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1 · Introduction 

The standard linear model of data processing, i.e. the direct problem (folding, 
convolution etc.) looks like 

At~ f +n 
, ,l. (1) . 

where A - a square (apparatus) matrix; t - a column vector of ·true 
solution, f - a column vector of erroneous input data and ri - a column 
vector of input data errors. 

The very elements of this mixed matrix-vector form; i.e. A, t, f and/ or n, 
do not compose any algebraic group-this fundamental mathematical feature 
has been missed in the whole previously performed analysis. The immediate 
consequences are twofold: first, it is impossible to compute the matrix A by 
u:;;folding (1) [l], i.e. the matrix A becomes nonunique, and, second, the 
above mixed form can incorporate only additive errors . 

In trying to get the solution of the inverse problem (unfolding, deconvo­
lution etc.) like 

t=A-(f+n) · (2) 
·, 

where A:- _is the inverse ~atrix of A, one usually encounters the irresistible 
fundamental computational instability. 

We have succeeded-in s~lving (2) under arbitrary input errors without 
any additional regularization used explicitely [1]. Here we describe some 
additionaL regularization means considered as an alternative to the above 
robust unfolding. 

-2 Lo~al Robustiia.tion via Discrete Holder 
', ., ' 

Norms 

The discrete H~lder no~m1' are defined as [2]: 
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The standard LSQ objective functional, G, being a squared discrete Hol­
der norm with p = 2, i.e. the so-called Euclidean norm, has a scalar metric 
form·[3], [4] to be minimized as 

G=(f-t)2 =MIN! (4) 

From a simple geometrical picture one can easily see that this constraint 
requires a minimum distance between the measured data vector f and the 
regressor (true solution) vector t. 

The fragile, i.e. nonrobust or error-dependent, nature of this objective 
functional can be easHy demonstrated by variating the measurement error 
of a single point from the set J .. As a net result, the inherent statistical 
estimate, i.e. the mean value, will change a~cording to the single point error 
value and the position of the regressor t will be changed accordingly. All the 
existing procedures of eliminating statistically "bad" points use an unlawfull 
means, since the final data set f becomes quite different as compared to the 
initial data set f. . · · · 

Later on there were proposed some robust statistics based· on· the Man­
hattan norm, i.e. the discrete Holder norm with p = l [5]. This nor~ and the 
relevant metric forms possess, however, another instability feature,"which one 
can clearly demonstrate. by considering a set of the measured data f with 
~qual · errors - the position of the relevant regressor t between ambivalent 
halves of the set f is quite arbitrary.· The inherent statistical estim~te, i.e. 
the ine.dian, is, however, stable against single point error variations and in 
this sense is locally robust. 

Analogous properties exhibits the so-called Chebyshev norm, i.e. the 
discrete Holder norm with p = oo. 

To sum up, any scalar objective functional Gin the.form of some discrete 
Holder norm or its involution modification, which can be imagined as a point 
in th~ G-space, is either fragile (norirob~st) or semi-fragile (locally robust). 

3 Local Robustization via PTT (Philips-Twomey­
Tikhonov )-Regularization 

Another direction of the LSQ local robustization is associated with the PTT­
regularization [6]. Here the drastic improvement is done by means of the 
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transfer to the vector objective functional G, which improvement is, unfor­
tunately, compensated by the pseudo-scalar form of that functional: 

' ! ;'; 

'G =II At - f II +ci II t II = G1 + o.G2 (5) 
' .L . .. 

. where o. is t~e so-caJled regula~jzatio1_1 parameter. 
.. The integral form of the second term proposed by Philips [7]: 

-· .. ' ' . ' . ' '. 

G2 = j[t"]2dx (6) 

can be used only for small input error cases, since any error-stricken 
function t is fractal-like and, consequently, has no analytical derivatives. The 
artificial approximation means like. e.g.; spli~e t~chniques [8], a'i-e in fact 
jmplicit low-pass filtering tricks. eliminating the,.most physically significant 
component of the unfolding solution. · · ' : · · · · 

Our direct tests of all P,TT-regularized processing °Codes show that they 
. provide the stable unfolding only for data s~tsf ·,yit·h· the input relative errors 
e=n/JSl%[If 

4 Global Reversible Robustization 

4.T Global R«'.>bus-~izatfon via Integral Holder Norms 
" ·, -.. 

The transfer to the Ifoldcr integral analogs of the above .discrete norms [2]: 
t,. 
. b 

if IJp= [j'11(t)l~dt] 11
P. (7) 

a 

significantly improves tlfe robustness oqhe inverse problem solution even 
in a simple 'scalar form, This enhanced stability is achieved, however, due to 

· the same 'deterioriating,low-pass filtering effect. 

4.2 The AU:-Matrix· Linear Model in an Integer·Num­
ber Basis 

The more mathematically sound and safe robustization can be achieved by 
means of the reversible all-matrix linear model [l]: 
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AT=-F+N (8) 

solved within an integer number basi~.' The tested unfolding algorithm 
uses the Hermite or Smitl. Normal Forms (HNF or SNF) to factorize the 
apparatus matrix A. This factorization whithin the integer number basis does 
not require any divisions to be 'made, which is quite essential for an integer 
ring. · The subsequent computation c:if the inverse matrix A- is performed 
within a real number basis. The unfolding process is stable for arbitrary 
'errors in the input data set J; thus yroducing satjsfactory results without 
any regularization used. 

