





1 Introductlon

High Energy Physics [1]. Due to their inherent parallellsm Tobustness and’ good
statistical propertles the ANN are used both in off-line and on-line analysis.

The main goal of the present article is to show advantages of ANN approach
in handling data from highly granulated hadron calorimeter (HC) in comparison
with other techniques. To demonstrate the potential of ANN approach the task
of isolated low pr w/p separation was chosen. In solving the task we can get
an insight into what are the most relevant inputs to an effective neural network
classifier (dlscrlmlnator) and what are its performance limits.— -

Having its own .value, the effective solution. of isolated low pT 1r/ e sep-
aration task may be considered as an auxrlrary step towards tackhng a'more
difficult problem ~ tagging b-Jets with low pT muons using HC information.
Muons in the range 3 < Pr < 5 GeV, have a significant probabrllty to be ab-
sorbed in"the calorimeter and therefore they cannot . be reliably. registered by
the muon detector. In [2] it was shown that identification of b-jets with muon’s
pr > 3 GeV: mlght increase the statistics of the observed.events. by. a factor of
2.5.in searchmg for and measurement of CP, vrolatron in B — J/ 1/;K 9 channel
with J/¢ — p Fp decay - the problem mentroned in the ATLAS Techmcal
Proposal [3]. =

In our. 1nvest1gatlon we. restncted ourselves to testmg dlscrrmlnatron power
~of two types of dlscnmlnators linear threshold dlscrrmrnators (LTD) as used in
[2] and neural net discriminators (NND) built using "the package J ETNET [4].
The present work is based on simulated data; two HC designs were considered
—with4 and 3 longltudmal samples. Distributions of deposrted energles in each
section of ATLAS calorlmeter are shown in Frg 1 2

2 Neural networks apphcatlon scheme and
s1mulatlon data ;

In what follows the muon events (calorrmeter response to muons) wrll be refered
to as. signal events and the pion events —as background events respectlvely
" Neural net drsc mrnators belng nonhnear nonpa.rametrlc extensrons of con-
,‘ventlonal classrﬁers explort knowledge of _|omt probablhty drstnbutlon of dif-
ferent, features of regrstered events. Approxrmatron of _|01nt probabrhty drstrr-
bution is attained through a procedure called neural net training on the basrs
of a training set of events (simulated or real) Under certain conditions neural
net classifiers realize. asymptotically optimal, Bayasian decision 5]; [6]. -
To formulate the problem under study closer.to identification of low T

J




[muons in the b-jet context we do not consider information from electromag- -
netic calorimeter (EMC) nor from any track detectors, thus ent1rely relyrng on
hadron calorrmeter response data ‘
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Flgure 1: Dzstrzbutwns of deposzted energzes m sectwns ofpreshower detec- ;

tor (psl, psz), EM calorzmeter (em;y -~ em3) "Hadron calonmeter (hal — hay)
for muons and pwns at 17 = 0 3 and pT values umformly dzstnbuled wzthm
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We adopted ‘the’ follow1ng 1nvest1gatlon scheme whrch consrsted of elght
distinct steps: B R T T G S S TR

R

1. Define an interval of 1nterest for pT value (pT workmg 1nterval)
- ‘Inourcase1t1s30<pT<50GeV P t

2. Form training set of events, It comprises both 51gnal and background

events generated at pT values w1th1n the’ pT workmg mterval (see below
the detarls) s :

3. Traln the neural net d1scr1mmator

4. Test the neural net discriminator. Testmg is performed usmg another set

" " of events (test events) ‘with pr within 'the worklng interval. Quallty of
the trained discriminator- (its characteristics as a classrﬁer) is evaluated

.. asa functlon of the. threshold level applied to neural net output srgnal

5. Estrmate dlscrrmmator qualrty dependence on' pT (for events both wrthm
._«pr ,working lnterval and outside it)..

V 6. Execute steps 2-4 for drﬂ'erent levels of phot
: 3:10 80 photoelectrons per GeV) o

deposrtlons in HC cells crndr 0

ety

Ijllgi._lEExecute steps 2 4 for two HC de51gns a) vv1th four longltudmal sam—
“ples: and b) w1th three longrtudmal samples (samples 2 nd 3 grouped

