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1 .Introduction .. 

The problem of approximating of measur~d data points by a ii;cl~ i,s' on~ 6f ·· 

importance f~r many data ha~dling pr~ble~ in high en~rgy,.physics [1, 2;· 3]. 

This is gdtting ~ore i~~ortant with inventi~g s~.ch ~ode~n 'd.e~~c~ors, as for 

example, RICH (Ring Imaging CHe~enkov), r~quiri~g in ~ach everitthe pirain­

eter determination of tens and hundreds ri~gs; f~rffi'ed by Cherenkci~ phot~ns. 
The information of the RICH detectors is read out via two-dimensional arrays 

each of about 50000 pads (cells), allowing the unambiguous reconstruction of, 

single-photon hits [4]. . . 
Theref~re the probl~m for~~lation fo~ Circle fittir1g t6 ~~al RICHr·a~ data 

is considerably different from how it was formulated ~in' the' 'above cited ~orks, 
where a circle was measured in separate·points (x;,y;)i :;=;. l, ... ,n. \:Vhile 

practically all modern detectors havingthe discrete, cell structure register, ,in 

fact, the energy dissipation produced by a passing elementary particle ~ot in 

a single point, but ir1 several adj11;cent cel,ls where alLthis. e,nergy is distributed 
' > ; •• ~ ·.J: >: ,..:_.' : .. ·' ~ . ·, c > : __ -· i ' ,' ! 1 . f. :. ~-. 

as one can see in fig.l. ' · · · 
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Figurel: ,2D(a) and 3D (b) images of simulated discreti2ed,sig~als ~[the 
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same circle 

In this case a circle is to be fit .not to separate points, but to clusters of 

adjacent cells. That is ~~ a completely'differe~t pr~blem. Besides of noted 

above the high occupancy of RICH detector, such its characteristics as the 
. . . " / . ; '• ' ' . ' ·. . - . ; . ' ~ ' ' :'' ' ' , . . - ' ' ; ~ . . :. ' . . ~ ' 

presence of background hits and appearance of several overlapping rings make 
. ' • : : • - ' ' ! ..• : . , ; -· • ; • ' ' . \ ~ • \ i ' • • t l ~ ' . ' 

inapplicable circle fitting methods cited above due to tlieir noise sensitivity. 
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Even in the case of one circle one single point-outlier· can distort considerably 

estimations of the circle center or radius. 

In this paper it's shown that the efficient way to overcome these problems 

of the curve fitting is the robust fitting technique based on a reweighted least 

square method with optimally chosen weights. 

Therefore two probiems are to be solved: 

- elaborate a new type of weights co'nsidered as optimal according to the 

·maximum likelihood criterum; 

- develop a robust version of one of effective algorithms fo"r single circle 

fitting to granulated data; 

The solution of above problems is presented her~ followed by results of 

comparative testing of corresponding algorithms. 

2 Bimodal (bihorn) weight concept 

Let us discuss a general problem of fitti~g a curve f(x, y; Bt, ... , Bv) = 0 to 

~ experimentally measured array of points (x;, y;), i = 1, ... , n on the xy-

plane. Here 8 j, j = 1; ... , p, are unknown parameters of the curve. ·.A typical 

example in high energy physics is the tracking problem, where the curve is 

often a circle ( x - a )2 + (y - b )2 = R 2 with three unknown parameters a, b,R, 

and the experimental data (x;, y;) are bubbles· on a photo taken in a bubble 

chamber, or electrical signals measured iri a wire chamber. Another ·example 

of that kind is Cherenkov ring reconstruction in RICH detectors described in 

the next section. 

The classical least square fit (LSF) is based on the minimization of the 

residual sum of squares (RSS): 

n 

RSS(Ob···,Bv) = Ld~--> min (1) 
i=l 

Here d; is the distance of the point (x;, y;) from the fitting curve. This method 

is optimal if the distances of the ~xperimental points ( x;, Yi) Jrom the actual 
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CllrV<' (track) are indPp(•ndPnl normally distribtil<'d ran'dom' \"ilriahiPS with a 
common \'ilrtann•. 

