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1 Introduction. .,.; 

Artificial Neural Networks (ANN) hav~ 'alreitciY r6und rii~~y appli~a,tions ~iii' 
High Energy Physics [1). Due to their inherent paril.llelism; robustness'and go'od 
statistical properties the ANN are used both in off-line and on-line analysis. 

The main goal of the present ar~icle is to show advantages of ANN approach 
in handling data from highly granulated hadron calorimeter (HQ) in comparison 
with other techniques. To demonstrate the potential of ANN approach the task 
of isolated low PT 1r f JL separation was chosen. In solving the task we can get 
an insight into what are the most relevant inputs to an effective neural network 
classifier (discriminator) and what are its performance limits. . . ' ., • 

Having its own. value, the effective solution of isolated 'low ~, 1ri p sep­
aration ~ask may be considered as an auxiliary step towards tac~ling a more 
difficult problem'.,. tagging b-jets with low PT muons using HC~information. 
Muons in the range 3 < fiT < 5 GeV have a: significant probability to be ab­
sorbed in' the calorimeter. and therefore they cannot. be. reliably registered by 
the muon detector. In [2) it was shown that identificationofb~jets~ith muon's 
PT ~ 3 GeV might increase the st~tisdcs of the observed events hy .. a factor of 
2.5 in searching for and measurement of CP. violation in B~-+ J f'rN<~ channel 
with J ft/J -+ p+ JL~ deday - the problem mentioned in the ATLAS Technical 
Proposal [3). · ·. . · . · · ,. . . 

In our investigation we restricted ~urselves. to. testing discrimiri~tion power 
. oftwo types of discriminators: linear threshold discriminators (LTD) as used in 
[2) and neural net discriminators (NND) built usirig'the package JETNET [4). 
The present work is based ori simulated 'data;, two HC designs were considered 
- with 4 and 3 longitudinal samples. Distributions of deposited energies in each 
section of ATLAS calorimeter are shown iri Fig.l. · ': i ''" 

2 Neural networks application scheme and 
simulation data 

' . 
In what follows the muon events (calorimeter response to muons) will be refered 
to as. signal events, . and the pion events ~ as background events respectively. 
' . . N~~i:al 'net''di~cri~i~at6rs being nonlinear nohpar~m~tric extensi~ns 'of con~ 
ventionar ~i~sifi~rs'' e~ploit kriowledg~ of j'oint proh~bility. distribution: 'bf dif­
. fe~ent features of registered . events .. Approximation ~f join't 'p~obability. di~tri­
butiori is attained through a procedure called neural neft~~iiting on' th~ b~is 
of a ~raining set of ~vent:S {simulated ?rreal). Undercertain conditions neural 
net Classifiers realize asymptotically optimal, Bayasian decision [5); [6). . . 

To formulate· the problem under study closer . to identification of low PT. 
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muons in the b-jet context we do not consider informati~n- fro~ electromag­
netic calorimeter (EMC) nor from any track detectors, thus entirely relying on 
hadron calorimeter response data. " - - . -
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We adopted the following investigati6n ~cheme ·which ~consisted' ~f eight 
distinct steps:' · · 

1. Define an interval of interest for PT value (PT workinginterval). 
In our ca.Se it' is 3.0 < PT < 5.0 GeV. ' · ' ·.' : /.· · ~- · 

l: .~ . ' ' ' l 

,(: 

2. Form training set of events, It. comprises both signaland. background 
events gimer~ted at J1T value~ within tn~ P"T'~~rking interval (see below 
the details). · · . · · ' ' · · · . ' ·· , . . 

3. Train
1

the · iieur"al '~et discriininator . 
. p•.:•. 

4. Test the neural net discriminator. Testing isperformed using another set 
of ev~i{ts :(t~~Cevents) with PT within 'the wo~ki.ng interval. 'Quality of 
the trained di~criminator (its cliiracteristics 'M. ~- Classifi~r )' is evaluated 
as a function of the. threshold level applied to neural net output signal. 

