


.1 .. Introduction -

The complexrty of functron a.pproxrma.tron problems and rna.rn 1 difficulties of the
practrcal implementation of methods for ﬁttmg of empmc ‘data a.re well known and
have been studied extensively in recent years [6-13]. N

. This paper is an outcome of further investigations on the new kind of 4-point
transformations [1,2), called discrete projective transformations (DPT or D - trans-
formations). A new approach based on DPT is proposed to function parametriza-
tion and to approximation of smooth curves on the local segment.

DPT are new -operations, (direct; and inverse) over thé differentiable function
defined by a formula or by a table.. The DPT operation has the structure of the
"three-point” convolution, using three reference points of the curve and three weight
functions defined by the cross-ratio of four. collinear points (C R=functions). The
weight functrons are projective 1nva.r1a.nts i.e..they are invariable functlons wrth
respect to a shift of the basis point and to scaling of their parameters.:

New results in function .approximation and fitting have been obtained by us—
ing four-point transforms. DPT possess a number of important. properties. For
example, the direct transform reduces the power of a polynomial by two and is
stable to measurement errors everywhere except neighbourhoods of two "noisy”..
points. The inverse transform allows to use coordinates of reference points (the’
mark R) as continuous parameters of the function: f(z) = f(z;R). Transforma-
tion of basis functions {z"} yields the new polynomial basis with the boundary
parameters: . This basis provides ‘a' uniform approximation on' thelocal segment
and ensures stability of computations for a vanishing argument. . In-addition, the =
system of weight functions has many useful propertles 1 2] Wthh allow to de51gn
new-effective algorrthms for data processing.- - - R LAt ,

'DPT-approach has a number of advantages with: respect to. the tra.dltrona.l

polynomlal approxrmatron Using D-transforms, the new class of polynomla.ls with

a better approxrmatron quality-than in: {:c"} has been'derived and a ”three-point”

model of a cubic spline with the single free pa.ra.meter is proposed. The model
“allows to reduce the number of ‘unknown pa.rameters in twice and to-obtain an

advantage in'a computing process.

An additional pomt to empha.srze is tha.t 'DPT-a.pproach gives a new mathe-

matical tool-and a new possrbrllty in ‘both pra.ctlca.l applications and theoretical
~ research of computational methods.’ ‘The application of four-point transforms for
ﬁttmg of ‘empiric 'data is simple in practice and:provides a wide way for desrgn-‘
ing adaptrve algorithms for digital signal processmg, pa.ttern recogmtlon [3], 1mage
processmg in: hxgh energy physrcs [4] a.nd 50 on. : . R

2 Deﬁnitidn and Pr_operties of transforms .
2.1 Definition and the _t']e‘oinetric sense of DPT

Four-point transformations were defined in [1,2]. DPT allow to map pomts ‘of

an arbitrary differentiable curve f(z) (the original) onto corresponding ‘points of -~

another curve k(7) (the image) by using three pivot points of f(z) and three weight .
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fﬁnctions The weight functions are yielded by the cross-ratio of four collinear
pomts z—coordinates of three pivot points Py, Py, P; and of a single variable point .

P;. Three pivot points of the curve f(x) define the mark of transformatlons R.
The varlable pomt Py is mapped into the point P :

: where Pf = Pf(a: f(a:)), P;. = P;.(‘r, (1')), a.nd T =1 — 0.

The ordinate of Py is deﬁned as the polnt of
intersection of the parabola or the straight line
.| passing through three points (P, P; and  Py)

“with-axis'7 = 0 (¢ = z¢) (fig.1).* The ba-
sis point Py remains as’the immovable point.
-Pivot points: ‘P, and P, are transformed by an
* approximate limit, when 'z — z; and a: = 72

respectlvely (see subsectlon 2.3).

. j’Flg 1. The scetch of the geometrlc o , <
sense of DPT. . :

P

Let us denote X -—'3:1 - zo,L = 3 — Zo, f,\ = f(zo+A) and fr. = f(zo + L)

el Values A, L are parameters and R : {Po(zo,fo) Pl (zo+ A f,\) Py(zo+ L, fL)] is a

mark of the transformations.
It is seen from the definition that the 4-point transformatlons depend on thelr

: parameters and on'the mark, i.e. the shape and the position of the image-curve o
:h(t) .are determined on a: pla.ne not only by the function f(z), but also by the

: ch01ce of the mark R.
“In what follows the dlrect and inverse transformatlons w1ll be denoted as |

125 ) = DI(=);R] = (1) - (2)

and

v These operatlons have the visual geometric sense (see fig.1). The 1mage-curve
k= f%z;R) is the geometric locus of points of intersection of the parabola Il or

- ‘the straight line A, passing through three points Py, P; and Py with:the basis axis
7 = 0. In case of the inverse transformation, the ordinate h(r) is taken on the ba.sns
. axis and the point of’ intersection is taken on the perpendicular 7 = z — zo.

To express DPT in the a.nalytlcal form, we use the scalar product for 3D vectors™

| F,F,Dand Z:", EEE ,
fiaR) = =ZPs A L)f. \ @
i=1 -
‘and | '

| ‘f:l;(};kp) (B, 7) =§3; T',\ L)z,,! )

i

ROR)=DRRI=f). (@)

‘ Pi(Ar; Agy A3) are written as the followmg

‘where P (Pth,Ps) ’ (dl1d21d3)T F (fa\?fln (z))T Z (fa\?fL’ h(T))T

Functions p.(‘r ‘A, L) and d L(T3 A, L) are CR or wezght functwns (see table 1)

2.2 CR-functzons and thezr propertzes ’

Unlike the classical cross-ratio algorithm [5] of 4 colllnear points (1, T2; T3, T4)
(fig.2), we use the algorithm with the rearrangement the poSJtlon of two’ polnts

" [1,2] as the followmg

213 223 ()
24 Bug - ‘
where A;; denotes the algebraic distance between points i and j,7i.e. A;; = z; — .
For the single fixed point the cross-ratio (6) yields only three various functions
defined by the position of points in the quadruple on the number axis (fig.2).