The standard ATLAS programs (DICE and ATRECON) were used to simu-
late calorrmeter response to isolated i and .3 at 7 ="0.3 for pr values unlformly
distributed within pr’ worklng interval (3 0,'5.0) GeV. In’ total 6000 ‘muon
events and 6000 pion events were 51mulated ‘Actually ‘the pT workmg inter-
val was subdivided ‘into four nonoverlapplng ‘subintervals ‘of '0.5'GeV" w1dth
with 3000 events. in each. To evaluate the .discriminator’ qualrty outsrde the
rT work1ng 1nterval we have prepared add1tronal data files for muon and pion
events generated at pr ._2 0 and 10.0, GeV (4000 events in total). Noise effects
were taken into consideration in‘a s1mplrﬁed ‘way using a cut of 0.1 GeV for
thresholding the simulated energy depositions in HC cells. _

The resultant trained neural net discriminator depends onpr. drstrlbutlon in
the tralnlng set’ w1th1n both classes of events (srgnal and background) General
case of nonunrform pT dlstrlbutlons is ea.s11y 51mulated by proper, ad_)ustments
in a procedure that performs access to event patterns durmg neural net tralmng
phase. Y e Lin b
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3. Discriminators and their performance

in low pr 7/p separation | |
In this paper ‘results’ for four models of x/ ;t d1scr1m1nators are presented in the
order of their increasing discrimination power.

e LTD — linear threshold d1scr1m1nator that checks the deposlted energy
'E4in ‘the last TIC sample agalnst the threshold value.

e NNDj - neural net discriminator operatmg on the energies E;, i i= 1 4,
deposrted in four HC sectrons (i.e. on all longrtudrnal samples)

. N N D;z - neural net drscrrmrnator operatlng on values of event features
- estrmated as functlons of arguments E;. :

‘f‘o NND3d - neural net discriminator operatlng on 3- d1mens1onal pattern of
., energy dep051tlon in HC (i.e. on energy depos1tron in cells).

Three-layered perceptrons with n- 1nput neurons (nodes) in the first’ layer,
n;. neurons in_a hidden layer and one output neuron in the third layer were
selected for constructing neural net dlscrlmrnators ‘Adjacent ]ayers of the per-
ceptrons are fully interconnected. A formu]a (n n;., 1) w1ll be used to depict
the structure of such:perceptrons.: ~

Inputs to the first’ layer of NND * may be thought as components of
n—drmensronal vector that represents an event in‘ n-dimensional feature space.
Dimension n' and orderrng of 1nput components are ﬁxed for a part1cular NND.
For 'neurons in the hidden and’ output layers ‘the ‘nonlinear neuron activation
function g(a) = (1 4+ exp(—2a))~! was chosen; hence the perceptrons perform
nonlinear mappings of n-dimensional space. into. (0 1). interval. During training
phase the target value of the output neuron was put to 1 for muons-and 0 for

- pions. 'I‘rarnrng procedure 1terat1vely adjusts welgths of connectrons between

neurons.in order to minimize mean fit error MFE, i.e. mean squared deviation
of actual net output values ONN(p) from the target values t(p) over the whole
trarnrng set of events : e

MFE'—2N E(t(p) ONN(p))2 B ¢

where p denotes events ) ) ,
Using. a tra1ned perceptron one gets one—dlmensronal d1str1butlons of net
output values for muons, and _pions, and the. subsequent ‘part. of 7r/;t sepa-

» ratron task becomes similar to that of LTD drscrrmmator wluch deals wrth

one—dlmensronal dlstrlbut1ons of E'4 values (0 < Ey < oo)

In Fig.2(a) distributions of E4 for signal (1) and background (=) events are
presented, and in Fig.2(b) - distributions of neural n»et output values for the
same events (the neural net is tlrat of NNDp2). R ~ ‘
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Figure 2:: (a) Dzstrzbui:ons of E4 Jor pand 7 events at 7 = 0.3 and pr_values
umformly distributed within (3-5) GeV mterval {b) Distributions of NND(2
neural net output values for the. same evenls '