' .- '.'' 'i . •' ,· . " '' ,· . : • ' ' 

5. Estimate discriminator 'quality'de'pendence on Pr (fo~ ev~nts both within 
. 'PT ,working intery~l and outside it),. 

''6. 
. . ' ' 

Execut(:"steps 2 -4 for: different levels o(photostatistics '(iri'.the range 
' ' ' ' ' .• l ' . . . ' . ~ 7 • : . j ' • ' • ' / ! ~ • ' ':" 1 • • • < 

10- 80 photoelectrons per GeV). ·' ·'' · · ' · · 
.'· ,. ' •.·. ' t'· .. ; .• I' 

· 7. Execute step 6 for different values of a cut applied for thresholding energy 
·!.depositionsin HCcells;: . :· '. · ·i '' ·l :qt:; 
':' ,·;•;'::.;'t ', " '• . L: ,\ ··, ·:.:~_~ .·-' :;·.Lr.1: ,, .t;~_;_?~·P 

8 .. ·Execute, steps 2 ;- 4 for _two HC designs:, .a), with four ,longitudinal sam-
. 'ple~ a:~d b) with thre~· io~git~dinal sall1ples (sampl~s 2 and ).gro{tped 
.~~g~~.hg~~)- . ' .. . ' ' ) : ' . " '• ' . '' :.···· :•·' 

·.:The' ~tarid~rd :ATLAS prograrris(DICE'and ATRECON) wer~· used to shnu:. 
hite calorimeter'respcinse tci isolated jt and 1r at 7J::::: 0.3 for PT values uniformly 
distributed within Pi' wo~king interval (a.o,l 5.0) GeV: In to(aT 60_00 inuon 
events a'nd' 6000 piori everit5 were simulated. ' Actually the PT 'working inter­
val' was 'subdivided' into. four. rionoverl<i:pping subintervals 'of' 0.5 -• Ge V ~idth, 
with 3000 events in each. To evaluate the ,discriminator' quality outside the 
PT working interval, we have prepared additional data files for. muon and pion 
events generated at PT = 2.0 and 10.0GeV(4000 events in total). Noise effect~ 
we're taken into consideration in a.'simplified:way using a cut· of 0.1 GeV for 
thresholdi~g the simulated energy depo~itions in HC cells. . 

The resultant trained neural net discriminator depends' on'PT; distributioidll 
the traini~'g's~t'within both cla.Sses cif events (sigrial and background).; General 
cas'e of nonuniform n 'distributions is easily simulated by proper· adjustments 
ill a proce,dure' that perform's' access to event'pattern~'during lleural net training 

h 
' . . . ·. '· .l" .. ' .. 'i· "· .. '·'·· '.! • 

p ase . 
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3. Discriminators .and their performance 
in low PT 1r / JL separation 

In this paper.~esults' fo~ f~~.u models of 1r /Jt discriminators are 'p~esented in the 
order of their increasing discriminatio~ power.· ' · ' 

• .LTD -.linear thresh~ld discriminator that checks the deposited energy 
E4 inthela8t HC sample ~gai~st th~ threshold value. . 

• NNDu - neural net discriminator ~crating on the energies E;, i = 1,4 , 
deposited in four HC sections (i.e; on all longitudinal samples). · 

• NND12 . -. neuraln~t discrimina'tor operating ~~ val~es' of event features 
estimated as functions of arguments E;. · 
- ' ' ' . . . ' 

• NND3d - neural net discrimill.ator op~rating on 3~dimensiorial pattern of 
.e11ergy d,eposition in HC (i.e. on energy deposition in cells). 

Three-layered perceptrons with ll'input neurons (nodes) in the first layer, 
nh neurons in a hidden layer and one output neuron in the third ,l_ayer were 
selt~cted for constructing neural net discriminators.' Adjacent layers of the per­
ceptrons are fully interconnected. A formula (n, nh, 1) will be used to depict 
the structure of sU:ch perceptrons. · ·: · 

Inputs to the first ·layer of NND ·may be.· thought as components of 
n-dimensional vector that r~presents an event in n~dimensional feature space. 
Dii:nension'ri'and ord~ring of input 'co~po~~nts;are fixed for a particularNND. 
For· neurons· in the hidden and' outpue layers the nohlinear neuron activation 
function g(a) = (1 + exp(-2a))- 1 was chosen; hence the.perceptrons perform 
nonlinear. 'mappings of n-dimensional space into. ( 0, 1) interval. During training 
ph~ethe t~rget value ofthe output ne'u~bn wasput to 1 for m~onsand 0 for 
pions .. Training procedure iter~tively adjust~ 'weigthsof co~:mections b~tween 
neu~ons in order to minimize mean fit error MFE, i.e. mean squared deviation 
of a~tua,l net o11tput ~a;lues O~N(P) fro~ the target v~lues t(p) pver th~. whole 
training set of ey~nts.: · . , • 