In rPal exp<'rinwnt s. hm,·cn·r.· t,lw nwasur<'d points are no/ normally dis­

t.rihuted around tlw obsnn·d cun·<· (track). Tlww an· two main n•asons for 

tlw \'iolat ion of I lw normality assumption 111 n•al e:q)erimcnt s: 

I. There are noisy points n·suiting frommalfunctimts of the detectors. sidP 

effects of the experinwnt and other tracb that happen to I><' dose to the one 

we arc estimating. 

2. The technical limit at ions' of I h<' dP!t•ctors. which piT\'Pnl I h<' pos'sihility 

of liH'asuring points right 011 thP track or at arhitrary. distance from it. St~ch 

are discrd.<· (granular) dPt Pel ors whPn' I lw nwasur~·d points ar<' IH'<"<'Ss~rily 

located at. ciks of a spPcific grid. In such dctPdors. oflt•It I lw amplit ud<• of a 

signal is nwasttr<'d, too. so that tlw data an· tripl<'s (.r;.y;.a;). whPr<' a; stands 

for t.h<' amplit.nd<' of th<• sign<ll at the point (.r;. y;). Th<'n lh<' amplitude a; is 

also discrdiz<:d. e.g. hy rm;n:ling to t lw n<'arPsl inl<'gt•r and cult ing off to:> 

weak signal by a l.rUII<:at.ion I:ult· a; 2: II min > 0. :\ dPI<'clor of I hit!· kind will 

be dPscri l;<•d i.n t.l.t<' next ~<'~:!ion. 
These violations <if t.h<' nor'malit.y assumpl ion ofkn cans<' a ;·omph•t't• im·ak­

down of t.he LSF. There an• modifications of th<' LSF which ar<' lt·ss sensitivP to· 

chang<'s in t.lw• distribution of poi III s around I lw I rack (so caiiPd robust' met h· 

ods), or oriented t.o spPcific (~]asses of such distributions. :\Vt; will discuss her<' 

t.he most. popular modificat.im.ts of tlw LFS. which an• based on I hP maximlmi 

likelihood estimates ( M:<'st.imat<•s ). · 

Assume !.hat. !.he dist.aiiC<'S of t.lw nwasun•d points (.r;;y;) from thP track 

are indepemlent. idPnt.ically dist.rihut Pd ra.ndom variahks. with 1·ommon d;·nsit y 

p(x). The maximum lik<'lihood <·st.imal.<· requin·s t.lw maximization of th<' so· 

called li>garit.lnnic likelihood function 

I.(Oh ... ,01,) = Llnp(d;) ~max (2) 

i=l 

This fund. ion t.ak<·s it.s maximum at. a solution of I lu: syskm of equal ions 

_ iJ /,( 0., ... , O,.) _ ~ iJin p( d;) 
O - iJO - L.....- iJO • 

J ' i=1 J 

j=I. .... p 
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This is equivalent to the weighted least square fit (WLSF) 

n 

WRSS( ol' ... 'Op) = L w( di) d~ --+ min (3) 
i=I-

with the weight function w(x) given by 

1 a p'(x) 
w(x) = ---lnp(x) = ---

x8x xp(x) 
(4) 

Note that if p(x) is a gaussian with zero•fnean, then w(x) =const. 

Typical density functions p(x) for experiments with noisy data ai:e mix­

tures of normal distributions (for signals produced by the track) and uniform 

distributions (for noisy signals): 

p(x) = (1- c) g(x) + cua(x) (5) 

where g(x) = (27ra2 t 112 e-x
2

/
2

"
2 

is a gaussian density 'with zero mean, cis the 

rate of noisy signals in the sample (in other words, (1 - c) : c is_ the signal­

noise ratio), and ua(x) is the uniform density on a large segment, [-a, a], with 

a ~ a, i.e. u(x) = (2a)-1 for lxl :::; a. We then conclude that the optimal 

~eight function, according to (4), is 

( ) 
._2 .( . c ua(x))-l wx =a 1+--·--

1-c g(x) 
(6) 

This is a unimodal plateau-like function, symmetric about x = 0, nearly con­

stant ~ a-2 for small x and rapidly decreasing to zero as lxl becomes large. 