A ﬁxed pornt on r-axis (decrslon pomt or threshold) dlchotomlzes these dis-
tributions. Counting events on both sides of the threshold and uormallzmg the
results one gets accumulated probabilities for an event to be correctly classified
or misclassified. Applymg variable tllresllolds we, get estlmates of lmportaut
characteristics of discriminators: - " B

. 5,‘\ Z efficiency of signal, events'recogni‘tfion, i.e. the probability that a
muon event be correctly classified, ! :

. a,, 1nefﬁc1ency of s1gnal eveuts recogmtlon 1e. the probablllty that'a
' muon event be m1sclassrﬁed (a,‘ = - 5,‘) R

LR
(S su“x,r«.»r

o ﬂ,r - surv1val probability for background evénts, i.e the probabllltv that
a pion event be mrsclassrﬁed

These characteristics for LTD and NND:g dlscnmmators are preseutcd in
Fig.3 as functions of discriminator’s internal parameter (threshold value. for

energy Eqi n ¢ case of LTD tllresllold value for neural net output s1gnal in case
of NND) .
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a Flgure 3 Charactertstzcs for LTD and NNDm as functwns of d:scrzmmator s
internal parameter (threshold value for energy E, in case of LTD threshold
, value for neural nel oulpul signal in case of NND) '

..~ Two other. characteristics are. defined as follows: |

e R, =1/ — rejection factor'forl.backgroundf events,
. Q = e,, R,r - enrlchment factor

Enrlchment factor Q lndlcates the change in the ratlo o

e

(number of szynal events)
(number of. backy~ ound. events)

,,,,,

after applymg the dlscnmlnator toa mlxture of sxgnal and background events
Two lower plots in Flg 3 ‘present Q- factors for LTD and NNDy; as functlons of
variable threshold values.

Different- types of discriminators may differ in sense and range of their in-
ternal parameters which control performance of a discriminator. That is why
we prefer to use parameter independent function Q(e,) for comparmg function-
al behaviour of different discriminators (7], [8], [9]. In Fig.4 ' Q(e,) function
is presented for LTD and NN Dm dlscrlmmators (values of these functlons are

derlved from plots in Flg 3)
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‘ Before presentmg and commentlng functlonal behavior of the four dlSCl‘lml- -
nators we shall look’ at what i is the dlﬁ'erence between neural nets of three NND




discriminators. All three nets bemg perceptrons of the- formula’ (n; 40, 1) differ
in two respects:

1) dimension n of input vectors X

2) sense of components of X,,.

Components of X, vector are usually called event features Features are

- functions of raw data items (cell energies of HC response in our case)..-It is
worth notlng that E; samples are also features: each E; is a weighted sum of
all energies deposited in separate cells of i-th section of HC, all weights being
set to 1). Evaluation of feature values js an operation called preprocessing of
measurement data (or source data). Note that operation of reordering features

in input vector X, is another example of preprocessmg 1f thls operat1on is event

dependent.
o
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It is well known that deﬁnltlon of a feature space is the most critical stage
in pattern classification process. Various features of the events were evaluated
and many sessions of neural net training and testing were carried out in search
for the most effective subsets of features used as inputs to neural nets.

The neural net of NNDy; . d1scr1mlnator is.a (4, 40, 1) - perceptron “luch
uses four longitudinal samples E}, i = 1,4, as components of input vector
X4: The order of samples'E; in the vector Xa’is fixed: i-th component of Xn
is assigned E; value. In Fig.5 the line labeled by Q, presents Q(e,,) curve
for NNDj, d1scr1m1nator It follows fromi the figure that for muon registration
efficiencies ;' = 0.80 — 0.97 the enrichment factor Q is in the range 100 - 105.
Qi(ey) isa decreasmg funcn1on for larger €, values, and at ¢, = 0. 99 it drops

to ~ 95

NND,g ‘discriminator is also based on the (4, 40, 1) - perceptron and also
uses four longitudinal samples E;, i = 1 4. In contrast to NNDy;, assignment
of a partlcular Ek to a component of 4\4 is dependent on the event itself. Here
components of X4 are an ordered set of longltudmal samples ordered by their
values in descendlng way. . Q(e,‘) curve for NND]n d1scr1m1nator is presented in
the’ enrlchment factor Qz is ll] the range 120 - 125 At efllc1ency 6,, —v0 99
Q- drops to ~ 95.