.. N .. · .. 
. 1' p 

M FE= 
2
N 2:)t(p)- ONN(p))2 

. p p=l 

(1) 

where p denotes events. . 
. Using a trairiedperc~pt~on one,gets on~dim~n~ionalclistributions of net 

output' values for mu~ns ~nd 'pions, and the: subsequent 'part of iflt sepa­
ration task becomes'similar to ·that of LTD dis.criniinator which deals with 
one-dimension'al distributions of E4 v~lues (0 ~ E4 < oo) ; ' 

In Fig.2(a) distributions of E4 for signal (It) and background (1r) events are 
presented, and in Fig.2(b) - distributions of neural net output values for the 
same events· (th~ neural net is that of NND12 ). · • 
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Figure 2: Ja) Distributions of E4jor I' and 7r everits at TJ =. 0.3 and PT values 
uniformly distributed wit/tin (3 - 5) Ge V interval, (b) Distributions 'of NND12 
neural net output values for th~ .same events . 
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A fixed point on x-axis (decision point or threshold) dichotomizes ~hese dis­
tributions. Counting events on both sides of the threshold and 1iormalizing the 
results one gets accumulated probabilities for ~n event to be correctly classified 
or misclassified. Applying variable thresholds we ge't. estimatesof important 
characteristics of discriminators: · · ·· · · · ·. . · 

• £1, ~ efficiency. of signal. eveJ~ts' n:~c~gnit.i~n, i.e. the probability that a 
muon event be correctly classified, 

• 0:1' .-: inefficien<,:y c;>fsign~l events recognition, i.e. u~~ probability that·. a 
: mu~-~.-~v~~fb~ .• ~~~c~~s!fie4. (al, \~ 1 ~ .£1'), .· . . ~ >l ' t •. :\! 

• p" - survival probability ·for background events, i.e th~ prob'abilitY' th~t 
a pion event be misclassificd. 

These characteristics for LTD and NND12 discriminators arc presented in 
Fig.3 as functions of discriminator's intc~nal parameter. (threshold value for 
energy E4 in CaSe of LTD; threshold value for neural net output signal in case 
of NND). . . . . . . ' 
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Two other characteristics are defined .as follows: . . .. · 

• R" = 1/ {3" - rejection factor for.background eyents, 

• Q = c:JJ · R1r- enrichment factor. 
' ; " ro 

' ' ' ' 

Enrichment factor Q indicates the change' in the ratio 
•' 

(number of signal e~ents) : ~, 
(numberiof backgr·pundevents) . ~ . 

after appl~irig the disc~i~inator to ·a. mixtu~eof sign~i and backgro~nd,events.: 
Two lower plotsin Fig.3 present"Q-factor~i'fcir LTD~~a NND12 as fmictions of 
variable threshold valu~s. . . . 

Different· types of discriminators may differ in sense and range of their in­
ternal parameters which control performance of a discriminator. That is why 
we prefer to use parameter independent function Q(c:JJ) for comparing function­
al behaviour of different discriminators [7], [8], [9]. In Fig.4 Q(c:JJ) function 
is presented for LTD and NND12 discriminators (values of these functions are 
de_rived from pl?ts in Fig.3). 
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Before presenting and commenting functional behavior of the four discrimi­
nators we shall look at what is the difference between neural nets of three NND 
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discriminators. All three nets being perceptrons of the formula:(n; 40, 1) differ 
in two respects: 

1) dimension nor input vectors xn, 
2) sense of components of Xn. 

Components of Xn vector are usually called event features. Features are 
functions of raw data items (cell energies of HC response in our case).· It is 
worth noting that E; samples are also features: each E; is a weighted sum of 
all energies deposited in separate cells of i-th section of HC, all weights being 
set to 1). Evaluation of feature valuesjs an operation called preprocessing of 
measurement data (or source data). Note that operation of reordering features 
in input vector Xn is anothe~ example of preprocessing' if tliis operation is eve~t 
dependent. · 
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It is well.known that definition of a feature space is the most critical stage 
in pattern classification process. Various features of the events were evaluated 
and many sessions of neural net training and testing were carried out in search 
for the most effective subsets of features used as inputs to neural nets. . 

The neural net of NNDn 'discriminator is a (4,40, 1)- perceptro~ which 
uses four longitudinal samples E;, i = 1,4" , as components of input vector 
X4, The order of samples E; in the vector ,\"4 is fixed: i-th component of .Yn 
is assigned E; value. In Fig.5 the line labeled by Q 1 presents Q(e~') c"urve 
for NNDn discriminator. It follows from the figure that for mu~m· registration 
effiCiencies e~· = 0.80- 0.97 the enrichment factor Q 1 is in the range 100 - 105. 
Qt(ell) is ade.creasing funcnion for largerell values, and at ell= 0.99 it drops 
to"" 95. 