This kind of weight functions are widely used for fitting curves to contami­

nated data (i.e., with noisy signals). Some popular functions are mentioned 

below in Section 4. 

We now turn to the main point of our discussion. The discretization of 

the measured signals with a cut-off rule for weak signals means that the main 

component g(x) of the mixture (5) is no longer gaussian. Most importantly, 

due to the truncation rule, it will decrease to zero more abruptly for such 

values of x that the measured signals become weak enough to be cut off. One 

can think of a bell-shaped gaussian curve whose tails are chopped. off. 

Accorningly, we assume that 

Pd(x) = (1- c)gd(x) + cua(x) (7) 
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where, as compar~dto (5),we have gd(x).;:=;: .6.(x)g(x). HereA(x) is a plateau 

on an interval lxl :::; 'Ja, ~apidly decaying to z;r~· f~r x > da t~ cl10p off the 

tails ofg(x) .. The value of d isspecified by the.truncation rule. For instance;' 

' '{' 1' ' ' •' if 

.6.{x) = {1 + D((o:d)~1 x :-1)2)-1 if 

with, say, d = 3 and a large D~ 1. . 

Iii'::::: ·d; 
lxl > da 

Steep descent of the function 9d(x) to zero for the values of x just outside 

the segment [~da, da] cause the derivative of p(x) to grow for .the~evalues of 

x, and grow-significantly. According to (4), the.weight function w(x)can grow 

for these values of x also. Of course; the weight function will then .drop, to 

zero, as the noisy component in (7). becomes dominant. -Thus,. the .function 

w(x) rriay have two pronounced peaks near x = ±da, with ·a relatively high 

plateau x ~ a-2 in between. 

As one can see, bim_odal weight fu~ctions become optimal for least square 

fit to signals measured by discrete, granular detectors applying truncation rules · 

for weak si_gnals. This is~ general concept, independent of the fitting cur_ves 

(lines, circles, etc.) and techni"cal specifications ofdetectors . 
., . ; •. ·' , t.. ' .,, ' . 

lntui~ively, the v~lue of the ,\Veig;ht func~io~ .~.( x) .in)3) CCJ,n b~ interpret~~· 
' . 

as a force by which the point at,distance x from the fitting cur:ve 'attracts' it. 
·' ' '" .· · .,.,, •, I· l' •. i -::. '. ,', :.··· .: ;·t, 

In the 'pure' LSF (1), all the data points are 'equally attractive'. The robust 
' ' ' 

plateau-like function (6) ma:kes ~ll the points in a strip ar~und the fitting curve 

nearly equally attrattiv~, and the ~est 'neutral. The logic is. simple- the points 

in the strip belong to the track, and the rest 'are just noise: . 

Bimodal weight functions;· as compared to 'plateau-like ones;· make. the 

poi~ts on the sides of the mai'n strip more attraCtive than those in' the'middle of 

the strip, leaving the points outside the stdp neutral. An additional attractiiig 

force assigned to the points (;n the ~ides' of th~ mai~ strip (poorly fitted by 

the cur~e) gives the fitting curve better chances.to adjust itself. It becomes 

more flexible and less likely to fall into a wrongJocal _minimum of the func:;tion 

{3). Our numerical experiment reported below in Section 4 demonstrates t~e 
advantages of bimodal weight functions over various unimodal and plateau-like 

ones. 
lt. 
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3 Optimal weights for the LSF procedure 

Here we deduce an analytical formula for the optimal weight function for the 

least-square fit (LSF) procedure, assuming the model described in the previous 

section. 