For convenlency ‘of cornparlso’n we present in Fig 6 ratios 'q,‘_," of the functions
Q(e,,) for different palrs of d1scr1m1nators at efli('lencles €n = 0 88 0 99

where R,(E,J) R; (6,,) denote correspondlng values of pion rejectlorl factor R,.
One can see that in comparison with LTD all neural net. dlscrnmnators have

* twice as hlgh enrlchment factor value Q at. the lngllcst cflic1ency e,, =.0.99. At

lower efﬁclencles (6,, < 0. 96) dlll'erent models of neural net dlscrnnmators llOl(‘l

Q factors 40 - 80 % lngher compare(l to LTD dlscrnmnator

In search for efl'ectlve NND34 discriminator we, tried a number a ways to
extract additional lmportant features by preprocessing clusters of cells in each
HC sectlon A cluster 1s deﬁned as the 3 x 3 cells window where the maximum
summed ¢ energy is deposnted "The central cell (e, pe)of a cluster is that with
maxnmum cell energy : : :
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- Some of the tested features are:- ¢ v g e

B

.. etnergy of th‘e‘ leadingic‘ell&-in:a cluster,:v‘ P

—

. summed energles in 1ncreasrng square bands around the centre of a cluster, .
;f ? Friaw B 3 " i i

. summed energy of the cells outsrde a cluster

: ordered sample of cell energles ina cluster, N

. ordered sample of cell energles normahzed by the total energy 1n a cluster,

e ;m,, [ R N

M’ = number of cells with energy depos1tron above preset thresholds ie.

) multlphclty of actrve cells in a cluster SO Remman ey e

. : ERRE RN =

7. m,, = number of actrve cells w1th nce” ;é nc ina cluster, .
: (1] multrphcrty) : G e

8m U— number of act1ve cells w1th gaceu r/: gac,
A ,(<p multrpllclty) ‘

VE is deﬁned as followrng o

: VE = Z(U, v-“ V_:._.v‘+1E|+1) /E.‘o.‘ 3¢ Etot = ZE

FAgyy wiio e b ru 1 :x ol e 1,_ ;

Three sets of v, constants were used to prepare three vers1ons of VE feature ,
a) U,—l q’x : : ; RN i : T
" b)Y v = l/d,, i where d = thlckness of z-th HC sectlon 1n nuclear
1nteractron length unrts, e
c) v =1/Mu(E), where M,,(E ) is the mean value of i- th longrtudlnal
sample in. HC for muon events (see Fig.l) .. ...

“During training and testlng sessions we reta1ned only those models of N N Dag
wh1ch had higher characteristics and lower dlmensron of feature vector X,. The
final version of NN Dad is based on the: (8 40 1) perceptron The 1nput fea—
tures in Xy vector are: St TS ER LI RS IO S
— . ..ordered sample. of E (four features) LT et

m{*); m,(;,“‘) ‘k =1, 2 (four features), Lty FESRLNEY

, ; J1°; jo —.are indeces  of . those two HC longltudlnal sectlons
where the greatest summed energies were deposited.for.an event:

Functional behavior of NN D3y is presented by Qa(e,;) curve in Flg 5 One
can see that an'increase in Q - factor value is sensible enough (about 25 unlts)
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compared to NNDj, but is relatively small (less then" 10 units)' compared to
NNDj2. In comparison with all other three discrlminators'the relative increase
in Q for NND3y is presented in Fig.6 by - q3;(€,) curves, j = 0,1, 2.