NND12 discriminator is also based on the ( 4, 40, I) - perceptron and also 
uses four longitudinal samples E;, i 7= 1,4". In contrast to NNDn, assignment 
of a partic~l~rEk to a component of X~ is dependent on the event itself. Here 
components ~f x4 are an ordered set of longitudinal samples ordered bf.their 
values in descending way .. Q(e1,) curve for NNDt2 discriminat~r is presented in 
Fig.5 by the line labeled Q2. For muon registratioi1 efficien'cies/:~ = 0.80..c.0.97 
the•.enrichment factor Q2 is in the range 120 -125. At efficiency ell = 0.99 
Q2 drop~ to "" 95. ' 

For conveniency of comparison we prese1~t in Fig.6 ratios q;i of the functions 
Q(ell) for different pairs of discriminators at efficiencies ell = 0.88--: 0.99: 

( ) 
. Q;(e1,) R;(ell) . . . 

q;iell =-Q·( )=_-R·( ).,z>J,J=0,1,2, 
J ell . 1. e,, 

where R;(ell), Rj{e1,) denote corresponding.~alues ofpion rejectio'nJactor R_,. 
One can see that in comparison with LTD all neural net discriminators have 

· twice as'high e~richmentfactor val~1e Q at tl!~highcst efficiency e1, = 0:99. At 
lower efficienCies {e1, < .0.96) different 1110dels of n.euraJnet discriininators hold 

. Q factors 40- 80% higlier compa~ed to LTD discriminator. ·· · · 
. ' . ~ ., 

In:search for effective NND3d discriminator we tried a number a ways to 
extract additional import~nt featu~es by preproc~ssing clusters of cells in each 
HC section. A cluster isdefined as the 3 x 3 cells window where the maximum 
summ~d energy is depo~ited. The central cell (rJc, <f'c) of a duster is. thatwith 
maximum cell energy. ·· · · 
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Some of. the tested features are: · 
' ~ 

1. energy of the leading cell in a cluster, . 
'' 

2; summed energies in increasing square bands around the centre of a cluster, . 

3. summed energy of the cells ol)tside a cl~ster; 
.;- ~ ! ,-

;":.. 

4. ordered sample of cell energies ina cluster, . 

5. order~d ~ample of cell e~ergies nor~alizedby th~ total energ.y in~· clust.er, 
' . . : . ' 'f . ·' ' ' . :. ? ', \ ; ~ ;._ 

6. 'in- number· of cells with energy' deposition above preset thresholds, i.e. 
. multiplicitY of active cells ina cluster, . . . ' ' ; . 

•. :: 
7. m 11 .- numberofactive.cellswith 1lcell -:j; 1lc in a cluster, 

(77-:: multiplicity), ! ;~ : '; ' t :. 

ir ~~ - rimriber of active'cells' ~ith.~c;/l i<Pc. 
(~ ~ .. rrniltiplici,ty), · 

' 

. Additional featur~s of ''longitudinal" typ'e' wJre te;ted inorde~ to .take into 
ac~ou~t no'~uniformity ·vB· of energy dep~sition; 'in' consequitivti HC j sedicms. 
VB is defin~ci''as foll~wirig: · · ' . .. · · ' · · · · · · ·· · · · 
, . ~' l . :. i <' '·' : • ~ ' '· '' 

'' ' 3 ,, ' . :' ,'' ':·: •'" 4 ; ' ·, 

:VB= 2:)v; 'E; -vi+1fE;+I)2/Eiot ;·Etot: LjEi, 
.: ;i=L ,,;· 1 ·' .. :,· 

Three sets of vi corist~nts were used to p~ep'ar~ three versions of V ~ feature: 
a r ' v; = 1, .. ' '. .. . . . . "; . . .. 