To make our main argument simpler, we first discuss a one-dimensional 

analog of our cellular detector. This analog consists of identical bars ('one­

dimensi~nal cells') lined up in arow. A trick hits this detector at some point, 

with coordinate a. This hit results in energy production in the neighboring 

cells.· The total amount of released energy, A, is a random variable with some 

p~obability density f(A), 0 <A< oo. The distribution of the released energy 

among cells is a gaussian centered at a with a constant variance a5. 
·For any particular cell (i.e., bar) with center x, the e_nergy produced by the 

hit at point a is then 

B = ---ex . . x- a)2 '· . - A [ ( ~ p - 2a5 ] ·dx (8) 

~h~n; dx ~ 1 is, as usual, the size of the cell. The energy' actually measured 

in this cell differsfrom 13 by a small ainount (error). Let us assume that the 

measured energy, B, is a n~rinally distributed random ~ariable with mean 13 
. . . 

and a constant standard deviation Ut > 0. Thus, the probability density of B 

lS 

(o) ( 1 . .. [· (B- 13)2] 
Pa,A x, B)= ----.exp · f<l.::2 2a2 

Y"'"Ut . 1 
(9) 

where 13 is given previously by (8). 

· In the density formula (9) we have an extra parameter, A, which is unknown 

· inthe experiment, so we have to get rid of it. We will 'integrate it away' as 

follows: 

• p~0>(x, B) = 1oo p~~~ (x, B)f(A) dA (10) 

This is the .probability density for measuring an energy of Bin the cell with 

center x, given a, hit at a. This density is based on idealized, noise-free model. 

The noisy signals can be recorded in any cell, so we have to add a uniform in 

x distribution: 

Pa(x, B)= const · (p~0l(x, B)+ p(nl(B}) (11) 

6 

where the constant factor is necessary for normaliz;:ttion. lfe;e pl"l(B) is 'the 

probability of a noisy signal of amplitud~ B in an arbitrary cell. 

Naturally, Pa(x, B)= p(x-a, B), i.e. the function (11) depends only on the 

difference x ....,. a. We now get the optimal weight formula for the least'-square 

procedure: 
WB(x) =- p'(x,"B) 1 d. 

xp(x,B), = --;dx lnp(x,B) (12) 

Note that this function depends on B. the amplitude of the. measured energy 

in the cell. 

Before attempting a theoretical study of the function (12), we will find a 

good approximation to it. The integration in ( 1 0) obviously makes the ~xact 
/ . .. 

value of wB(x) hardlyav_ailable. Certainly, one does not want to evahrat~ the· 

integral (10) for every signal in real mass data I>roces~ing. Either we have to 

tabulate WB(x) for practical use, or we can find a satisfact.ory approximation. 

Fortunately, :agood and sit~ple approximation to WB(x) exists. 

We ~bserve that the tactor p~0~(~, B) in (10), as a function ~f A, is a 

Classical bell-sha~ed gaussian. Ga~ssia11 'd~;~sities qtii~kly converge to .zero as 

the argument moves away frorrl'the mean value. Her(; the mean value, ii, can 

be found from the equ~tion B =· '13, ~ttich "gives 

~ [(x-a)
2

.] . A = B . V ..::7rao exp . 2a5 .. 
' ' ' . 

(13) 

We now can replace the function f(A) in (10) by its value J(A) at A. The 

integral in (10) can be then computed approximately: 

p~0>(x, B) ~ 1oo p~~~(x, B)f(A) dA = A!( A)/ B 

= J ( B· ~-· C(r-a)~/2"~) ·, ~' e(x~a)2/2"~ (14} 

(Note that the parameter a 1 is missing from this formula, so we no longer need 

its value!) 

A direct numerical test, with an exponential density f(A), shows that the 

approximation (14) is very accurate, sec· also below.: It makes it possible to 

express the weight function wB(x) cxplicit.ly through the density f(A)·and its 

7 



first derivative f'(A): 

. E f(EB) + E2 B f'(EB) 
wa(x) = E f(EB) + p(n)(B) · 

where E =;~: ex~/2"~. 