0 A A, A

1 T2 I3 T4 . J‘ ' “".\“- 1

Fig.2.
For example, if z is the fixed point and A; = ;,.H - :cl, (j = 1,2,3), then
dlstances A., can be expressed through A '

Ba

- V A13 = Az, Au = As, Aza = Az Al and Au = Aa -~ Al

Substltutlng Aijin (6) and using 1ndex pomt functlons m(z) and n( ) CR-functlons

»;‘n:,

PilA) (A‘ AAM)(AA A),1—123 M
where m = m()—-2—z+(z-—1)' n—n()-— (1—1) and'Afv (Al,Ag,A;,)

_ From the above and eq.(7) it follows that CR—functxons are dimensionless, scaling-

invariant and tra.nslatlon-lnvarlant functions:

-(yA)—p'-(A),.-(pA) B(B), A0, i=1+3

If we denote A; = A L , 7y forj =1,2,3 respectlvely, then functlons pi(A) and
d;(A) are written for the quadruplet {0 AL, T} by formulae in table 1. The im-
porta.nt property of p; and d; is the natural normallzatlon of their sums:

\

zp';(‘r;,\,[,)=1 R (8) .
i=] . .

and ‘3 4 o
YdnAL =1L o e (9)
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To proof these’ equalities, we can use an ordinary summatlon of corresponding
functions from table 1..Main characterxstlcs of weight functxons and their graphs
for fixed X and L are indicated in table 1 and in fig.3.
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. 'Fig.3. Graphs of p; and d; functions (fragments).
To find the inverse transform- functlons d; (A) i =1,2,3, we divide both parts
of the equality (8) by p3 # 0:
L
dl = ——' dz d3 = —.

N Ps Pa p3

" The system of three functwns {pi(7; A JL)} i =1, 2, 3 has the threefold sym-

metry and possesses a number of:useful properties. considered in ref. 1,2]." For -
- example, functions py and p; are obtained from ps by the formal rearrangement of -

parameters and ‘the variable: X = 7 and L: = 1 ‘respectively. This symmetry. is
shown in the form of the dlagram for calculatlon of pi'(fig.4). Here, the structure
of the system is represented under condltlon as ‘three overlapping triangles.

Table L. CR- functlons and thexr characterlstlcs )

CR [ formulae Z€r0oS. ' Te extremum h/asympt._.v/asympt.

n ﬁh v0.> kno"’ ;no Pl?ﬁ‘ Tg)\
» ey 0 m w o om=gx 7=l
B gy mo M gk m=0 =)L
dy | —_%[_;,\l;l 0,L % qflfl:,\) no " no
dz A 'Z(;%:\\% 0, A % 4L(f_$) no no
b LNED L :%'%’- o e

We see, that functions p;(7; A, L) are ‘calculated by division of quantltles in the
1solated vertex of the trlangle into the product of dlﬁ'erences whlch dlsposed in the
other corners. - . o
: _ “As mdlcated'on the’ dlagram, 12 operatlons'
.are needed for calculation of all three functions
at the single variable point. Six operations of
the first level are dlsposed at vertices of trian-,
gles On the second level we have 3 multiplica-’

.. tions of paxrwwed differences. Three divisions
are fulfilled on’ the third level of calculation.
If these calculations are carried out for every.
level in a parallel way, then all three functions
can be calculated in the time of fulﬁlhng of
three operatlons iy X a.nd o

i

Fig.4‘.; The dlagra.m for comf)uting

o of pi(rs A L), o

2.3 The dpT algorithm ' ' [EREIREEE

Equatlons (4), (5) -and formula.e from table 1 define the transformation rule
for all curve points except of two pivot pomts, where functions p; have endless
discontinuities.' The basis point is the fixed point: h(:co) -f(2o). One can find the
values k(-)"at pivot points by the substitution of p; in (4) Taking 1nto account (8) v
forT_:r—:ro,)\—-:r,\—:co,L'—zL—:coa.nd:co-—O weﬁnd O

4

,,(,’ Sonsie- f()__i(x) 2o f(T) f(L) + f(,)

Di=1s

Hence, on the strength of dlfferentlablllty f (T) under T )\ and T L we ﬁnd
h()\) a.nd h(L) ' :

HO) = i hr) =~ - + 3 Afm OV RR ,4;’(1:'0)
and : : S ‘
h(L) = Jim h(f) -—f'(L) Afmf(L), Sy

where H = L A AfL,\ = f(L) f()\), and 1f :co ;é 0 para.meters A and L are
replaced by To + A and 2o + L for f () and fe) respectlvely .

Formulae from table 1 and eqs.(4), (5), (10), (11) are basic formulae of the;
de~algor1thm for ca.lculatlon direct and inverse transforms of the smooth functlon,
given by the formula or by the table ' ) '

h(A) =3y (z,\)+ H,(fL P

| h(L) AL '(zz,) Hz(fL_f’\)+fL’ .
~h(r) = Pl(A)fA+P2(A)fL+p3(A)f(z)’ S
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and

) = S8V + de(A) o+ da(A)hCr), (20

where A—:c,\—:co,L—:éjf—:co, and A =(7;A L)

" To obtain relation between the derxvatlve f'(-) and f(-;R) at the reference

pomts, we use eqs. (10) and (11)

f(xo+/\) [/\’Afm+H2(fx—f"(/\ R))] o

/\LH
f(zo+L) /\LH[L2AfLA—H2(fL~fq(L R))) (14)

Remark 1. The dpT algorlthm gives the rule for realization of two reciprocal
operations over the smooth curve f(z) for the given mark R. The outcome of the
- operation is the new function (the image), complexity of which differ by two orders
. from the initial function (the original). Subtracting f(zo) from both parts of eq.
(12) for h(T), we ﬁnd

SR = ot > Afm (8); where Af. i~ fo

=1

This formula expresses the relation between function increments A f; and argument

. increments Ax;, defined by coordinates of three pomts P, P;, Py with respect to
the point P, and by using the, cross-ratio of z— coordinates of these points. (The
relation between Af and Az in case of the derivative is established by the existence

limit when Az = 0 for the simple ratio of increments with respect to Fy.- The ge-
ometric sense of the derivative is defined by the paramieters of the tangent in Pp).
From the geometric point of view, the curve f*(z; R) is defined by the position and
by the shape (the slope) of the parabola (the straight lme) passing through three
points onto the body” of the curve (fig.1)." Thus, we can assume the operation
fUx;R) as it was "the projective derivative” of the function for the’ glven mark R
: deﬁned by three reference points Po, P1 and Pg on the original curve.

2.4 The relatzon between CR and LQ functwns

- The family of 11near and quadratxc (LQ) functlons y(:c) =azx?+br+c, (a b, c—
© real numbers) has particular interest from the viewpoint of DPT. In this case
. vectors F and Z for every term (to ‘within multlpller) have the followmg form \

Y=, Ik *)T” (A, L5, 28) k= 0,1,2.

Shifting the origin of coordinates at the pornt ’Po(:co,yo) and substltutmg pi and Y
in (4), we obtain A'=0, i.e. P and Y are orthogonal vectors.

(PY)—O o | (15).