' b) ' Vi = 1/ di, . where d; - thickne~s' of i-th HC section ·iri;'nuCiear 
interaction length unit's, ; ' ' ':, 

c) v; =::: 1/ M~'(E;), where M~'(Ei) is the me..;,ri value of i-th·longitildinal 
sample in.HC for muonevents ·(see Fig.1) .. , . .,. , . ; .· , 

During training and testing sessions ,we retained only thC?se models of NND3d 

which had higher characteristics _and lower dimension of feature vector Xn .. The 
final version' of NND3d is based o~ th~ (8; 40,' 1) -· perceptron. The input. fe~-
tures in Xs vector are: , , : ; . - , · . . · 

. . '· """ ' 

---: ; ordered sample of E; (fourfeatures), .. 
(iJ,) · (ik) ·k- 1 2 (r. r t ) ...,....,, m 11 . , rncp ·., -· , .• our .ea ures ,. 

ji , h ..., are indeces of those two HC longitudinal sections 
where the greatest summed energies were dep'osited for. an event. : 

Functional behavior of NND3,j is presented 'by Q3(c:~) curve iri Fig.5. One 
can see that anincrease in Q- factor value is sensible enough (about 25 units) 
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compared to NNDn, but is relatively small (less .then 10 units) compared to 
NND12 . In comparison with all other three discriminators the relative increase 
in Q for NND3d is presented in Fig.6 by q3j(t;!J} curves, j =·0, 1, 2. . 

· · In:our opinion, the moderate increase in Q for NND3d in comparison with 
. NND12 may be justified as follows. 

Muons loose their energy mainly by ionization, and the number of active 
cells in an HC section does not exceed 2. ·Distributions of their deposited 
summed energies in each. of four section~ are of gaussian type, centered at 
MJJ(E;), i = 1,4 with standard deviations 0.102 < u; < 0.125 (ref. Fig.1). 
Big deviations from mean values MJJ(E;) in one or more. HC. sections, are 
used by well trained NNDn, NNDj2 discrimin.ators .as signatures. of a pion. 
Number of pions misclassified by NND11, NND12 is not greate an'd equals to 
m,.. = N · j3,.. = N I R,... To substantially increase classification power the NND3d 
discriminator should correctly classify a part of m,.. pions using information on 
cell distribution of the deposited energy .in HC sections. The rise in multiplici­
ty above 2 active cells is with highprobability accompanied by'the increase in 
summed energy deposition by an ammount that is abnb~in'al to a muon event; 
meanwhile the observed multiplicity of active cells in the.subset .of m,.. mis­
classified pion eve'uts is similar. to that in mum} events., 'The,.Iittle difference 
in characte~istic~ b~tween NND~~· ·~nd N"N:o,; sho~s 'that usi~g· irif~rmat,iCm on 
active cell multiplicity permits NND3d to lower m,.. number only by 5%. This 
result gives rise to an assumption that some of m,.. pions- all exhibiting deep 
penetration ability with 'nonzero energy deposition in the last· HC section -
most likely did not take part in nuclear inter'actions af in. Obvious contra­
diction between. the actuallyobserved fraction of misclassified pions ("" 0.01) 
and the ·fraction of pions ( < 0.0001) that could escape nuclear int~ractions in 
ATLAS, caJorimeter at 7J = 0.3Jeads: us to a .conclusion that at least a part 
of the observed m,.. cases of HC response is most probably"not produced, by 

' ' ,, . ' 

particlesent~ring HC·as pions .. 

. Indeed, pion decay process 1r± -+ Jl± :f. v~' tends to make HC response to a 
background event (1r) look like that to a signal event (Jl): The probability of the 
decay is not negligible in our 71' I Jl separation task: for PT uniformly dist~ibuted 
in 3 ..:. 5 Ge V· interval at TJ = 0.3 about 0.83% of pions decay prior to the first 
nuclear interaction and should in average produce muon-like HC responses: 
At high muon registration efficiencies and 3000 pion events ·in a test sample 

- we arrive at a limit value R,.. = 120±~8.! It follows from<this estimate that 
longitudinal samples in HC contain enough informatiqn for NNDn and NND12 
to approach the limit values of·R,.. ·and Q. Hence the subsequent improvements 
in R,..:and Q attained by NND3d could not be high. 
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Simulated eve'rits (12QOO in'total) have be~n split into two equalparts: one 
part· used for 'training neural net arid another part'.: for testing its 'generaliza~ 
tion ability. With 3000 + 3000 events in the test sample and 'high; v~lues of 
background rejection factors R;;. attained by discriminators (R~·...., 100) thesta­
tistical errors in estimation of Q can not be low: u( Q) ~ 15 .:_ 20: Neve~th~less, 
the difference in characteristics of any two discriminators niay be estiri1ate'd 
with higher precision because tlie common test sample of events is used for 
evaluating these characteristics which consequently become correlated. 

