


1 .. Introduction .

lhc problem of approxr.natmg of measured data pornts by a c1rcle is one of
1mportance for many data handlmg problem 1n hlgh energy physrcs [1 2 3]

This s gettmg more lmportant with 1nvent1ng such modern detectors as for
example, RICH (Ring Imaging CHerenkov) requlrlng in each event the param‘
cter determination of tens and hundreds r1ngs formed by Cherenkov photons

"The information of the RICH detectors is read out via two-dimensional ‘arrays
. each of about 50000 pads (cells), allowing the unambiguous reconstruction of .
smglc photon hits [4]. v | B ' '

Therefore the problem formulatlon for circle ﬁttmg to real RICH raw data
is considerably different from how it was formulated in the above c1ted works,
where. a circle ‘was measured in separate-points (i, ¥i): i = 1,...;n. . While
practically all modern detectors having. the discrete cell structure reglster,

fact, the energy dissipation produced by a passing elementary partlcle not in

a single point, but in several adjacent cells where all thls energy is d1str1buted
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as one can see in ﬁg 1.

Flgure 1: 2D (a) and 3D, (b) rmages of srmulated drscret 2ed srgnals of the

same circle O S SR

In this case a crrcle is to be fit not to separate pomts but to clusters of
adjacent cells. That is as a completely dllferent problem Besides of noted
above the hlgh occupancy of RICH detector such 1ts characterrstlcs as the
presence of background h1ts and appearance of several overlapplng r1ngs make

mapplrcable circle ﬁttmg methods cited above due to their noise sensrt1v1ty




Even in the case of one circle one single point-outlier'cah distortconsiderably\

estimations of the circle center or radius. -
; ; In this paper it’s shown that the efﬁclent way to overcome these problems
" of the curve ﬁttlng is the robust ﬁttlng techmque based on a rewelghted least
square method with optlmally chosen weights.

,Therefore two pr_oblems are to be solved:

- "elaborate a new type of weights considered as optimal according to the

'~ maximum - likelihood criterum;

- develop a robust version of one of effectlve algorlthms for smgle circle

ﬁttlng to granulated data, ”
The solution of above problems is presented here followed by results of
comparative testing of corresponding algorithms:
2 Bimodal (bihorn) weight concept
" Let us discuss a genera.l_problem of fitting a curve f(z,y;60,...,0,) = 0 to

~an experimentally mea.sured array of points (zyy:), 2 = 1,.. 50 on the Y-

3 plane. Here 0;, j = 1;... » P, are unknown parameters of the curve. “A~>t'Ypi_cal _

example in high energy physics is the tracking problem where the curve is
often a circle (z — a)* + (y — b)® = R? with three unknown parameters a, b, R,
and the experlmental da.ta. (z‘,y‘) are bubbles on a photo taken in.a bubble
chamber or electrical s1gnals measured i a wire chamber. Another example
of that kind is Cherenkov ring reconstruction in RICH detectors described in
the next section.

" The classical least square fit (LSF) is based on the minimization of the

residual sum of squares (RSS):
" RSS(6,...,0,) =Zd? _, min Q)

Here d; is the d1stance of the point (z;, y;) from the fitting curve This method

ls optlma.l if the dlstances of the experlmenta.l pomts (z., y,) from the actual

" curve (track) are independent normally distributed randonn variables with a

commmon variance. _

In real experime nts. 110\\(‘\(' 111(' measured pomls arc not normally dis-
tributed around the observed curve (track). There are two main reasons, for
the violation of the normdln\ asstmption m real ('\p( riments:

There are noisy pomls 1('sullmg from malfunctions of the detectors. side
effects of the ¢ xperiment and other tracks that happen to be close to the one
we are esthmating,. v ' . ' o

The technical Illllﬂdll()ll\ of the detectors. which preve nt the p()\\ll)llll\
of measuring pomls ng.,ht on the track or at mhllldl\ dl\ldll((‘ ﬁom it. Su(h
are discrete (granular) detectors where the measured pomlx are necessarily
located at cites of a specifie grid. In such detectors: often the amplitude of a
signal is measured, too, so that ”l(‘ data are triples (. yi a;). where a; xlands
for the amphlud(' of lll(' slg.,ndl at 1]1(' poun (i 1/,-) Then the dmphlndc a, l\
also dlsu(‘h/('d g l)\ loundmg 1o the n(fn(‘sl unq.,m and (ullmg off 10()

wcak Slglld] by a lmn(dllon ml(' a, S i > () .-\ (I(‘l((lm of that’ kmd \\|H'

be deseribed in the next section. «

These violations of the norality assumption oft o1 canse a compleéte break-
down of the LSI. There are m()diﬁ(“al,i(‘)us of the LSF \\f]‘l’i('h are less seusitive to’
changes in the distribution of points around the track (so called robust’ meth-
ods), or oriented to specifie classes of sucli distributions. ‘W will discuss here
the most popular modifications of the LIS, which are based ‘on the maxinum
likelihood estimates (l\'ll(',sl.ilnat(‘s); S Tl b 7