The property (15) affects the pro_|ect1ve nature of DPT and plays the impor-
; tant'role in their structure.’ Eq.(15) establishes the coupling between projective

6

h(O) f(:co) T =2 — o, H L A, (12)

invariants (7) and four pomts of the LQ functlon {yJ = a:c ¥ bzj}, 5= 0 3 on
an Euclidean plane. In particular, eq.(15) yields the error equatlon in transforming
the LQ—function given by experlmental pomts

(PY+E) (PY)+(PE)—0+¢, | ', (16)

where E (e,\, er, e,) is the €rror- vector, and €is the total error of the transfor- .

mation. Hence, if random errors have the LQ—dependence at the 4-point system

then the error € becomes zero.at the transformation point.. S}l

~ If we denote emaz = maz{] ex |,| er|,] e(r) I}, then the transformatlon error
€x(7) can be estimated by the following 1nequa11ty e

a(r) <Uemas, (17).

where

U(r; A L) = E]p,T/\LI AR
In partlcular, taking into account horizontal asymtotes of pi (table 1), the functlon
U= ]-f’i!i!\i‘ll in'r — oo’and if AL < 0, then U'= 1, ile. the transformation error is
not greater than emas. -

““The’ example of the graph of the functlon U ('r /\ ‘L) for ﬁxed A= '-—50 L =

" 25 and zo. = 0 is shown on fig.5. ”N01sy (U(r, ~50,25), > 1) zones are shown

on the scale under axis 7. "The example of the ‘noise ‘transfer n(z) ~ (0 ,0)
in transforming of the five order polynomial Ms(:c) = —(z% =:5z% + 4:::) +'n(z)
(ro=0,A=—1and L = 2)is shown i in_the right’ part of fig.5. The result of the -

‘tra.nsformatlon is the noised cubic curve h( ) —-2(:1: + :c)‘:- 2:::) +n“(:r:), which has

" rejections”, in nelghborhoods of X a.nd L

G h(z)-[Ms(z)+n(r)1“ X

; n(z)|
: :,Tf;‘_g : RERTRIRSEPTIDA EFR
-1@2-50 @ 50 100 - '.4-3-2-101.234° .,

Crmr—mr—J« U >1

Fig.5. The g'raphof U (T4'50 25')~ and t'he effect of the noise transformation.

9 -20 40 40.

“ 1t follows' from (15) - (17) ‘that the operation: f¢(z; R) suppresses -theerror

‘almost everywhere with the exception of nelghborhoods of ”noisy”™ pomts A and

L. This property of DPT plays the important ‘role and'can be’ very usefuI in
data processing. As we known, the derlvatxve and the difference scheme are hlghly
unstable in this case even to small measurement €errors.’ L :

The above formalism is the useful means for functron parametrlzatlon The use
of DPT for obtaining the special class of polynomlals (monosplmes) w1th the good‘ :
approxrmatlon quality is cons1dered in the next section.
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- 8.1 Basic function p'arametrization (the direct transfornf)'

' ref [1):

It follows from (18) that hn are homogenelty functlons with’ respect to A\, L,z.of ..
.. the power n and n — 2 power functrons relatlve to z. So, 1n general the operatlon _
M "( ) decreases the polynomral power by two:

#

| ”3?‘-«.’,T'he vtrans‘fo‘rmfof' {z"}

Power functions (or monomials)  {z"},n = 0,1,2,- -« play the important role
in' the calculus first of all as-the’ linearly independent ba515 for the power-series
expansion of :mhain elementary functions. -The’class of power functions has the
specral interest from point of view of our transforms ' L
“The formula for’ 'D[:c ,’R,.] in a:o =0 and F = A", L" "]T' was derwed in

n—1 n—i=-1

hn = [z Ra]® = ALz 3N 30 L" 1 gntiko1 ALzGo(z; M, L), - (18)

i=1 k=1 .

where n = 0,1,2,--+, Gn(z; X, L) are elementary ‘symmetric furctions and R, is
the ma.rk for z" ‘ ! ' ! :

Ret (P PH PR (VL A0 A D), P P =Py, = 00\ L a9

[M (I) R]" * n—z(I ) L)

fwhere M,._g(:c‘ A L) is the n'—'2 power polynomlal dependmg on z. In partlcular,

the ‘straight line-and quadratic parabola. are mapped into a constant; the cubic

o parabola. into a straight line and so on (Go= G1 "G, =0). Eq.(18) can be noted
’ also as recursnon relat10ns ~ T K a

h (:r A L) ha(z; A L)G (z; A, L) Gn(z; M, L) = gﬂf:l:;L)+ Abn_l(z; ,\,L); :

gﬂ(I)L) = zgﬂ—l(I; L)+ L"‘a, h3 = ’\LI1 g3 ='1, G3 =l;n= 4157' Tt (20)
Thus, the polynomial:'M,._;(a:; A, L) can be represented as a product of the

» _polynomial related to {Gn(z; /\,'L)}, (n _>_ 3)'a.nd’the function h3 = /\L:c, i.e.

| : D[M"’R] Za,[x-’ Rn]q = ao+ALIZa,G (:c A, L)

J=0 - i=3

' where {G (z;A; L)} is the contmuously parameterized basis by parameters A and

L:: For the symmetric choice: of. parameters-(A = —L), functxons Gn (:c A) depend

~on the srngle parameter /\ and ha.ve a more. 51mp1e form:,

. G (:c A) -—zG,._l(:c N+ (—”_—aﬂ

2;
Formnlae for}G,'.(;c; /\,L),'n = 3,4,

/\n_a o = 3,4"..., G] =G2 —_- 0_ (21)

8 a.re given in table 2,0

Table 2. SR . - .
< - : - G,.(I;/\,'L) " & G,{(z;/\) it
4 (z+L)+AGs e z
5 z(z+ L)+ L* + MGy SLEtE A
6 . z(z(z+ L)+ L)+ L3+ AGs . 3 +z)?
T z(z(:t(:c+L)+L2)+L3)+L4+/\G6 oot
8- z(z(z(z(z+L)+L’)+L3)+L4)+L5+AG7 EX +x3,\2+z,\4

8.2 Basic function pammetrization (the inverse transform')f

Let us consrder functlons {z"}, n= 0 1,2,...and their representat:ons by usmg
the inverse 'DPT Usrng ma.rks 'R, (19) and eq. (5), we obta.m '

czt —,\"d1+L"dg+h (z/\L)ds,n—OIZ

We shall denote the- third térm by Sn (:t A L) and a.fter substltutlon of h from
(18) and ds(a: ,\ L) into the above expressmn we obtam ‘ .