Let D;, Dj be two discriminators tuned to operate at the given fixed effi­
ciency t;JJ = t;0 , and R;, Q;, Rj, Qi -their background rejection factors and 
en_richment factors at f:JJ = t;0 . Assume \vithout loss of gene~ality that R;~?:. Rj. 
It can be shown that' maximum likelihood estimation of variance of the ratio 
qii ::=:.QdQi = R;/Rj maybe reduced to thefollowing ~xpression: 

. R; (: .2 R;) 
viir(qij) = q;j · N · q;i + 1 .-' R;j (3) 

or 

. . . Q· '(. • Q;. e;j) 
viir(q;;)=q;j·~N'. q;;+1-2Q·J··~ ... , -.o ' (4) 

where 
N -the number of background events (pions) in the test sample, 
R;j' Q;j' ejj - background rejection factor' enrichment factor andmuon 

registration efficiency of the compound discriminator D;j based. on D;, Dj that 
are operating in parallel (each at e!J =eo) and whose output logical signals 011 
(classification signals) are p'rocessed by" AND" logical function to form output 
signal of the compound discriminator. 

Note that in general case the next inequalities hold: 

R;i ?:. R; ?:. Rj , e;j :::; eo 
,. ··: ., ' .. '~'·:··;;_ . ._ ;, ) ~ .I\~ .~ ''.- I ·~l' ., '· 

Eri-or b'ars in Fig:6 ~onesi)ona to e~ti~n.;_~~~, accord.ing to (JJ ,, ( 1 ). , · ·. 
Neural nets were thoroughly trained tising up to 7 - 10 thousands epochs 

in a training.session.,To reachlower.event.classification error we tested, neural 
~et ~ersio~s with' difr~re~1tJor;~s·~f neu~~~~ activation.funct'i~I~,.{Isecl fix~dand 
vari<lbi~ le~~ning rat~s·:·i~ ·~ t~aining 'ses~·ion,; i1sed :back-propagation alici'Rprop 
tr~ining procedur~s· [4] an<l 'va~ie'd ~ta~tin'it~~lues '~r'weigt~ .ail'd thresl~olds of 

, ; , , , < • , ' • l , > ' , ~ • l · ! .\ ' i I '~ , ' · · ' '. ' c , ' l· . . - ,' ~- · i _ t .> ~ ' 

the neural ,net when initializing a training sesion. ' ' ··. . ,', ' ' 1 '· 

.. O~tpt{C~f ~ sh~rt.~tiri1riiary. ~fter each epocl1. p'r6v~d very .. useful f~r super-, 
v·i~ing th~ process of n~iir~l netw~~k t~aini;1g. The. ~u~;1~nary. coht~i~i~:·. epoch' 

.: ·· -· ., · : '·t ·.·L·!· ,~., · :,.~~ , _ . k~· •• ~· ,: • ~, ;.;__,,· '''~· ,_ •• , • 

13 



number, me(l.nfit, error, MF'~ (1) _in the current epoch, muon imd.pion recog­
nition efficiency in. training. and test sets of events, four values of enrichment 
fa~tor.q at:eifici~ncies cJJ = 0.99,0.95,0.90,0.85 .. ' . . .,; . .· . . : 

. As an example of a training,session we present .in Fig} the dynamics of 
enrichment factor Q (at cJJ = 0.99) and me~n fit error MFE as functions of the 
current epoch number in. the session. 
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Figure 7: Dynamics of enrichment factor Q (at cJJ = 0.99)and memi fit error 
· MFE in a trairiing .Session for. NNDif · ·· ·· ; '1 

. , As' the.next step in our investigation scheme we estirJ~ted the depende~ce of 
discriminator'characteristics on PT values of events b~ing teste'd. We ev~luated 
characteristics ~f ·different ·discriminators· at· four Pi values' inside the. working 
interval (3.0: ,· 5.0) GeV and ~t p.r-·~ 2 ahd '10 GeV outside it'. 'It' should 
be notedthat results for PT 6~tside the working interval 'iue highly sensitive 
tosinguhirities of NND versions and to the threshold ~alues applied-to the 
n~'ural net' output signaL Efficiency 'f;~ ·~ndpion rejection faCtor R1r in~ide the 
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working interval are constant within statistical errors for ·all discriminators. At 
PT = 10 GeV · cJJ remains as high wh~reas at PT = 2.GeV cJJ drops to the·. 
values 0.2- 0.8 depending on the·version of a discriminator . 