Assume that the distances of the measured ‘points' (@i ;) frome the track
arc independent identically distributed random variables, with common density
p(x). The maximum likelihood estimate requires the maximization of the so”

called logarithmic likelihood function - S E S

L0y, .. 0,.)_Z|np (I)—»lnd\ P (2)

This function takes its maximum at a solution of the system of equations £

0=
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0, a0, J !

L0y,...,0,) i:mnp(d,-)
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" This is equivalent to the weighted least square fit (WLSF)

n

WRSS(01,...,0,) = > w(d)d? —min  (3)

i=1"

with the weight function w(z) given by

0oz =_p’(z);
p(z) 2p(2)

Note that if p(z) is a gaussian with zero'fnean, then w(z) =const.

(4)

Typical density functions p(z) for experiments with noisy data are mix-

tures of normal distributions (for signals produced by the track) and uniform”

d1str1but10ns (for n01sy slgnals)

p(z) = (1 — ) g(z) + cua(z) ' (5)

where g(z) = (2r0?)~1/2 ¢=2*/27 is a gaussian density with zero mean, c is the
rate of noisy signals in the sample (m other words (1 —c¢): cis the s1gnal-
noise ratro) and u,,(z) is the uniform densrty on a large segment [—a a], with

a> o,ie u(z) = 2a) ! for [z] < a. We then conclude that the optimal

weight function, according to (4), is

)= (14 ) I, vﬂ ©)

l—c g(z) .

" This is.a unimodal plateau-like function, symmetric about z = 0, nearly con-

stant-= ¢7? for small z and rapidly decreasing to zero as |z| becomes large.
This kind of weight functions are widely used for fitting curves to contami-
nated data (i.e., with noisy signals). ‘Some popular functions are mentioned
below in Section 4. »

We now turn to the main point of our discussion. The discretization of
the measured signals with a cut-off rule for weak signals means that the main
component g(z) of the mixture (5) is no longer gaussian. Most importantly,
due to the truncation rule, it will decrease to zero more abruptly for such
values of z that the measured signals become weak enough to be cut off. One
can think of a bell-shaped gaussian curve whose tails are chopped off.

Accordingly, we assume that
pa(z) = (1 = ¢) ga(z) + cua(z) (")
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where, as compared to (5) we. have gd(z) A(z) g(:z) Here A(z) is a plateau
on an interval |z} < dcr raprdly decaymg to zero for z > do to chop ‘off the

tails of:g(z).‘»The.value of d is specified by the truncation rule. For instance;®

1f|zlsdo. .-

Ate )—{ o
(1 +D((od)‘ 1—1) )' ) tf jz| >do

with, say,d =3 andalargeD>1 ; P S i Grs e
*Steep descent of the function gd(z) to zero for the values of z _|ust outsrde
the segment {—do, do] cause the derivative of p(z): to grow for these values of.
, and growsignificantly. According to (4), the weight function w(z) can grow
for these values of: z also. - Of course; the weight function. will then:drop,to
zero, as the noisy‘component in (7);becomes~dominant. ‘Thus, ;the.function
w(z) may have two pronounced peaks near z = +do, with “a relatively high
plateau z = o2 in between. Lk e
As one can see, b1modal weight, functrons become optrmal for least square
ﬁt to signals measured by dlscrete granular detectors applymg truncation rules -
for weak. srgnals This is a general concept,’ 1ndependent of the fitting curves -’
(lines,. arcles etc.) and technical spec1ﬁcat10ns of detectors : B 4
- Intuitively, the value of the werght function w(z) in (3) can be mterpreted‘
as-a force by which the point at; drstance z from the ﬁttmg curve attracts 1t
In the pure’ LSF (1), all the data pomts are ‘equally attractive’. The robust
plateau-like function (6) makes all the pomts in a strip around the fitting curve
nearly equally attractrve, and the rest neutral The logrc is simple - the pomts
in the strip belong to the track, and the rest ‘are just noisel i il
Blmodal weight functlons, as’ compared to plateau -like' ones; ‘make.the
pomts on the sides of the main strrp moré attractive than those in the middle of
the strip, leaving the pomts outsrde the str1p neutral. An addrtronal attractmg