have for S’ (A) S’ (L) = 0

[S,.,Rn] = Opl +0Pz + s,,p3 ALa:G (:r A L)

:D— tra.nsforma.tlons of S a.nd of T comc1de The connectron between
S’ (:c A L) and z" are given' by the following relatlon S R T ‘

‘S’,'.'(z',\ L) & —x'd1 L"dg—a: Y 1)"

:t(:c : 3), (23)

:

,n = 3 4 5 . where H L A and dl, dg a.re taken from table 1 The equa.tlon

(23) for; the symmetrlc case has the srmpler express1on ~

gt ,(2f3a):

,.(:t A)—z /\""'":t'",.im ( ) ,n—-345

Fxg 6 shows fragments ‘of gra.phs of such functlons m the form of surfaces S’ (:t, A)

(z, € [-1,1]). Graphs of Si(z;1) for n = 3,4,5,6 are shown on fig.7.: ‘
Polynomials ‘S,(z; A, L) have the structure of nth: order. monosplmes, Wthh

play, in the known sense, the same role in the approximation theory as Chebyshev

) polynom:als do in the classical function approximation theory. [9]. From geometrlc

point of v1ew, functlons Sn (:t ‘A, L) are obtained by means of the a.lgebralc summa-

'tlon of the monorma.l " w1th the LQ—funct:on, dependmg on the va.lue a.nd the



vparity of the number n and on pivet coordi_nates Ay Lo

Frg 6 Surfaces Sn (:c /\) for z, A €[ 1 1]

The behaviour of 5, (:c A L) has the qua.lrty drﬂ"erence from the behavrour of z"
for vanishing z. It is well known, the polynomral model, based on {z"}:leads to ill-
. conditioned matrices and to the round-off error accumulatron in solving a-number
of statistic tasks for. the large dimension n and the large sample in vanishing z.

Functions {Sx(z;A, L)} do not suffer so from similar situations, since they have -

the dampmg terms, which provrde the computrng stablllty The posltlon of the
roots on the plain should be taken into consideration. Comparing with z" roots,
we see’that’'the polynomral Sa(x; A, L) has roots 0, A, L.and roots of the equatron
vG’ (=5 A, L) = 0, which, in generally, are complex-valued.-

“ UsingDPT(12a) ‘in z¢ '—-0 the arbrtrary functron f(:c) € C'[a b] can be
decomposed in the following way: - < _

- f(z) = f(=R)= f(W)di (a3 A, L)+f(L)dz(z A L)+f"(1' R)ds(z; A, L). - (24)

S (a:, A)
o the ‘curve f(z) € C[a b and’the .image-function
h(z; A, L) = f(z; R) is known, then we can offer
.the function f(z) in the parameterized form (24).

The formula (24) is very useful in processing of the
curve given by a table or by experimental points

A . measurement points.
|z < L2A =1;Az = 0.1

Flg 7. Graphs of S (x5 1),

Eq (18) and decomposrtron (29) allow to change the behavrour of the’ error rn'

—local functron approxrmatron by the modxﬁed truncated power-serres For exa.mple,
usmg (24) five terms of the Taylor-series for f(:c) ='e?,z € [ZA, ] and Ga(z;))

10 +

So, in general if we have three reference points.on

o | {fi} because of f(z;R) can be calculated through :

where H H(:c /\ L) fo+f(:c,\)dl(:t /\ L)+f(:tL)d2(:c /\ L)

from 't‘ab'lé'2 Fwe’-obtain-f O R R N et

k B F e . : T
#1
cr- ~ (,a(:c, ,\) = c"‘dl + cxd, + [E k' ; ,\]<d3 2,\2 z[e -/\(z = ,\) ¥ c’\(z + A)]
o " | (a? +,\2)) (=2 —,\2)
- e 4,‘.” 120 7 M
Thls notion in’ /\ = l'gives the res1dual r=|e — (,o(a:) ]< 0007 z € [-1, 1] w1th
zeros at boundary points, whereas the result for the original series with the same

: 7’—[1+0+0 ,\’z( +

‘conditions makes up r < .00153, mainly on interval borders. The error in the

central part of the segment for the original series is less than for the transformed
series. We see that this simple and clear way leads to the error redistribution on-
the segment. The above example shows that ’DPT and polynomlals G’ (:c AN
prov1de a useful tool to operate w1th truncated power-serles

Eq (24) has 2 number of adva.ntages in solvmg local a.pproxrma.tlon ‘tasks at least
in two aspects: a) the number of unknown parameters in (24) is smaller’ by two,
than'in presentation of . f (:c) by the traditional polynomial; b) when the function
is given by the array of measurements { f,,} k=12,..,the choxce of pivot pomts '
allows many variations, that are the source of the ﬂexrbrhty in the practical use
of the- method especra.lly for pattern recogmtlon a.nd for adaptlve dlgltal s1gnal
processmg :

~On’the other hand; formulae’ (12) (23), and (23a) allow to’ derive the approx-
imation of the smooth smgle-valued function” f(z) trough functlons di(z; A/L),
da(z; A, L) and ‘the parameterized basrs {S (:c A; L)} n —~3 4 -yreldmg by
DPT of the basis {z"} for marks (19). ' . '

For’ example, if ‘the function INER R) is unknown, then takmg parameters A
and L as boundaries of the interval, assuming f“(:c R)) T aLGk(z ‘A, L), and
using (24), we obtain the expansion of f(z) on X L) by polynomlals d], dz and
{Sna },n =3, 4 w1th unknown coeﬁicrents a;, = ‘a,,(R,,) i .

- f(a:) (:c R) H+53(z A L)EakG’k(:c /\ L) I'I+Ea,f.5';,(z /\ L) (25)

—3

. As mentioned above, the transformation of basis functions {a:"} propertres
of ’DPT and formulae (12) = (14), (20), (23) - (25) should be utilized for solving the
wide class of the practical problems, which use function approximation and' data
fitting.- This approach can be fruitful for processing both analytlcal and tabulated
functions: :The conception of "three pivot points on the curve” ylelds the new
possibility-for designing adaptive algorithms for. finding and recogmzmg of curves

of a complex shape with errors and backgrounds

-7‘4 Functlon approx1mat10n and ﬁttmg

In thrs section we consider_some a.pphcatlons of DPT and {S (:c /\ L)} for,

functlon approxrmatron, mterpolatron a.nd ﬁttmg

{e
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I
.