Due to poor statistics at PT ~ 2 and 10 GeV (1000 pion events at each PT 
value) only qualitative conclusions can be d~;awn from the setof e~timates of 
R1r' for different discriminators at thes.e two PT values. The le~t degradation 
in R1r and CJJ outside the working interval is shown by discriminators of NNDad 
family, the biggest degradation'- byLTD. To reach good performance at Pr. 
= 2 GeV one should include events sim!Ilated at 2 ~ PT ~ 3 GeV' into the 
training set of events. ' . 

To, investigate the influence of photostatistics on discriminator~s perfor- . 
man~e werepeatedsteps' 2 - 4 of our i~vestigation scheme (see page 3) for . 
seven· different pliotostatistics levels (PSL) in the. range lO .:- 80 photoelectrons 
per 'GeV. For the fixed muon recognition efficiency CJJ = 0.99 the dependence of 
Q - factor upon photostatistics level is presented in Fig.8 for NND,2 and LTD. 
dis~rimiriators: ;· · · · · '' ' · ' ' · 
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It is clearly seen that the neural net discriminator is a more robust classifier 
wh·i~h i~tains its ~electivity withiri'the ~hoi~ 'dnge' of phot6statistics.level and 
who~'e discri~inatio~ powergracftl~ilydecre~es when photostatistic~le~el goes 
d. own. In con.trast to NND12, 'the. LTD di.~crim.inator cann6t reta. in.· its s'el.ec-· 
tivity at ~fflciency c!J = 0'.99 withi;.; tl{e 'whole range of photostatistic~ h!vel 
(25 photoelectrons/GeV is the critical point-: ref. Fig.8). 

. Bothchara~teristics sho~vni~1 Fig!S correspond t~a ~ut ofO.lOGeV applied 
for tlm.)sholding ~nergy dep~sition in a separate HC cell. To examine sensitiv-' 
ity of the characteristics t~ cell energy :.threshold 'vahies, w~ have e~timated 
another two, pai.rs of ch3.racteristics (for tlie.sarr{e cJJ value) correspording.to 
cell energythresholds (CET) of 0.15 and 0.20 GeV. All six. curves are pre- . 
sented in Fig~9 separately for NND,2 arid LTD discriniinators. It is seen that 
for CET = 0.20 GeV tiw LTD discriminator cannot reach m~ori registratl~ri 
efficiency .cJJ, = 0.99 at any value of photostatistirs•level. without loosing, 1r f Jt 
separation ability. i 
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The 'dependence of CIJ on LTD's;interriai par~meter (thres,h'cild on E4.­
ref. Fig.3) at the fixed PSL ::;::: 4o ph~toelectroris/GeV is presented i.ri Fig.10 by 
the lines 2, 3, 4 for different values' of CET = 0:10, 0:15, 0.20 G~V. The line 1 
co~respcinds to HC dat~ simulated without taking p.lwtostatistic~ into 'acco~nt 
(PSL =·oo): . . . ·.. . ·' · , .· .... 

To. investigate .sensitivity of LTD char!lcteristics to cell energy thresholds, 
we have additionally' evaJmited the maximum values ofc~' attain~ble by LTD 
without loosing -;rfjl. separation abilityfor.five.CETvalues i~ the range O.Hl-
0.30 GeV and seven PSL values 'ir1 'the raffge' 10- 80 photoelectrons/Gev: The 

' - " ' . 
~esulfs'are presented in Fig.11. They allow one to.foresee limitation~,of LTD 
expected in solving ,r /il sepiuatiori task i~a more realistic envir~~men( w.hen 
high.er ,CET values· might be needed to suppress background signals. . " 

'' t 1; ·f '' • I • 

; . \ According to the· ATLAS Teclmical Proposal [3) the central two sections of 
hadron calorimeter will be grouped together. We designate the two IIC designs 
of 4 and 3 longitudinal samples as IIC(l,2,3,4) and II<;(1,2+3,4). A neuralt1et 
discriminator of NNDn family was trained and tested for HC(l,2+3,4). In 
Fig.l2 its characteristics are presented by the line lab~tled NNDn(3s). The line 
labeled NNDn ( 4s) presents characteristics of the NNDn discriminator given 
ini details earlier for HC(l,2,3,4). One can see that at efficiencies c1, < 0.90 
the NND/1 (3s) is not inferior to NNDn ( 4s). At efficiencies 0.95 < cJJ < 0.99 
the enrichment factor Q of NNDn (3s) is only 10% lower in comparison with 
NNDn(4s). 