force assigned to the pomts on the s1des ‘of the main strip (poorly fitted by

. the curve) :gives the fitting curve better. chances to adjust itself. 1t becomes

more flexible and less likely to fall into a wrong. local mrmmum of the function
(3). Our numerical expériment reported below in Sectron 4 demonstrates the

advantages of blmodal weight functrons over varrous ummodal a.nd plateau hke _
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3 thirnal weights for the LSF pr0cedure |

Here we deduce an analytical formula for the optimal weight function for the

least-square fit (LSF) procedure, assuming the model described in the previous‘

section.

»

To make our main argument simpler, we first discuss a one-dimensional

analog of our cellular detector. This a.na.log ‘consists of identical bars (‘one-

" dimensional cells’ ) lined up in'a'row.- A tfack hits this detéctor at some point,

with coordinate a@. This hit results in-energy production in the neighboring -

cells.- The total amount of released energy, A, is a random variable with some
proba.bility density f (A), 0 < A < co.- The distribution of the released energy
among cells'is a gaussian centered at a with a constant variance o2.
- For any particular cell (i.e., bar) with center z, the energy produced. by the

hit at point a is then
e exp’[4(x;“)2]"- @ @

\/27rag © 205"

where dr =1 is, as usua.l ‘the size of the cell. The' energy a.ctua.lly measured

’m this cell differs from B by a small amount (error) Let us'assume that' the
mea.sured energy, B,is'a norma.lly distributed random variable with mean B
'and a constant standard dev1a.tlon o7 > 0. Thus the proba.blhty density of B
e o I , - . .
, (B B)2 S .
‘ex (9
/2rmo? : p [ . 20t ( )

: where B is given prev1ously by (8).

pi"L(x, B)=

. In the density formula (9) we have an extra parameter, A, whichis unknown

dn. the experiment, so we have to get rid of it. We will ‘integrate it away’ as

follows: . .

Lo

This is the probability density for measuring an energy of B in the cell with
center z, given a hit at a. This density is based on idealized, noise-free model.
The noisy signals can be recorded in any cell, so we have to add a uniform in
z distribution: :*

pa(z, B) = const - (p{*)(z, B) + p'™)(B)) (11)

6

. p(z,B) = / B o

where the constant fa.(‘tor is necessary for normalization. % i{erc ﬁ(”)(B) is the
probability of a nmsy 51gnal of amplltudc B in an arbltrary cell. ‘
Naturally, p.(z, B) = plz— a , B), i.e.’ the function (11) depends only on the ’
difference z — a. We now get the optimal \\elght formula for the least-square
procedure: ' '

wslz) 7—3) VG R

Note that this function depends on B, the amphtudc of the measured energy
in the cell.

Before a.ttcmptmg a thooretlcal study of the function (12), we will ﬁnd a
good a.pprox1mat|on to it. The 1ntegratlon in (10) obv10usly makes the exa.ct
value of wB(x) hardly available. Certamly, one does not want to evaluate the
integral (10) for every signal i in real mass data processing. Either we have to
tabulate wB(J:) for practlcal use, or we can find a saml'aclory approx1mat10n
Fortnna.tely, a good and mnplc approxunatlon to wB(I) cx15tq ‘

" We observe that the factor p (:r B) m (10) as a funchon of A |s a
cla.ssxca.l bell- shapcd gaussla.n Ga.uSslan donsmm qm(‘l\ly convergc to zcro as
the argument moves a.wa.y from-the mean va.lu(- Here the mcan value7 A can
be found from the equatlon B B, which’ glves ‘ ) '
2
'/’1'=V B ?w{b&c)ﬁp [——(2_0;) ] . ‘, (13)¥
We now- can: replace the function f(A)’in (10).by its value f(A) at A. The

integral in (10) can be then computed approximately: .
W8 ~ [ BN =Aays
. A /A . : :
f(B- [270%- c(r-“)’/z"ﬁ)‘-,i/znag-e(f-'“)’/“% (14)

(Note that the parameter o is missing from this formula, so we no longer need

I

its value!)