‘In’our opinion,.the moderate increase in:Q for NND34 in comparison with
-NNDzz may be justified as follows

Muons loose their energy malnly by 1on1zatlon and the number of actlve
cells in an HC section does not exceed 2. ‘Distributions of their deposited

summed energ1es in each. of four sections are of gaussian type, centered at

M, (E;), i = 1,4 with standard deviations 0.102 < o; < 0.125 (ref. Fig.1).
Big deviations from mean values M, (E;) in one or more HC sections are
used by well trained NNDy;, NND;Z dlscrlmlnators as 51gnatures of a pion.
Number of pions misclassified by NNDyq, NND;; is not greate and equals to
my = N-Bx = N/R;. To substantially increase classification power the NND3q4
discriminator should correctly classify a part of m, pions using information on
cell distribution of the deposited energy in HC sections. The rise in multiplici-
ty above 2 active cells is with hlgh probablllty accompanled by the increase in
summed energy deposition by an ammount that is abnormal to a muon event;
meanwhile the observed multiplicity of active cells in the subset of mz; mis-
clasmﬁed p10n events is s1m11ar to that in muon events.. The llttle dlﬂ'erence
in characteristics between NND3d and NND;Z shows that usmg 1nformat10n on
active cell multiplicity permits NND3g to lower m, number only by 5%. This
result gives rise to an assumptlon that some of my plOIlS — all exhibiting deep
penetration ablllty with Tionzero-energy. deposition .in- the last” HC section —
most likely did not take part in nuclear interactions at all. Obvious contra-
diction between.the. actually observed fraction. of misclassified pions.(~ 0. 01)
and the fraction of pions (< 0.0001) that could escape nuclear interactions in
ATLAS, calorimeter at 7 = 0.3 leads, us to a conclusion that at least a part
of the observed my cases of HC response is most probably not produced by
,partlcles entering HC-as pions. , : o

Indeed, pion decay process 7ri — u* + Dy tends to make HC response to'a
~background event (7) look like that to a signal event (u). The probability of the
decay 1s not negligible in our 1r/ u separation task: for pr un1formly distributed
in3=<5 GeV interval at 5 = 0.3'about 0.83% of pions decay prior to the first
nuclear interaction and should in average produce muon-liké HC responses.
At high muon registration eﬂiclenc1es and 3000°pion events in’a test sample
we arrive at a limit value R, = 120430.: It follows from? this estimate that
longitudinal samples in HC contain ienough information for NND;; and NND;,
to approach the limit values of-R, and Q. Hence the subsequent 1mprovements
in. R, and Q attamed by NND3d could not be hlgh e
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Slmulated events (12000 in: total) have been spllt into two equal parts one
part ‘used for’ training neural net and’ another part- “for testing its generallza—)
tion ability. With 3000+ 3000 events in the test sample'and’ hlgh values of
background re_]ectlon factors R; attained by’ dlscrlmmators (R ~ 100) the sta-
tistical errors in estimation'of Q can not be low: o(Q) = 1520 Nevertheless;
‘the difference in.characteristics of any two discriminators’ may ‘be estlmated
with higher precision because tlie common test sample of events is used for
evaluatlng these characteristics which consequently become correlated

) Let D;, D; be two discriminators tuned to operate at the given fixed efﬁ-
ciency €u = €o, and R,, Q,, R;, Q;.— their bacl\ground rejection factors and -
eenrichment factors at 5;, = €p. Assume mthout loss of generallty that R > R
It can be shown that' maximum lll\elllIOOd est1mat10n of variance of the rat10
q,J = Q./Q, =R; /R may be reduced to the followmg expression:

var(q,,) = qi; - N (q,, +1— Z-R—U) ;o ; 3)
: “or s el : ;
PRI Q. ey
-var(gi;) = gij - N (flu +1- ZQU e_;) (4)
where | . ‘

- the number of backgroun(l events (pions) in the test sample
R,J, Qij, €ij - bacl\ground rejection factor, enrichment factor and muon
reglstratlon eﬂiclency of the compound dlscrlmmator D;; based on D., D that
are operating in parallel (each at e, = €) and whose output logical s1gnals 0/1
(classification signals) are processed by - ”AND” logical functron to form output
signal of the compound discriminator. LA
Note that in general case the next mequalltles hold

R,,ZR >R,, 6,, 560
" Error bars in Flg 6 correspond to e~t1mates accordmg to (3) (4) o
Neural nets were thoroughly trained using up to 7 - 10 thousands epochs
in a tralnlng session., To reach lower, event classrﬁcatlon error we tested, neural
net versions w1th dlfferent forms of neuron actlvatlon functlon used ﬁxed and
varlable learnmg rates 1n a trammg sess10n used bacl\ propagatlon and Rprop