0 130 ,----------------------, 

120 

11 0 

100 

90 ~(1: 2+3, 4) 

80 • HC( 1, 2. 3, 4) 

7 0 ..___j___,_ 

;·;0.8 0.85 

NNDu(3s) 

0.9 0.95 

• 
~ 

0 

1 

[J.L 

Figure· 12: 'Characteristics of neural• net discriminators for two different· HC 
designs - with 3 and ,f longitudinal samz1les ' ' . 
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4 · Conclusions .> ·: 

1. Neural net discriminators operating on longitudinal cir3-dirnensi~nal de7 

posited energy samples and the linear threshold discriminator operating 
on total deposited energy in the HC last section were applied tolow PT 
71"/J,·separation at rr= 0.3 using MC simulated data. Compared to the· 
linear threshold discriminator an increase of 80- 100% in pion rejection 
factor at muon recognition efficiency 0.95-0.99 was obtained in case of 
neural network discrimin~tors. ·' 

2. Neural net discriminators trained inside . the working interval 
3 ~ PT ~ 5 GeV do not show a sharp deterioration oftheir performance 
outside the working interval at p; :::: 10 GeV. To keep good performance. 
of neural net discriminators at PT d 2 GeV one should include events· 
with 2 ~ PT ~ 3 GeV into the training set of events. 

3: Neur~l. net di~criminators proved to be robhst classifiers 'that ~t high • 
muon registration efficiency c/J = 0.99 retain their selectivity in a wide 
range of photostatistics level (10- 80photoelectrons/GeV) and. whose· 
discrimination power - in contrast to the. linear threshold discrirnimi.tor- · 
gradually_ decreas~s. wl~e~ photost~tistics le~el goes down. 

~ ' ' . ' . ' ". 

4. There is little cliffer~nce in c.haracteristics of neural net di~criinir{ators for 
two HC designs - with 4 and 3 longitudinal samples. No difference is 

, observed for ~fficiencies cw < 0.90.,At efficiencies 0:95 < cJJ ,< 0.99 the 
pion regection factor in case of 3 longitudinal samples is only 10% lower 
,compared to the case of 4 lol1gitudinaJsample~~ ' ·· • · 

> .'' •' , • •• :.,. < ',, 

;, 
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AcTRauaTypo~ A.~. 11 .up. 
n p11Me11CIIIIe· IICKYCCTRellllbiX lleiipOIIIIbiX 
::>QxPeKTIIRIIOCTII ,paJ,UeJielllHI IIJOJIIIpOBaml 
c MaJJhiM nonepe•JIIhiM IIMIIYJibCOM R a.upm 

noKaJallbl 11pe11MyLUeCTRa MeTO.!l!IKII 
' o6pa60TKII )lallllblX C a.llpOIIIIOro KaJ!OpiiMe 

110 paJ,UeJJelllJKl IIJOJIIlpORallllbiX 1t-MeJo; 
IIMIIYJJhCOM R Jm~·epRruJe 3 < pT < 5 f::>B IIJ 

TaKHX p7: IIMeiOT JaMeTIIYKl ReposrmoCTb 

110p11MeTpa, RCJie)lCTRIJe . 'Jero 0(111 lie M< 
MIOOIIIIblM .ueTeKTOpOM. npe.uCTaRJJell cp; 
TepllCTIIK p~.ua ll~iipocen!RbiX .UIICKplll 

· .UIICKpiiMima-ropa, Kmrrpomtpy•omero ::>ne 
po11110ro KaJIOpHMeTpa. AII<UIIn OCIIORall 
11p11 IIOMOlUII C,Tan.uapTIIbiX llporpaMM MO)l 

Pa6lna RhlllOJIIIeua R Jla6opaTop1111 ~.<: 

Coo6ntcnuc 06·hcJUIIICIIItm·o IIIICTIIT}'Ta 

Astvatsaturov A.R. et al. 
Improvement in Separation of Isolated Mt 
at Low pT in ATLAS Hadron Calorimeter 

Artific,ial Neural Netw9rks Technique 

Advantages of artificial neural networl 
granulated ATLAS hadron calorimeter (H 

7t/ IJ separation task in the range 3 < pT < 

low pT muons ,have a significant prob<ihili 

therefore they cannot be reliably registere( 
analysis of main characteristics is presented 
a linear threshqld discriminator operating 4 

·He. The analysis is based·on MC data obt: 
. The investigation has been performed 
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