A direct numerical test; with an exponential density f(A), shows that the
approximation (14) is very accurate; sec also below. "It -makes it possibleto
expresstthc weight Tunction wg(z) explicitly. through the density f(A)-and its -



first derivative f’(A):

E f( EB) + E2B f’(EB)

wa(e) = EJ(EB) ¥ p(B)

- - © L2792
where E-=1/2n0d - % /29,

We will predict the shape of the graph of wg(z). For concreteness, we now

assume that the distribution of the total energy released by a hit, f(A), is an

exponentla.l one with mean Ao s J

(A):A- ceAMMb A (15)

Let us ﬁrst set p(")(B) = 0 in (11) so tha.t to neglect n01sy s1gna.ls Then the

wp(z) = BA“I\/27rU2 . ’2/2"3 =1

Tl’llS function ra.pldly grows as z increases. Tt is pos1t1ve for moderately la.rge

welght function is

values of B. It has a local mmlmum at z = 0 For small values of z, the
functlon wB(:l:) may drop below zero if Bi is small enough These phenomena.
have clear mterpreta.tlons Indeed, lf the measured s1gna.l B is la.rge that cell
is likely to be very close to the hit, a.nd then pos1t1ve welght functlon a.ttra.cts
- the estimated coordinate of the hit, a, to the cell z. If B is small, it is ‘then

»unhkely that the cell with' the measured energy B is very close to the hit.

Instead, it is likely to be at d1sta.nce 0o to 3o from the hit. Thus, low signals "

have to ‘repulse’ the ‘estimated' coordinate of the hit from their immediate

. neighborhoods, but still attract it outside of those neighborhoods. ThlS makes -

wp(z) negative for small z a.nd positive for large z.
Taking into account noisy signals, i.e.’ assuming p(™(B) > 0, will hardly
_ affect the shape of wp(z) for small z, yvhere the ‘pure’ component p(O) domi-
nates over the noisy one p(™ in (11). So, wB(z) still can have a local minimum
at-z = 0. On the contrary, for large  the noisy component becomes dominant
in (11) Tt is a constant function in z, so it forces wB(:l:) to vanish, according
to (12) :We emphasize these two observations: wp(z) has a local minimum at
z = 0'and decreases approaching zero as r increases. Of course, wg(z) must
be an‘.even'function, symmetric about z = 0. The simplest shape :meeting
these criterla is a bimodal (bihorn) one discussed in Section 2.

~
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Figure 2: The weight functmn wB(z) for dn‘ferent a.mphtude va.lues, one-

d1mens1onal case.

. As an illustra.tion the‘: gr&phs ‘of the Welght 'function wB(:l:) are shown on

Fig.2. They are. plotted by a computer -assumning that f(A4) is an exponentlal

function (15),.with Ao = 200, o, =1, p(")(B) = 0.01. . Three tested va.lues of B
clea.rly show the tendency of wp(z) to increase: a.nd flatten a.round 210, as B
goes up. These plots were calculated by both direct’ numerical 1ntegratlon in
(11) and approximation (14). The difference was 5o sma.ll that the two curves .
pra.ctlca.lly coincided for every tested va.lue of B.

“We now turn to the rea.l two- dlmensmna.l cellula.r detectors descrlbed in the

previous SeCthl'l An a.va.la.nche of released energy can now occur at any pomt

on the tra.ck Let T=a,y= - bbe the coordmates of the center of an a.va.la.nche :

Aga.m, we denote the total released energy by A The va.lue of A is ra.ndom,

" with some probab1l1ty density f(A) A > 0. The released energy is d1str1buted

among the nelghbormg cells by a (two—d1mens1ona.1) ga.ussw.n, whlch is spher1-

_lca.lly symmetrnc w1th covarlance ao m ea.ch coordmate Therefore, the energy

Lol
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released in a cell with coordinates (z,y) is

4 (z—a)? + (y — b)? o,
B= 2no? XP[ Lo 208 . e dy r(lﬁ)

. where dz = dy.= 1, see Section 3. The measured energy B is again a normally
distributed random variable with mean B and the standard deviation oy >0,
so that (9) applies. Sy ’“

" We now chose a convenient coordinate system as follows. First of all, we
put the origin at the avalanche center, so that @ =b = 0. Th1s will simplify
our formulas, without loss of generalrty, since they 1nvolve only the dlfferences
z—aandy-— b. Second the density (16) is spherrcally symmetrlc mvarrant
under rotations of the coordrnate frame. In partrcular we can rotate 1t so that
the y axis will be parallel to the-track.' (If the track is curved, we take the
tangent line to the track at the point (0 0)): The advantage of this orientation
is that the drstance of any cell (z,y) from the track will be measured simply
by |z|- The y coordinate will be completely irrelevant.