. tralnlng procedures [4] and var1ed startmg values of welgts and thresholds of

the neural net when mltlallzmg a trammg sesion. R

rrrrrrrrrrrrr

Output ‘of a short summary, after eacll epoch proved very useful for ‘snper\-g

v1s1ng tlle process of neural networl\ trammg Tlle summary contams epoch

113



number, mean fit, error, MFE (1) in' the.current epoch, muon. and  pion recog-
nition efﬁcrenry in’ trammg and test sets of events, four: values of enrlchment
factor Q at. efﬁcrencres Ep = 0. 99, 0.95,0. 90, 0. 85.. : : G

‘ As an example of a training;session we present in Flg 7 the dynamrcs of
enrrchment factor Q (at ep=.0. 99) and mean ﬁt error-MFE as functions of the
current epoch number in the session, : ‘
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Figure 7: Dynamics of enrzchment factor Q (at e,, = 0 99) and mean ﬁt'error
‘MFE na trammy sesszon for NNDu

RRTES

“As the next step in our mvestlgatlon Scheme we estrmated the’ dependence of

discriminator’ characteristics on PT values of events bemg tested. We evaluated
: \characterlstlcs of drﬂ'erent dlscrlmlnators at'four pr values’ inside the workmg
interval (3. 0 5. 0) ‘GeV and at pp''= 2 and '10 GeV outsrde it. "It should

be noted that results for pr outsrde the workmg mterval are highly sensrtlve ’

. to smgularrtres of NND versrons and ‘to the threshold’ values applred to the
neural net' output signal. Efficiency €n and pion rejection factor R, inside the

A
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worklng interval are constant within statlstlcal errors for all dlscrlmlnators At
=10 GeV : ¢, remains as high’ whereas at pp = 2.GeV _ Ey drops to the
values 0.2 - 0 8 dependmg on the -version of a discriminator.

Due to poor statistics at pr =2 and 10 GeV (1000 pion events at each PT
value) only qualitative conclusions can be drawn from the set_of estimates of -
R for different discriminators at these two pr values. The least degradation
‘in R, and €, outside the worklng 1nterval is'shown by d1scr1m1nators of NN D3d
famlly, the brggest degradation — by LTD. To. reach good performance at pp
= 2 GeV one should mclude events srrnulated at 2 < pT < 3 GeV 1nto the
training set of events. - .

To mvest1gate the- mﬂuence of photostatrstrcs on d1scr1m1nators perfor—
mance we repeated steps 2 - 4 of our 1nvest1gat10n scheme (see page 3) for
seven different photostat1st1cs levels (PSL) in the range 10- 80 photoelectrons ;
per GeV. For the fixed muon recognition efﬁcrency ex = 0. 99 the dependence of

Q - factor upon photostatlstlcs level is presented in Flg 8 for NNDm and LTD
drscrrmmators - '
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It is clearly seen that the neural net dlscrlmmator 1s.a more robust classifier
whlch retams its selectwnty within the whole range of photostatlstlcs level and
whose dlscrlmmatlon power gradually decreases when pllotostatlstlcs level goesi
down In contrast to NNDm,,the LTD (hscrmlmator cannot retam its’ selec—'
tivity at eﬂicxency ex = 0.99 within thé whole range of pllotostatlstlcs level‘
(25 photoelectrons/GeV is the critical point = ref. Fig.8). - e