It is known [6,7], the traditional polynomials have a number of ‘disadvantages,

' a,ppea.rlng in interpolation of the functions which have the pecullarrty of the be-

haviour in a local zone. O. Runge function is the example of such a situation [6].
Recently, spline methods enjoy a wide’ appllcatlon for function approximation [8§-
10]. The splines devoid of this lack and being by the efficient tool both in theoretical
research and i in appllcatxons ‘Many papers concerned with function interpolation
and approxrmatlon are appeared up to now [12,13]. The cubic model of Hermite
spline S(f;z) has become most frequent in practlce Let us consider this model in
the a.nalytlcal form [9):.. : :

(f,'-') f,(1—t)’(1+2t)+f,+,t’(3 2t)+f.ht(1-t)2 ‘.+1ht2(1—t) (25)

. where hi = Tig1 — '.r.,t =(z— 2! ,:c € [:c,,:c,+1],z = 0 1,2,.,.N =1

" These splines are used for 1nterpolat10n of sufﬁcrently smoothed functlons ¥ (:c)
given on some points of mterpolatlon AN a'fj: o < 2y < ' < N. = b'in
fulﬁllment following condltlons N S S

a) the power S(f;z) < 3 z € [z.,z.“], -

b S(f;2) € Cla bl fre e s
c).S(z:i) = f(=zi),t = 0,1,2,.. N'N\ > 2 with 'the different kind of boundary
conditions. -

" 'To find unknowns f ‘and 1 10 “the condition of cont1nuous second derivatives -

at, pornts of 1nterpola.tlon should be used, Both these conditions and’ boundary
- conditions  allow to obtam the system of N+1 equatlons for determination of
N + .1 unknowns f,,z = 0,1,2 ., N.-It.is well known, the matrix of this system
" is the nonsmgular matrix with a dlagonal predommance, i.e. unknowns fi are
‘deﬁned 1dent1cally Different variants of the cubic spllne constructlon have ‘been
1nvest1gated in the extensxve blblrography [9 10] :

. Since the. spline (26) is the polynomlal of the power no hlgher than three,
eq (25). will be fulfilled exactly for S(f;z)in n < 3. Therefore, this spline can
be represented as decomposrtlon by functions di,d; and by the cubic polynomial
‘Ss(T A L), provrded that the single additional point between adjacent points of
- interpolation will be given. In this case we: obtain  the new model of the cubic

o spline, which uses three points and is equlvalent for the two-point spline (26). We

‘will call this model the three-point model of the cubic spllne or TPS. As the TPS
‘model depends on the single free parameter (a = ‘alfiy fipn fir firrs i)y then it
has the important advantage with respect to the model (26) (see below). .

*+ Further, examples of algorithms based on the DPT approach for. functlons ap-
prox1matlon mterpolatwn and ﬁttlng are dlscussed i : ;

4. 1 Localfunctzon appro:czmatwn by the cublc parabola :

y Cublc splines play the key role in the functron approximation. The theory a.nd

application of cubic splines are widely covered in the extensive literature [8-11]. We -

shall consrder the pecullanty of ‘D’PT for the CublC parabola on the local segment
(:J:)—a:r +ﬂ:c +7:J:+5 a;éO :J:G[a b (27)
: Let us ﬁx the mark R on this curve at pomts (z,\,y,\) (zo,yo) (IL, yL) By using

12
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eq.(4) a.nd p,(-r A L),z =1, 2 3, we obta.m

e v (:c 'R,) = h(-r) = a/\LT + yo

Shrft the origin a.t the ba.sxs pomt (:co, yo), the la.st expressxon reduces to the fol-‘
lowrng form

. h(-r) Dlaz® +. ARl=aMr. . (28)
We see that the D—transform converts the cubic' parabola into the stra.lght lme
with the slope a)L, and vice versa., the inverse transformation of (28) with the

same mark R ylelds ‘the orlglna.l ‘cubic curve. In accord'(24), (28) a.nd table 1 the
equation of the cubic curve is written in the pa.ra.metrlc form: *

g(‘r /\ L) g(/\) ( - L) + g( )T(T - /\) + a‘r(‘r - /\)(‘r - L), (29)

where H = L A ln contrast to formulae (26) and (27), eq. (29) contains only the
one free parameter o (the coefficient in z%). To determine this parameter, we use
the summation (13) and (14), taking into account h(/\) = aA?L and h(L) = ¢:t/\L'2 ’
from (28):

o= @0 - 2D -s00 @

Up to the consta.nt the formula (29) presents the three-point model of the cubic
spline (T'PS) on the segment [A, Z]. The pivot coordlna.tes are fixed pa.ra.meters of
this model'and « is the free parameter defined by (30)." : \

As indicated on fig.8 the TP.S—model has the visual geometrxc constructxon

of\ f ™\ _ s
fo /T N
s ¢ o A
SIS ;i A o; ,7 Sa
£ A ‘llt ‘ll. | | L| T ": A - T ‘l - I‘Ll T ’
'.6-3-1 1.3 B6-7 : '5 3-1 1. 3.6 7.
: f H+Sa,(a<0) ¢ A+Ss,(a>0)

Flg 8. The geometrlc sense of the TPS —model

The pivot coordrna.tes are singled out on the graph Arbltrary cubrc curves f
and ¢ are obtained as the algebraic sum of the cubic monospline S3(7;}; L; @) and
the quadratic parabola II(r; A, L) or the straight line A(7; ), L), depending on the
location of the pivot points-on the plane ‘Now we shall show exa.mples of usmg
egs. (29) and (30) for the functxon ‘approximation. < - .

“Task T1:' Among curves (29), having three pivot: pomts, a ‘curve g (T /\ L)
should be found, which' safisfies following’ condltlons Sl 3 ‘

i Cdtg(ri AL R
‘_;’;__(::Z |f=,\,L —g'g';r—)' |f_,\ L,k 0 1. . (31) ;
13



and is the approxrma.nt for the given function (,a(‘r) (e [/\ L]
- Usually, these conditions are used for derlvmg cubic splines. If derivative values
©'(-) at boundary points’are known and the mark R on the curve p(z) is glven,
" then the solution of the task.(T1) is given by formulae (29) and (30).
Without loss of generality, let us consider the symmetrlc case in the choice of

““the segment borders (a = —A;b = 1), zo = 0 and ¢(0) = 0. To obtain the equation

of the approx1mant we must substitute these values into (29):

g (-r, A) = (207 [e(- —Nz(z — -A) + sa(/\)x(x + /\)] + ax(-’t - /\’),
a=5 [so (- /\) +¢ (/\) - "(‘P(/\) so( /\))]