" In the new “coordinate system the equatron (16) takes form h

2
; 21ra'0~ o . ,20’0;} s

Compared to the one-dimensional’ problern discussed before we now have two
extra parameters Aand Y, ‘which are tnknowri in the experiment (recall, that
y ‘represents a coordmate of the cell in the new coordinate system attached to
‘the unknown track') ‘So we have to get rid of both y and-A. We wrll again

‘integrate them- away’'as follows ,
Wﬁﬁ%f‘/ﬂﬂﬁ@mﬂwi 9

where pA)(:r: B) is given by (9) w1th B given by (17)., Thrs is the probablhty
_density for measuring an energy of B in a cell whose drstance from the track
“'is;z.'The inner 1ntegral can be accurately approxrrnated by the same trlck as

in (14). As a result, we get . ..

P9z, B) ~ / Ef(EB)dy where E =2rolexp [z o
. . - h 0

10
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Figure 3: The werght function wB(a:) for different amphtude values two-
dimensional case. )

The rernammg 1ntegral hardly admlts a srmple and accurate approxrmatron
unfortunately

As before takmg 1nto account norsy srgnals results in o
‘p(:c,B) = const - (p(z,B) + p(")(B)) N (20)

const berng the norrnallzatron factor The optrmal werght functron wB(:r:) fori,
the least-square procedure is then cornputed by the same formula (12) It stlll '
depends on the measured energy B in the cell and the dxstance T from the cell k
to the estimated track o : o . '
The graphs of the werght functlon wB(:r:) are shown on, Frg 3 for thrcc
values of B. As before, the dens1ty f(A) was assumed to be exponentral w1th
Ao = 200, 0o =1, p(")(B) = 0.01.. Compared to Fig. 2 one can not1ce that

—the drops below Zero are now, much shorter and lcss pronounced Thrs isa -

..reassurmg news, since negative weights can cause computatronal troubles at

times.
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"4 Simulations and results

~ We have tested the bimodal weight functions in a computer experiment. Here
we report the results, e :

The data have been simulated as follows. The cellular detector cons1sts of
square cells of size 1 x 1, with the left lower corner at (0,0), so that the centers
of the cells are (0.5,0.5), (1.5,0.5), etc. The track is a circle. Its radius is
* chosen at random in the range 8 < R <12, and its center is randomly placed
in the square 13 < r < 17, 13 <y < 17. Note that the entire circle al)ways
lies within the detector. The number, of avalanches on the circle is a Poﬂisson
random value with the mean A = 11. The position of every avalanche on the
circle is plcked at random, with the angular coordinate 0 < 0<2n dlstrlbuted
-uniformly over the circle. Of course, some avalanches ‘may be located so close
that the released energy distributions overlap. The total energy released at
»every avalanche is an exponential random value (15) with mean Ao = 200. It
is distrlbuted among neighboring cells according to a two-dimensional gaussian
(16),with oo = 1. An energy released in any particular cell is only recorded if
it exceeds 3 units, i.e. the truncation rule B > 3.is applied.

Some n01sy signals are then added in the area of the detector 0 < z < 30,
0< y < 30. The number of noisy ‘signals was equal to the number of prev1ously
generated slgnals along the circle, so that the s1gnal/n01se ratio was 1 "The

positions of noisy signals were distributed unlformly ‘within the above : area, and

the energy for every noisy signal was an exponential random value with mean 5.-

(lt might seem too low, compared to the mean energy release Ag = 200. Note,
* However, that the latter is typically spread over about 4 X 4 =16 neighboring
cells so that the average 81gnal per cell was about 12.) Again, the cut-off rule
B3 3is applied. , ' B ‘ :
A typical data sample in this experiment is histogrammed and shown on
Fig. 1 Here the height of a bar over a cell represents the amplltude of energy
“measured in it. One can barely see a circle fitting these data! '
. “The 81mulated ‘data are then fit by a circle through we1ghted least square

procedure Speclﬁcally, we used Crawford’s algorithm based on’ m1n1rruzmg

12

the function

L(e,b,R) Z w,(z + y? = 2a1:, 2by; + a® + b — Rz)2 C(21)

i=1 RN

where (z;,y;) are the coordinates of the signals, w; are weights, and (a,b, R)
are the circle parameters. The great advantage of this method is that,.if we
fix the we1ghts w;, it is a linear regresslon in three parameters a, .b and
¢ = a®>+ b — R?. Thus, the computatlon of a,b,R involves only a3 x3 system
of linear equations, prov1ded the weights are glven This method works very
accurately if the data pomts (z., yi) are spread over the entlre c1rcle (as opposed
to tracking, where data points are normally located. along very small arcs), see
[2] for detail. : :