4~3 . Global Optimization 

All the standatd LSQ procedures are subject to two main ddects: first, these 
use Jo.cal optimization codes and, second, th~ mos~ popular weighed LSQ 
procedures introduce awrong·rnathematical objee;t iri the form of the Holder 
norm. with p:::; 1.1 :Th~ latter, in turn, produces a set of virtual local minima. 
In addition, the minimized objective functional, G, is usually assumed to 
posses some analytical features, e.g. to be twofold differentiable . 

All these facts appeal to the yffective globaloptiqiization proc~dures to be 
used instead of ineffective ;tand~rd local opti~izati~n ones:' The developed 

• till now global optimization codes ensure, however, .the global character. of 
. . the det~cted mi~imum 'with s6rrie probability P~ob' ~ Lb [9]'.' • · · ,· 

' Our' studies ~how 1[10];' [il] that the most effective global optimization 
algorithms must incorporate both integration and an asymptotic search for 
the global minimum. The integration step ensures a low-pass filtering of 
all fractile-like nonanalytical singularities of the objective functional under 
study, i.e. it transforms an initial error-stricken functional into an analytical 
( smooth, monotone,· differentiable etc .. - VII), one, . while. the asymptotic 
search step ensures a reliable detection of the position of the global minimum. 
Unfortunately, the first step·performs the filtering1 of the most physically 
informative "high frequency" component of the processed spectra. As a 

-:net result, .such ·algorithms .can be recommended for processing nonspectral 
objects ·like nucleon structur~ functions [12]. ··. · ';, • -, · · ' 
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4.4 Global Optimization of Vector Objective Functi-
onal 

Even the standard matrix-vector linear model (1) allow~ to.construct in the 
G-hyperspace multidimensional vector ~bjective functionals with a high de~ 
gree of inherent robustness. The PTT-·regU:larized objective functional (5) 
can be considered as a two-dimensional G-vector. A three-dimensional G­
vector looks like 

G = G1 + G2 + Ga =II At - flip+ II r-·t Iii>+ II t lip (9) 

Instead of transforming this vector fun~ti6rial · int~' a · ( completely math­
ematically n~nm~tivated - VII) PTT-reg~lariz~d qu~si-scalar fun~tional we 
postulate th~t any minimized vect~r is composed'of ~i~imized projections. 
In other word~', the vector.minimization requireriie!lt: .•·. . . . . . . 

G = G1 + G2 + Ga = MIN! ,, (10) 

is considered to be equivalent to the three independent scalar minimiza­
tion requirements: 

G1 = MIN! & G2 = MIN! &Ga =,MIN! (11) 

realized by means of the global minimization codes cited above (see e.g. 
[ll]). All these operations can be performed within:a realanumber basis and 
the obtained results can be checked by a· ca'~pari·~-o~/with tho·s~ obtained 
within an integer number basi~ by means oHhe HNF or/and SNF factoriza-
tions. " ; ;, 

5 Analysis and Comments 

One can easily see that the standard matrix-vector linear model (1) can 
be used only for an additive lathological (error) model with a nonunique 
· apparatus matrix A. Some advanced factorization techniques like the SVD 
in a real number basis and/or the HNF and SMF in an integer number basis 
allow the unfolding problem to be reliably solved for arbitrary input error 
levels. 
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The transfer to the mathematically rigorous reversible all-matrix linear 
model (8) enables to incorporate arbitrary (multiplicative, compound etc.) 
lathological models with a unique apparatus function A. The potential pos­
sibility of factorizing the remaining matrices T, F and N provides' a set ,of 
powerf11l ·novel unfolding versions. , . 

6 Conclusions 

Thus, the novel reversible:approach provides the globally robust LSQ tech­
niques specified by the main following features: 
. 1: lhe first s~mi-"gl?bally rob~~t LSQ solution can be:obtained by means 

of some advanced SVD:-factorizations of the matrix A with additional iter­
ated SV-tnincat'ions or/and variations for a scalar or vector objective fun-
ctional G within a real number basis. . . , 

2. The secorid globally robust LSQ solution can be obtained by means 
of some integral global optimization of a. scalar or vector G within a real 
number basis. 

3. The third globally robust LSQ solution can be obtained by means of 
some HNF- or/and SNF- factorizations of the matrices A, T, F and N for 
a scalar or vector G'withiri an integer number basis: 

·,•ni 
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The __ standard Least Squar~s (LSQ) techniques' us~ a scalar objectiv~ functional in the fonn.of some 
discrete Holder nonn,. The latter after a standard local minimization produces al.ways a locally robust· 
(input. ~rror~dependent), unfolding solution. The 111ore 'advanced PTT-regularization introduces 

.. a vectoi-like objective funciional; hut unreasonably transforms this into· a scalarlikc one. thus decreasing 
'artificially the robustness of solution. The newly developed revcrsihk.linear model provides globally 
· rob~st LSQ · techniques with vector, objective fucntionais and· .vector global mi~imizat1on means. 
This· robust vector regularization approach allows a set of miniriiization constraints to he easily. 
implemented:. with: the. grad~~lly . enhanced solution, stability . due· to· efficient iteration. schemes., 
The transition to the integer ·number computational basis_ ad,ditionally enhances the_ m1folding\0Jution 
robustness. ' ,,; 1: ' ' • , · '· 1 · \ 1 • 
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