We will predict the shape of the graph of wa(x). For concreteness, we now 

assume that the distribution of the total.energy released by a hit, f(A), is an 

exponential one with mean A0 : 
..-~· 

f(A) = Aijt . e-A/Ao' A> 0 (15) 

Let us first set p(n)(B) ,;0 in (11), so that to neglect noisy sign~is. Then the 

weight function is 

wa(x) = BA0\~l~ · ex2/2"~ -'-) 

This function rapidly grows as x increases. It is positive for moderately large 

values. of B. It has a local minimum at x = 0. For small values of x, the 

function wa(x) may drop below zero if B is small enough. These phenomena 

h~ve clear interpretations. Indeed, .if the measured signal B is large, that cell 

is likely to be very close to the hit, and then positive weight function 'attracts' 

the estimated coordinate of the hit, a, to the cell x. If B is small, it is then 

.unlikely that the cell with the measured energy B is very close to the hit. 

Instead, it is likely to be at distance a0 to 3a0 from the hit. Thus, low signals 

hiwe to 'repulse' the estimated coordinate of the hit from their immediate 

. neighborhoods, but still attract it outside of those neighborhoods. This makes 

wa(x) negative for small x and positive for large x. 

Taking into account noisy signals, i.e. assuming p(n)(B) > 0, will hardly 

affect the shape of w8 (x) for small x, where the 'pure' component p(o) domi­

nates over the noisy one p(n) in (11). So, wa(x) still can have a local minimum 

at x = 0. On the contrary, for large x the noisy component becomes dominant 

in (11). It is a constant function in x, so it forces w8 (x) to vanish, according 

to (12). We emphasize these two observations: wa(x) has a local minimum at 

x = 0 and decreases approaching zero as x increases. Of cou~se, wa(.i) must 

be an even function, symmetric about x = 0. The simplest shape meeting 

these criteria is a bimodal (bihorn) one discussed in Section 2. 
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Figure 2: The w_eight function .,wa ( x) for difff!renf amplitude values, one­

dimensional case. 

As an illustration, the:gniphs of the weight function w8 (x) are shown on 

Fig.2. They. are plotted byacomputerassuming thatf(A) is a~ ~xpo11enti~l 

functioU: (15), with A 0 = 200, a0 =:, 1, pCn)(B) = 0.01. :Three test~d va!ues of B 

clearly show the tendency_of wa(x) to incre~se and flatt~n around zero, as B 
- . --·. • ·'- •,d • 

goes up. These plots were calculated by both dir~ct nume_rical ~llteg~a:tion,in 

(11) and approximation (14). The difference was so small that the two curves '. . . '.· . ' .. /. 

practicallycoincided for every tested~al.ue of B. 

We now turn to the real, two-dimensi~nal cellular detectors described in the 

previous section. An avalanche of released energy can now occur at any point 

on the track. Let x '= a, iJ '::: b be the coordinate~ of the center ()fan avalanche. 

Again, we d~note the total released e~ergy.byA .. The·value of A is r~ridom, 
with some prob~bilitydensity J(A.); A > 0. The relea.Sed energy is :distributed 

among the neighboring cells by a (two-dimensional) gaussia!l, ~hich is spheri-
- . ·.·. ' ' . 

,cally symmetric with covariancea~ in eachcoordinate. _Therefore, the energy 
. . " ~ ·, 
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released in a cell with coordinates ( x, y) is 

B-~ [ (x- a)2 + (y- W] . d d 
-2 2exp 22. xy 

1rUo Uo 
(16) 

. where dx = dy = 1, see Section 3. The measured energy B is again a normally 

distributed random variable with mean B and the standard deviation u 1 > 0, 

so that (9) applies. 
...J 

We now chose a convenient coordinate system as follows. First of all, we 

put the origin at the avalanche center, so that a =.b = 0. Thi~ will simplify 

our formulas, without loss of generality, since they involve only the differences 

x -a and y - b. 'second, the density {16) is spherically symmetric, ir:ivariant 

underrotations of the coo~dinate frame. In particular, we can rot~te it: so that 

the y axis will be parallel to the track. · (If the track is curved, we take the 

tangent line to the track at the point (0, O)); The advantage of this orientation 

is that the distance of any cell (x,y) from thetrac~ w!ll be measured simply 

by lxl. They coordinate will be completely irrelevant. 