If go(—/\) '—(,a(/\), then the equatlon of the cubic curve is SJmphﬁed

where

where the parameter « is found by means of (30):
_ M-y
<o

i Thus the solutlon for (Tl) is glven by formulae (29) and (30). Equalltles (32)
and. (33) present the solution of the same task_for the symmetrrc odd function

n (,o(a:) € C[—/\ /\]

(33)

sa(A) /\90 N - 90(/\) 2y '
o) = T+ T ( -2 ®1)
Exa.mple 1. Let (,a(a:) Sma: and A= z Then ‘taking mto account Sm— =1,
S'zn (3) =0 and egs. (33), (34), we obta.m < h ‘
4 ' 3 4 5 T.w
a=; L andSma:~7ra:—7raa:’,,a:€[ 5 2]

This result is. the same, as we shall obtaln in approxrmatlon Szna:, z€ [0,2x] for
the five pomts grid: {0 <2 << 3" < 27r} by using the cubic interpolation

- spline. It is seen from this exa.mple that the decision for the TPS model coincides
completely w1th the classical dec1510n for the cubic splme

4. 2 The mean square. cub:c appmzzmatzon of (,o(a:) € Cz[a b .

Let (,o(a:) € [,z[a b] a.nd let the mark ’R. {(0 0) (/\,(,o(/\)) (L, (,a(L))} be glven
on the segment X : [\, L] C [a,8], A # L. We will solve the next task:

- Task T2:-The cubic approximant S(z;A, L,a) for. the smooth functlon l.p(a:),

should be found in form of (29) provided the functronal J(z; @) achieves the mini-
mum:

nr.in J(:e; c_x) = rrr'in j[(p(:z:) = 5(z; /\,’L,' a)]zds:. - (35)
B x ) g . ‘ ° . : i

14

The necessary condltlon of the m1n1mum I N S

k aJ(J: oz) a5 -
T a where ° e /\L:rd;;(a: A L),

allows to find the required solutron, i.e. to derive the'parameter a:’

o(A,L) =

C(/\ L)[ [ate— /\)(a:—L)(,a(a:)da:+"’( )A(,\ L)—"’(L)B(,\ L)] (36)

Values A, B,C are determmed by formulae:

A L) = / 2z~ A)(z - L)’da: = 2 ar(), L)(L"+2 — NHH2),
) X ) : Iy . : {

B(A,L) =,./v1_2($ _/\)2(1_ —L)dz = z“: bk(/\,L)(Lk+2 o /\k+2)"
X k=1 .

D)= [#@ ==~ Lydz =,kzj:ck(x, D)4 - 2447),

. X .
where coefficients 4ak’; bk; ¢ are exfiressed‘rlia ML '
_MP 4L 2L4d 1
4 = 312—‘ 4 »,83.= B ‘14—6,
Lx? A2 4+ 2)0L ]
e w ey e
v ALE+N . vamrarr L
rc‘;_ 3.7"0’,\:_, T2 ,’-3 T . ¢

If we take symmetrlc borders of the s‘egment ‘ thenterms”v‘hth é’(éﬁ [;oiverys‘,}_o‘fr :
A dlsappear for A(/\) B(/\) and C(/\) 1In this case eq. (36) has the form e e,

f (o A’x)cp(x)dz (e + e () = (bIA ¥ e )cp( 5 w

‘a—’ T 2(01/\3+03/\5+c5/\7) ISETRR (37)

Co Example 2.7 Agam we consrder the functron cp(:c) Szn:c, z € [ )\ /\] The
“cubic curve $(z; ), a) should be found, which approxrmates Sm:: in the metric Cg

(the crlterlon (35)) Usmg €q.(37), we obtam o ,‘

() = 4)\,[()\ 3)sz\+3ACosA]

Takmg into account that Sm(—a:) —Sma: and eq.(29) we have:

Sinz & S(z;)) =a(Na(@ = A). - (38)
If we set:A = 7 in the expression for &(X),'fwé find: - -
, 315 -
Ca(n=-32.
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Substituting this a(=x) into eq.(38), we obtain' the following solution:_

sz = —%—1;:::(:: x?). - e

Plots of Sinz, S(z;7), &(z ) Sinz — S(x g a) and af}), A € [0.1,7] are shown» ‘

on fig.9.

N rgqayn

L ad - 1 E
314 -eee < 3.14- , i
a ) ' ) o b

Fig.9. Sinz,S(z;~), the er"ror's(x) (a) and.the parameter a(N) (b).
The graph shows the uniformly character of the error approx1mat10n on the
- “whole of the interval.

4..3 Approzimatioh of go(:t) € C(")v[A L]m Jt<he {Su(zi A\, L)} basis

The q.(25) and conditions: (31) for k = 1 2,3, ... allow to derive the decompo-
sition of the function f(z) - f(0) = p(z) € C(")[/\ L] via the parameterlzed basis
{Sn (:z: A DY (egs. (23),"(23a)). In this case it is necessary to solve the system of

“equations (31) for finding pa.rameters ok =1,2,3,5. It follows from (23) and
(25) that'starting from k = 3, kth- derivatives of ba515 functions’ {Sk} a.nd {.1:"}
- coincide, ‘whereas kth derivatives of functions dy ‘and'd; are equal to:zero.”

Applying this scheme to approximation of the smooth function go(z) on the
segment [—A,;A], for xo = 0, we obtain. coefficients ay, depending on o"Nz,),
dM(z,), d(")(a: ) and ) (z,); where z, € [\, p = 1,2k =1,2,.,n/2.
‘Matrix elements S 2(z,) can be expressed trough indices of the power ( i+ 2) and

; the derlvatlve order (k) as the followmg BT .

e = H(J+2—u—mk,)z’+’ = = L2 (@)
v—O ) . N
* where - ’ oo
. . ) (2 k) + k6(]), = 1?2,
o T TEE o, k=3,4,..n/% |
and §(j) = [1 + (—1)7]/2. Indices k and g depend on the row of matrix index i:
k= k(i') =[i 466G =12, p=pi)=1+80G),i=1,2,.,n

V Example 3. Usmg the 9th power polynomlal of S (z,A), find the approximation of
-~ Sinz,z € [—7r .
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Solutlon Taklng into account that Sinz is odd functlon ‘equal to zero at points s
—7, T, 0 and usmg eqs (22) (25), (39) inn= 9 we obtam 3 :

Sinz 0 +0+0+ Ea,Sg,H(z 7r)

J—l

Coefﬁc1ents a; are found as solutlon of egs. (31) in’ k = 1 2 3 4. As the result
the approx1mat10n of the sine has the followmg form : e

Sinz ‘z Y 16579347(.1: Zon?) +0. 00815272(3: '~ z7r4)