.Both’ cllaractenstlcs sllown in Flg 8 correspond to a cut ofO 10 GeV applledq_

for t,hresholdmg energy, deposmon ina separate acC cell To examine sensitiv-

ity of the: characterlstlcs to cell energy - thresllold values we have estlmated;
another two pairs of characterlstlcs (for t,he same €, \alue) correspondmg to.
cell’ energy thresllolds (CET) of 0.15 and 0. 200 GeV All six. curves are pre- -.
sented in Flg 9 separately for NNDm and LTD dlscrlmmators It is seen that
for CET = 0. 20 GeV the LTD dlscnmmator cannot reach muon reglstratlon"
eﬂicxency 6,, = 0.99 at any value of photostatlstlcs level without: loosmg 7I'/[l
separation ability. s R : Tt
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Figure 11: The mazimum efficiency €, atlainable without loss of w/n sepa--
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The dependence of 5,‘ ‘on LTD s, 1nternal parameter (threshold on E4 ~
ref Fig.3) at the fixed PSL = 40 photoelectrons/GeV is presented in F1g 10 by
the lines 2, 3, 4 for dlfferent values of CET = 0:10,0.15, 0.20 GeV The lme 1
_corresponds to HC data srmulate(l w1tl10ut talung photostatlstlcs lnto account
(PSL = o0). '

~To mvestlgate sens1tlv1ty of LTD characterlstlcs to cell energy thresholds

- we, have add1t10nally evaluated the max1mum values of g, attainable by LTD )

w1thout loos1ng /i separatlon ablllty for. ﬁve CET values in the range 0 10 -
0.30 GeV and seven PSL values in the raﬁge 10 - 80 photoelectrons/GeV The
results are presented in Fig.11. They allow one to. foresee. llmltatlons of LTD
expected in solvmg ‘II’//t separatlon task in a more realistic envxronment when
hlgher CET values mlght be needed to suppress background 51gnals ' e

Accordlng to-the' ATLAS ‘Technical Proposal [3] the central two sections of
, hadron calorimeter will be grouped together. We designate the:two HC designs
of 4 and 3.longitudinal samples as 11C(1,2,3,4) and IIC(1;2+43,4).. A neural net
discriminator of NND;; family was trained and tested for HC(1,2+3,4). In
Fig.12 its'characteristics are presented ‘by the line labeled NND;;(3s). The line
labeled NNDjy;(4s) presents characteristics of the NND;, discriminator given
ini details earlier for HC(1,2,3,4). One can see that at efficiencies €, < 0.90
the NND;;(3s) is not inferior to NND11(4S) At efficiencies 0.95 < Eu < 0.99
the enrichment factor Q of NND;; (3s) is only 10% lower in comparlson with
NND“(4s) :
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Flgure 12 Characterzstzcs of ‘neural net dzscrzmmators for lwo dzﬂ'erent HC
deszyns - with 3 and J longitudinal samples v :
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4 Conclusmns o

1 Neural net dlscrlmmators operatmg on longltudlnal or 3 dlmen510nal de- :
posited energy samples and the linear threshold dlscrlmmator operating -

* on total deposrted energy in the HC last section were:applied to low ppr
e separatlon at 7'= 0.3 using MC simulated data. Compared to the -

* linear threshold discriminator an'iucrease of 80 — 100% in pion rejection

. factor at muon recognition efﬁclency 0 95 0. 99 was obtalned in case of
L neural network dlscrlmmators ' TN IE I R :

-2. Neural net dlscr1m1nators trained inside - the workmg 1nterval 5
/3 < pr <£.5GeV do not show a sharp deterioration of their performance
: 1 outs1de the workmg mterval at p;'= lO GeV. To l\eep good performance
of neural ‘net discriminators at pr ='2 GeV one ‘should mclude events .
: w1th 2 < pr <3 GeV into the tramlng set of events IR

3. Neural net dlscrlmmators proved to be robust ClaSSlﬁel‘S that at lngh
muon reglstratlon efﬁclency €4 = 0.99 retain their selectivity i in‘a wide-
range of photostatistics level (10 - 80 photoelectrons/GeV) and whose - -

d1scrlm1nat10n power — in contrast to the lmear threshold dlscrlmlnator =
T gradually decreases wllen photostatlstlcs level goes_ down '

4 There is little difference in cllaracterlstlcs of neural net dlscrlmlnators for
two HC designs — with 4 and 3 longltudlnal samples. No dlfference 185

, observed for efficiencies £, <. 0 90. At efficiencies 0.95 < €, < 0. 99 the -
pion’ regectlon factor in case of 3 longltudmal samples 1s only 10% lower:

N compared to the case of 4 longltudmal samples o :
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