In the new ~oordina;te system the equation (i6) takes form 

_ A [ x2 + y2) 
B = --2 exp ---2 -.. 

21ru0 · . 2u0 . 

(17) 

C~mpared to the one~dimensional'problem discussed before, we'now have two 

extra parameters, A arid y, which are ~nknowri in the experiment (recall, that 

y' represents 'a coordinate of the cell in the new coordinate system attached to 

'the unknown track!). So we have to get rid of both y and A. We will again 

'integrate them away'as follows: 

p<0>(x, B)= 1: l:o f(A)p~>(x, B) dAdy . (18) 

where p~>(x, B) is given by (9) with B gi_yen by (17). This is the p~obability 

. density for 'mea.Suring an energy of Bin a cell whose distan~efrom the track . . . ' .. ' ' 

is.x. -The inner ~ntegral can be acc_urately approximated b:x the same trick,a:B 

in (14). As a result, we get 

. p<0>(;, B)~ 1: Ef(EB) dy wh~re - [x2 +y
2
) Ji = 21ru~exp 2u~ (19) 

10 

55 
8=80 

45 

35 

25 

15 
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-5 
-3 ...:..2 :._ 1 . 0 1 2 3 

Figure 3: The weight function WB(x) for different amplitude values, two­

dimensional case. 

The remaining integral hardly admits a simple and accurate approximation, 
' . ' . ., . 

unfortunately. 

As before, taking into account noisy signals results in 

p(x, B)~ const · (p<0>(x, B)+ p<nl(B)) (20) 

const being the normalization f~ctor. The optimal weight function WB(x) for 

the least-square procedure is then 'computed by the, same, formula (12). It still 

depends on the measured energy B in the cell and the distance X from the cell 

to the estimated track. 

The g~aphs of the weight function wB(x) arc shown on Fig. 3 for three 

values of B. A~ before, the density f(A) was assumed to be exponential with 

Ao = 200, c:o. = 1, p(nl(B) = 0.01. Compared to Fig. 2, one ,can n~.tice, that 

the drops. below zero are now much short~r. and less pronounced. This is a 
• ' • ; < • • ' • < ' " ' • ~ • • ; • - :. 

, reassurin-g news, since negative weights can cause computational troubles at 

times. 
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4 Simulations and results 

We have tested the bimodal weight functions in a computer experiment. Here 

we report the results. 

The data have been simulated as follows. The cellular detector consists of 

square cells of size 1 x 1, with the left lower corner at (0, 0), so that the centers 

ofthe cells are (0.5, 0.5), (1.5, 0.5), etc .. The track is a circle. Its radius is 

chosen at random in the range 8 < R <:""12, and its center is randomly placed 

in the square 13 < x < 17, 13 < y < 17. Note that theentirc circle always 

lies within the detector. The number of avalanches on the circle is a Poisson 

random value with the mean ). = 11. The position of every avalanche on th~ 
circle is picked at random, with the angular coordinate 0 < (} < 27r'distributed 

. uniformly ov~r. the circle. Of course, some avalanche~ maybe lgc~ted so dose 

that the released.en~rgy distributions overlap. The total energy released at 

every avalanche is an exponential random value (15) with mean A0 = 200. It 

is distributed among neighboring cells according to a two-dimensional gaussian 

(16). with a0 = 1. An energy released in any particular cell is only recorded if 

it exceeds 3 units, i.e. the truncation rule B > 3 is applied. 

Some noisy signals arc then added in the area of the detector 0 < x < 30, 

0 <:' y < 30: The number of noisy signals was: equal to the number of previously 

generated signals along the circle, so that the signal/noise ratio was L 'The 

positions of noisy signals w'~re distributed u~if6rmly'within the above area:; and 

the energy for every noisy signal was an exponential rand~m value with meim 5. 