0. 00017948(::: — o ) +0. 00000173(:: — 2 ) (40)

The qua.llty of the approx1matlon of Sm:z:, T € [—7r 7r] by the 'DPT-method )
and by the truncated Taylor-series for n'= 9 is.shown on fig.10. i

Fig. 10 The errors behav1our for .5'9(::, 7r) (a) and Tg(:t:) (b)

It is obv1ous, the error of approx1mat10n for (40) has the unlform behav1our

. Sln(X)- N__4 ‘125'3l"

* This error is smaller almost by two or-
“ders in ‘the some reglon out of the segment
'[-—7r 7r] than the Taylor expanslon error,
and yet it concedes apprec1ably to the lat-
ter at the center of the segment i
The experxmental study ‘of the error for
Sinz approximation by the use of S,(z;A),
z € [+, A] has been carried out, using the
- MAPLE program, ‘designed by C. Térék
'(TUK, Slovakia). As indicated i m fig.11,
the value and the shape of the error Sinz—
‘S)N.{.](z, A) for N=4Xr=mn essentla.lly
depend upon what points () for comput-
ing of the derivative ineq.(31) are picked,
‘out., We can see that the behavrour of the -

1070

"error 1s best one for z, = :l:'\ T

v,: BE4 T
" reE4 4"

t- 4E4 Gl M4

Maeal

Fig.11. The error dependenee of UL
thechoice of the point for Sin'(-)_;.;y;}» iy
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4. 4 Interpolatwn by cubic splmeo (the TPS model)

Now we consider the use of the TPS-model in an mterpolatlon Let values of
the sufficiently smooth functlon fr = (:ck) k=0,1,2,..,n be given on the grid
Apia=20<z;<z3<..<2a=0b. "

It is required to construct the cubic splme, which interpolates the functxon f(=)
in points'z € [zk,2x41). It is known the solution of this task is obtained by using
of the spline-interpolation [8,9]: We still found the solution on the base of the
T PS-model, which uses the single intermediate point in the kth link.

The model (29) is an algebraic equivalent to the model (26) Really, if to assume
“that the cubic spline S(f; z) is known on the: kth link, i.e. f, and fryi are founded,
then the value S(f;zoi) for the arbitrary point zox € [k, Zx41) and eqs.(29), (30)
allow -identically to"construct the polynomlal of the power no higher than three
and coinciding with the cubic spline (26) at every points z € [k, Ze41] Due to the
intermediate point oz this polynomial has the single inknown parameter ¢, which
, -in accord (30) depends on derivatives on the boundary of the link.

‘Let us consider the use of the T PS-model

t ‘ ' (29)-(30) in function interpolation more ex-

(=)' s‘l ' ‘ plicitly. We assume the odd | number of points

5 PR ‘ {zx}(k = 0,1,2,...,N;N < N)has been

A </ % selected as knots of the grid in a suitable

ol , A x ‘way from the given system of points {z,},
. x,"{ x, "x,x'x. x“x. (] = 0 1 2 N)

Fig.12." The scetch of spline-
1nterpolat10n for T PS—model.

We remdex grid pornts and ascrlbe to every link the 1ndex 2 SO that zi < Toi < ”
x.+1,z =1,2,. 5N, where N; = (N —1)/2. Then, using o;. as basis points and .

- the shift operatlon we construct in every link the local coordinate system with the

origin at the point (zoi, foi) (fig. 12) In this system the equation of the cubic spline
has the form of (29) and boundary poxnts of the link are parameters of this spline: -

’\ = Z. - xOnL = x|+l - xo.,H L - /\nﬁal f| N fOx and Sos+1 f:+1 - fOl

' After that for T = z — 20 and z e [z,,x.+,] the TPS equatxon in: the ith lmk wrll )

be wr1tten as . ;
i S'(T;/\;,L')'= H"(T‘ /\.',L') + a.'Sa.'(T' /\,',L') =
‘r(‘r L ) + ‘P'“ T(T -\ i)+ air(T = A)(r — L), . (41

S NH;

. where TE [/\.,L.H] and. ai is the unknown parameter.

Thls cubic spline and his first derivative are continuous in [z.,z,+1] and on the
whole segment-[a,b]. For determination of o; we use the continuity condition of
the second derlvatlve of the spline at the joining point, i.e.

: \ i o S (Ln’\nL ) - .+1(/\s+11/\|+11 |+1)

e 18

By fulfilling these condltlons at pomts Tint for the splme (41), we obtaln the system :
of N - l equatlons for determmatlon of N unl\nowns in the form ’

p.a. - p.+1a,+1 = q.,z = l 2, ..,N, = l; P (42)

where /‘l =Li+ Hn /‘l+l = /\:+1 - HI+11 q: = (ﬂl+l - ﬁl)/2 N (N - 1)/2

S 2 72 : ,wf
B A L iZ and ; —_ e (N -—L, )
-ﬁ., /\LH( <r” = ‘P 1)1“, ﬁtl A z\,+1L,+1H.+1(-+l"a+l +1<r°)

For unamblguous deﬁmtlon of o it is necessary to add another equatlon ThlS
equatlon one'can obtam, if only ‘the single boundary condltlon is given, for mstance
S, (/\1, A, Ll) ='¢'(A1). This condition’ allows to find the parameter al in the form

[ R 1‘,’
Qp =

bY: /\L(

r”n), whereH _; (2/\1 Ll

LH

Equations (42) together with the equatlon for ay allow to ﬁnd all parameters a; as

follows e g e
i E g = —— i =1,2,0 N——l

. +1, Bivr: Mgy - v e
Under the comparlson of two models (26) and (29) it 1s seen that the last model is

significantly economic, first of all, in the computing aspect. * == 1 ==

Example 4. We consider the T PS-interpolation of f(r) = Sznszor, the,seven-' g

ponnts grld _, : '
‘A ——<0< <7r<-3—< ‘<5—7T'~

) "2 2‘ 27

As basis points we  take 0,7 1 2r. Then A —;—7, L =% land‘ Hy=mfori=1,2,3.