Of course, the we1ghts w; in (21) cannot be ﬁxed they depend on the d1s-
tance of the pomts (1:,, y,) from the track, and also have to depend s1gn1ﬁcantly
on the amphtudes of the s1gnals B, A standard 1terat1ve procedure was used
to compute w; "based on the circle found at the prev1ous iteration. The 1n1t1al
circle is picked randomly, with«center 13 < a,b <17 and“r’adius 8 <l R < 12.-
Thisis a pretty bad approx1matlon since these values are typlcally about two
cells off the actual values of a, b, R. Much more accurate initial approx1mat10ns
can be eas1ly found, of course. However, we intentionally tested the algorithm '
by feedmg it with poor 1n1t1al values of a,b, R.. Then the iterative procedure
works until convergence, but not longer than 10 1terat10ns

The quality of the algorlthm is characterized by three parameters The
first is the probability of a complete failure, Pf, ‘which’ occurs 'if the estimated
values of a and b are off by >'1 (here 1 is the size of a cell) or the estimated
value of R is off by > 0.5. 'The other two characteristics are the' root mean .
square error in the estimates of a and b, denoted by D, ;, and ‘the same error
in-R, denoted by Dg. The values of :Dyp-and Dpg’ are computed based on
non-failing runs only (in the above sense). ,,

‘The weights w; were computed by various methods... We tried both um-
modal and bimodal weight functions. Two unimodal functions we tested were
famous Huber’s function [5] « . o ‘

w(z) = { 1 if ol <o’

200z — 0kz™? otherwise
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Flgure 4: Tbe We;gbt functmn wB)(:c) for ddferent ampl;tudc valucs.
Tukey’s biWeight [6) -
I T(x) (- (z/cao) poof 2l < coo
0 S otherwise
‘with «3 <c< 6,’ akndkAndrerfvs’s sme (- N
Yoy v )osin(efeoo) i x| < coor
wi(e)=1{" ’ :
; 0 otherwise
‘with ¢ = 2.
We tested various simple (piecewise linear) approximations to the bimodal

optimal weight functions found in the previous section. The following onc was

"the most successful: =

140015-(B-50) il Jaf<roo
' 1-0.015- (B —50) - (z/roo —2) il rap < |z| < 2rop
w(l)(z) -
B 3—z/rop * : if 2rog < |z| < 3rop
0 : il 3rop < |z
14
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Figure 5: The experimetal d?strfbutio‘ns of deviations between exaét (mg)delled)
values of parameters a, b, R and their estimations with Huber ] wexghts (upper
figures) and' b;modal ones (bottom fgurec) -
werer =1— B/200 Thc graphs of. thls wmght functlon wg)(r) are shown on’
Fig. a. : '

The numerical results of our smgle circle cxperlments are summarlzcd in

the table 1.

Only Tukey’s ummodal bxwelght with ¢ = - 4 stands the competltxon to some
extent, other unimodal functions arc clcarly poorer than our blmodal one. Tho
first line corresponding to the non- wexghtcd least squarc fit (1) is mcluded Just”
to demonstrate the necessity of robust algorlthms for accurate processmg of
nolsy data.. The expcrlmetdl dlstrlbutlons of dcv1at10ns between exact (mod-

elled) values of parameters a, b, R and their estimations w1th Huber’s weights -

and bimodal ones are shown on ﬁg 5.
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Table 1: Numecrical characteristics of four algorithms fof circle fitling lo sim-

ulated dala.

” method “ ry I}I)u_b l Dy “

LSIF 0.7570 | 0.231 | 0.120
|- Huber 0.1702 | 0.252 | 0.321
- o Andrew | 0.0771 | 0.250 | 0.248

Tukey (¢ = 6) || 0.0578 | 0.242 | 0.205
Tukey (¢ =41) || 0.04157] 0.232 | 0.144
Tukey (¢ =3) || 0.0821 { 0.240 | 0.157

bimodal 0.0513 | 0.219 | 0.130
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