(It might seem too low, compared to the mean energy release Ao = 200. Note, 

however, that the latter is typically spread over about 4 x 4 = 16 neighboring 

c~lls, 'so that the average signal per cell was about 12.) Again, the cut-off rule 

B :> 3 is applied. 

A typical data sample in this experiment is histogrammed ~nd shown· ori 

Fig. 1. Here the height of a bar over a cell represents the amplitude of energy 

measured'in iL One can barely see a circle fitting these d~ta! 
Tlle simulated data are' then fit by a circle thro~gh weighted least square 

pro~ed~re. Specifically, we used Crawford's algorithm based ~n minimizing 

12 

the function 
n ! 

L(a, b, R) = L w;(x~ ~ Yi - 2ax;- 2by; + a 2 + b2
- R2? (21) 

i=l 

where (x;,y;) are the coordinates of the signals, w; are weights, and (a,b,R) 

are the circle parameters. The great advantage of this method is that', if we 

fix the weights w;, it is a linear r~gression in three parameters: a, ·b, a~d 
c = a2 + b2 

- R2
• Thus, the computation of a, b, R involves only a 3 x 3 system 

of linear equations, provided the weights are given. This method works very 

accurately if the data points (x;; y;) are spread over the entire circle (as opposed 

to tracking, where data points are normally locatedalong very small arcs), see 

[2] for detail. 

Of course, the weights w; in (21) cannot be fixed, they depend on the dis-
·. ' 

tance of the points (x;, y;) from the track, and also have to depend significantly 
• • • ' 4 • ~ c. ' 

on the amplitudes of the signals B;. A standard iterative procedure was used 

to compute w;-b~sed .oii' th~~ircle found at the previous iteration.' The initial 

circle is picked randomly, with center 13 :=:; a, b :=:; 17 and radius 8 :=:; R :=:; 12. · 

This is a pretty bad approximation, since these values are typically about two 

cells off the actual values of a', b, k Much more accurate initial app~oximations 
can be easily found, of course .. However, we intentionally t~sted the algorithm 

by feeding it with poor initial values of a, b,R. Then the iterative procedure 

works until convergence, but not longer than 10 iterations. 

The quality of the algorithm is characterized by three parameters. The 

first is the probability of a complete failure, p" which occurs if the. estimated 

values of a and b are off by ;::: 1 (here 1 is the size of ~ ·cell) or the estimated 

value of R is off by ;::: 0.5. Th"e other two characteristics are the' root mean 

square error in the estimates of a and b, denoted by Da,b, and the same error 

in R, denoted by DR. The values ofDa,b and DR are computed based on 

non-failing runs only (in the above sense). 

The weights w; were computed by various methods .. We tried both ,uni­

modal and bimodal weight functions. Two unim,odal functions we tested were 

famous Huber's function [5] , 

{ 

1 
2 -2 wH (x) = 2aox-l- a ox 

13 

if lxl < ao • 

otherwise 
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Fig~re 4: Th~ weight function wg)(x) for diff~rent amplitude ~alues. 

Tukey's biweight [6] 

wT(x) = { (1- (xfcao) 2
)

2 

0 

with!3 ~ c ~ 6, and Andrews's sine [7] 

· wA(x) = { ~in(x/cao) 

with c = 2. 

if jxj < cao 

otherwise 

if jxj < cao7r 

otherwise 

:~ 

We t~sted various sirriple (piecewise linear) approximations to the bimodal 

optimal weight functions found in the previous section. The following one was 

the bost successful: 

{ 

1 + 0.015 · (B- 50) 

{I)( ) _ 1 - 0.015 · (B- 50)· (xfra0 - 2) 
WB X -

3-x/ra0 · · 

. 0 

11 

'·if jxj< rao 

if rao ~ jxj < 2rao 

if 2rao ~ jxj < :lrao 

if 3ra0 ~ jxj 

,.1.1 
- ·:f 

-1 0 

n 
lh 

0 

{~ 
;J'1 

0 

1 -1 0 

Figure 5: The experimetal distributions of deviations between exact (modelled) 

values of parameters a, b, Rand t!wir estimations with Huber's weights(upper 

figures) and bimodal ones (bottom figures) , •. 
were r = 1- B/200. The graphs of this weight function wg)(x) are shown on 

Fig.4. 