Let us use these data for calculatlon of ot It L

o (0 I, )_k (7r7( 7r2(_ ) (—;,+ ;)=—F. v
Values i = 2 ,p.+1 ‘ ,3, = ,B.H =0ie.q=0. Substltutmg the data into,
(42), we ﬁnd a.+1 = -—a.,z =11 2 '3, whlch allow to obtam the termmal dec1510n

on the every lmk of the segment

4 5 Localﬁttmg of;the; cubzc curve

Possrbllltles of the DPT for ﬁttmg experlmental data ‘were shown in solvmg the
track ﬁndmg problem [2]. ‘This problem i is an,urgent | issue in pattern Tecognition -
and in partlcle physws To solve tlus 1ssue, the algorxthm of adaptwe pro_]ectne

track- segment

| w(Eatd) ‘(;;) S
y(z)———T T( _,\)+ AL (I—/\)(T ) ;_,(43)

where H=1L-X The APF -algorlthm can be extended also for complex form
curves tracking, for example, in contours processing [3]. i

,( -—L)+
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* parameters of this model are selected from input data with the accuracy of the

1

- We consider the use of 4-point transforms and the T PS-model (29) for smooth-.
ing of dispersed points. This approach allows to increase the processing speed,
which is the actual problem for adaptive signal digitization, for modern data pro-
cessing systems and so on [4]. e S e

“The T PS-model of the cubic curve can be used as the flezible structural element
for.the development of adaptiye algorithms in several fields of applications. Three

" measurement error, which no affect on the visible distortions of the contour, for

the suitable choice of the value H = L — A. Thus, the T PS-model has only the
single free parameter a. These properties allow to reduce several times the number

_of arithmetical operations under conservation of the admissible accuracy, hence, to

increase the speed of computations. We consider the standard fitting process for

the cubic model. - S ' o ST

Task T3. On the given segment let us find the cubic parabola, describing the
relation between measurement coordinates in the best way RTINS

{z;} and {f_.,},] =1,2,...,N;N>> 3,
where fj = f; +€;, ej ~ N(0,0), and ij are measured without errors.

The classical decision of this task for the model (27) is obtained by using a least
squares fitting (LS F’). - Estimates of four parameters are found ‘as a result;of the

. decision. Using eq. (25), we obtain the adequate decision of T3 for the model (29)
- from the condition ‘ , N St e o

N - .
Y {@i — #(N)di; = G(L)dz; — aALrjds;}* — min
j=1 - o . ‘
in the form of LSF’-ééfiméte of tlie‘para;mete'r a:
! NN N N :
&= (ALY 2N @iz — @i pozidy = Ly zidy), o (44)
- 3=1 j=1 j=1 ;{':l
whe'r_é ’2}5': 1‘-_,;-’d3,~ = \rjd;,(r};‘/\,I‘,).":\(é.lués",rrj"and @; are obtained in the shift ,o“f‘
the origin into the basis point (o, fo) with'the simultaneous change of errors €; =
€; — eg. Parameters A and L are determined through coordinates zg, zx;zL € {z;}
so that ) < zo < z1. Coordinates z and z, are taken on borders of the segment.
Thus, the estimate of the parameter (44) gives the decision of the task T3 for

: thé TPS-model (29) in the form of f(a:) =fot+ $(z — o), where

Yz < m) = 9(r) = SOV M L) + $(Ld(ri N L) + GALTds(riA, ). (45)

It is seen from eqs. (44) and (45) that the number of arithmetical operatioxié in'the

-

model (29) is significantly less than in the case of the model (27). ‘Furthermore,
‘tabulation of seven functions di,dz, ds, zd, zds, z and 2% at points of interpolation
7; € [A, L] reduces in addition the number of dynamically operations. The estimate
has shown that even if functions z7, (m =1 + 6) are tabulated, the number of

dynamically operations for the model (27) is 3-4 times greatér than in the case of:

, the T"PS-model.

By
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Another decision of the task T3 one can obtain by usivﬁg',DPT-p‘ropertTiyes’ to.
reduce the power of the polynomial by two and to damp measurement errors. In
this case the' LS F-estimate of the parameter « is found from the condition

o :“ : ~,~Nk;;, - .
<‘ri'}’in7-l(r'.-;"a) = HgﬁZ(h.‘ '—4(1’/\LT,')2‘ S

1=l
in the folldWing forr;i . . e e
o L Ne . Ny o0 B ; Y
Ca= (ALY T Y mhe, o o (46)
I IS P e =t : g iy e s T

where

hi= Gim(ri A L) # Gupa(rs ML) + Gipa(mi A D), Ne S N, (N> 3). - (47)

Here the index i is related to the points for which | 7, — A |[€ Ty and | 7 =L I< T,
where T, is the threshold-of the range for the "noisy” zone (see (17) and fig.5). In
this connection the cubic model of input data is converted into the straight.line
model for almost-all ' mapped points with the exception of, maybe, those having hit
in the unstable zone (fig.5). -After that the task dimension reduces by two. ~The
using of formulae (45)-(47) for fitting of modeling data is shown on fig.13.. ;. .
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Fig.13. Fitting vof the cubic cufve by ‘uvsi_ng"o“f LSF and DPT methods

The set of points of the cubic parabola {$;} are given on the grid of-100 x 100

‘pixels. Random errors {¢;}, having normal distribution and the 10 pixel variance

have been added to the ordinates of the ‘cubic curvé, Parameters of the transform_
have been found by coordinates of three marked points, singled ‘out on the graph.
All points 3 (except of pivot) have been mapped into points hi by using €q.(47).
The mapped points are clustered along the straight line with the slope &AL (a).
The LS F-estimate of the parameter'é (eq.(46)) have been found on the base of i
points. After that, by using the inverse transform of points {h+} (45) estimates ¢
of the required curve have been obtained (b and c). On fig.13 (b) the straight line is
shown. This line is obtained by the D-transform of the fit for the traditional model
(27) as well. Parallelism of these straight lines indicates the agréement of results,.

" . deriving by various approaches. The histogram of ‘mapped:points k. is shown at

the bottom of the figure. 700 e s et
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5 Conclusmn

‘New transforms’ (direct and inverse) based on the cross-ratio of four colllnear
points over the smooth curve presented by the formula or by the table have been
found. Since these transformations use three cross-ratio. functxons and three points
- of the curve as pivot points, the direct operation has the stability to errors every-

where except neighborhoods of two pivot points, i.e. the error suppresswn is the
- result of the direct transformation.
; The transformations possess a number of the propertles, which have been used
* for developing new rules and methods in the smooth function parametrization. The
new class of polynomials (monosplines), having a good approximation quality has
been derived. The new effective approach based on monosplines has been proposed
for approximation and fitting of curves. In this approach the local error has the
uniformity at the interval of approximation. The three-point spline model (T'P.S)
of the cubic splme is proposed. The T PS-model allows to reduce the number of
' unknown parameters in twice and to obtain the advantage in the computing aspect.
Approx1matlon and fitting of curves have been shown on a number of examples.

- The above results and other peculiarities of DPT-transforms give us a new
mathematical tool and a new possibility in both practical apphcatlons and theo-
retlcal research of numerlca.l and computational methods. :
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