times greater than in the case of 
the_ T P S-model. 
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Another decision of the task T3 one can obtain by using .'DPT-properties to 
reduce the power of the polynomial by two and to damp measurement .err6rs. In 
this case the" LSF-estimate of the parameter o: is found from the condition 

... ·. . . N. . 
minrt(r;;o:): miri L:(h;- o:ALr;? 

a a i=l . 

in the following form 
. . N• N• . 

a= (,\L L: rl)""1 L: T;h;, (46) 
"i=l i=l 

where 

h; = cp.\pt( T;j ,\, L) :r cpLP2( T;j A, L) + cp;pJ(T;j ,\, L),Nk ~ N, (N.-:i> 3). . (47) 

Here the index i is related to the points for which I T;- ,\ 1:5 Tn and I T;- L 1:5 Tn, 
where Tn is the threshold 9f the range for the "noisy" zone(see (17) and fig.5). In 
this connection the cubic model of input data is converted into the straight. line 
model for almost· all'mapped points with the exception of, maybe, those having hit 
in the unstable zone (fig.5). After that the task dimension reduces by two. The 
using offormulae ( 45)-( 47) for fitting of modeling data is s}lown on fig.13. 

_.,,.,_ 

.:·:·- .. ·:·~~ 

cpLe 
' 

cpk_.: 

.· o:r'( .. ·."'.·.,".-: . , 

~<Jcp,\ 

a) 

.. hk 
' ,. 
'. 

-.... • I 

··..:::;.. 1 i 
·.~. , I 
···.:-:.:1 : J 

I <I •• <I I 'I 
,~···:..•·.rL A I ·. ~ .. ' . ~ I 
--~-- ••••• J. •••.••• "1"" 

I 
: • ../" ·,;. .•. . I 
''h '· .... ' !1 .. ,.l.sf. :_--..:~ ~ . -~·' . .... l.r·.·-. -"' ... -...... -.:; ,.. ......... ....., ..... 
'-':··:~.I : \"·,· I ., .. . ·.~. 
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. .-. .,/ 

~ .. ,----- . ~\ ' ' 
•' ... ' •. 

I ', ·"' . \ . ' . .•. h ... 
I ·,;;_·•,•,, 

'c) 

Fig.13. Fitting of the cubic curve by using of LSF a~d 'DPT meth~ds. 
,; r r ' ' ' ' ~ 

The set of points of the cubic parabola { cpj} are given on the grid o£100 X 100 
pixels. Random.errors {fj}, having normal distribution and the 10 pixel variance 
have been 'added to the ordinates of the cubic c'urve: P~rameters of the transform 
have been found by coordinat~s. of three ma~ked 'points, singled 'o~t 'on tlle graph .. 
All points cpk (except of pivot) have been mapped into points hk by us~ng eq.(47). 
The mapped points are clustered along the straight.line with the slope a.\L (~. 
The LSF-estimate of the parametet'a (eq.(46)) have be(mfound on the base of hk 
points. After that, by using the inversetransform of points {hk} ( 45) estimates tPk 
of the required curve h'.ive bee'nobtruned (b a,;;d c). On fig.l3 (b )the straight li~e is 
shown. This line is obtained by the 'D-transformof the fit foi.the ti:aditionalmodel 
(27) as well. Parallelism of these s-traight lines indi~ates the agr~kment ~f results, 
deriving by various approaches. The histogram of ·mapped, points. hk is shown at 
the bottom of the figure. : : ; :. , f , _' .. 
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5 Conclusion 

New transforms:(direct and inverse) based on the cross-ratio of four collinear 
points over the smooth curve presented by the formula or by the table have been 
found. Since these transformations use three cross-ratio .functions and three points 
of the curve as pivot points, the direct operation has the stability to errors every­
where except neighborhoods of two pivot points, i.e. the error suppression is the 

· result of the direct transformation. · 
The transformations possess a number of the properties, which have been used 

for developing new rules and methods in the.smooth function parametrization. The 
new class of polynomials (monosplines), having a good approximation quality has 
been derived. The new effective approach based on monosplines has been proposed 
for approximation and fitting of curves. In this approach the local error has the 
uniformity at the interval of approximation. The. three-point spline model (TPS) 
of the cubic spline is proposed. The T P S-model allows to reduce the number of 
unknown parameters in twice and to obtain the advantage in the computing aspect. 
Approximation and fitting of curves have been shown on a number of examples. 

The above results and other peculiarities of 1JPT-transforms give us a new 
mathematical tool and a new possibility in both practical applications and theo­

;retical research of numerical and computational methods. 
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