The numerical results of our single circle experiments are summarized in 

the table 1. 

Only Tukey's unimodal biweight with c ==: 4 stands the competition to some 

extent, other unimodal function·s arc clearly po'orer than our bimodal.one. The 

first line corresponding to the non-weighted least square fit (I) is included just 

to demonstrate the necessity of robust algorithm~ for accurate processing of 

noisy data. The experimetal distributions of deviations between exact (mod­

elled) values of parameters a, b,R and their estimations with Huber's weights 

and bimodal ones arc shown on fig. 5. 
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Table 1: .Yumr rica/ chamclr:nslic.~ of four algorithms for circh jilting to sim­

ulalf:d data. 

II met hod II P1 I. /J,..& I /Ju II 
LSF 0.7070 0.2:l1 0.'120 

Huber 0.1702 0.202 o.:m 
..J I Andrew 0.0771 0.2.')0 0.2·18 

Tukey (c = fi) 0.0078 0.212 0.200 

Tukey (c = ·1) 0.0·11'> 0.2:!2 0.111 

Tu k<~y ( c = :l) 0.0821 0.2•10 0.107 

bimodal 0.001:! 0.219 O.l:lO 
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4ep110B H., Konrauosa E., OcocKOB r. 
OmHMMhHbie seca .D.JUI annpoKCIIMaUHH oKpy)KIIOCl 
no .ll.HCKpeTHbiM rpauynupoBaHIIbiM .D.aiiiibiM 

Pa6bTa nocs}lmena npo6neMe annpoKcmtauuH ~ 
CTbiO B cny4ae: Korna HJMepeuue npoHJBO.D.HTC}I 
<j:JHJHKH BhiC~KHx 3lieprHi1, ·uanpu~tep RICH. B n 
lJaCTHUa perHCTPHpyeTC}I He B O.D.HOH TOlJKe, a .D.BYM 
113 MIIO)KeCTBa }llJeeK, 110 KOTOpblM pacnpe.IJ.e.J}}IeTC}I 
lJacTHUbi. HanulJHe cpona oT wyMoBbiX :0TcLJeTos nen 
BaiiHe COOC060B OO.IJ.ffiiiKII, OCIIOBaiiHbiX 11a MeT 
B pa6oTe noKaJano. 'ITO 3<jJ¢eKTHBIIbiM :nYTeM ·· n; 
5JBn}leTC}I HO.IJ.rQHKa OKpy)KIIOCTII C !IO~IOIJ.{biO po6: 
KBa.D.paTOB C 9IlTHManbllblMH Beca~m. IIOny'IeiiHbiMH C 
HOro npaB.D.OOO.D.06H}I. nonylJeiHibie peJynbTaTbl lJHCn< 
BaiOT BbiCOKYIO 3<j:lcpeKTIIBHOCTb npe.D.JJO)Keiii!Oro MeT 

Pa6oTa Bbmonuena B Jia6opaTopuu BbiYIIcmin~JJh 
OlUII1. . .· 

Coo6IUenne 061.ei!HIIelli!Oro 1111cnrryra llllepllhll' 'nc 

I -
'Chernov N., Kolgimova E., Ososkov G., . 

, , Optimal Weights for Cir~le Fitting with Discrete Gro 

The problem. of the data approximation measu 
detectors in high energy physics,c as for example, RI< 
is considered. Such detectors having the discrete ce 
dissipation produced ·by a passing elementary pa 
but in several adjacent cells where all . this en erg) 
of backgrbund hits makes inapplicable circle fittinJ 
square fit due to their noise sensitivity. In this papt: 
way to overcome these problems of the curve fitting 
based on a reweighted least square method with opti11 
by the use ()f maximum ·likelihood estimates. Result~ 
given proving the high efficiency of the suggested n 

The investigation ~as been performed at th 
Techniques and Auto~ation, JINR. 
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