


1 Introduction:

The standard linear model of data processing, i.e. the dlrect problem (folding,
convolutlon etc.) looks like

t=f+n ey e 1)
where A - a square (apparatus) matrix; t ~ a column:vector of ‘true
solution, f — a column vector of erroneous 1nput data. and n - a column
vector of input data errors. 8 R
~ The very elements of this mixed matrix—vector form ie A,t, f and/or n,
do not compose any algebraic group-this fundamental mathema.tlcal feature
has been missed in the whole previously performed analysis. The immediate
consequences are twofold: first, it is impossible to compute the matrix ‘A by
unfolding (1) [1], i.e. the matrix A becomes nonunique, and, second, the
above mixed form can 1ncorporate only additive errors. :
In trying to get the solut1on of the inverse problem (unfoldlng, deconvo-
lutlon etc.) llke A ' : :

' i t—A (f+n) e T (2)
where A is the inverse matrlx of A one usually encounters the 1rres:st1ble
fundamental computatlonal 1nstabll1ty -

- We have succeeded-in solving (2) under arbltrary input errors without
any additional regularization used explicitely [1]. Here we descrlbe some
- ‘additional regularization means considered as an alternatlve to the above
robust unfoldmg

2 Local Robustlzatlon via D1screte Holder
Norms

| ‘The dlscrete Holder norms are defined as [2]
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The standard LSQ objective functional, G, being a squared discrete Hol-
der norm with p = 2, i.e. the so-called Euclidean norm, has a scalar metric
- form-[3], [4] to be rn1n1rn1zed as :

—(f-tp=MINt @

From a simple geometr1cal p1cture one can easily see that this constraint
- requires a minimum distance -between the measured data vector f and the
- regressor (true solutlon) vector t.

The fragile, i.e. nonrobust or error-dependent nature of this ob_|ect1ve
functional can be easily demonstrated by variating the ‘measurement error
of a single point from the set f.. As a net result, the inherent statistical
- estimate, i.e. the mean:value, will change according to the single point error
value and the position of the regressor ¢ will be changed accordingly. All the
. “existing procedures of eliminating statistically "bad” points use an unlawfull
means, since the final data set f becomes quite different as compared to the
initial data set f.

Later on there were proposed some robust statrst1cs based on the Man-
hattan norm, i.e. the discrete Holder norm with p = 1 [5]. This norm and the
" relevant metric forms possess, however, another instability feature;-which one
. can clea.rly demonstrate by considering a set of the measured data f with
equal errors — the position of the relevant regressor i between ambivalent
halves of the set f is quite arbitrary. ' The 1nherent statistical estimate; i.e.
. the rned1an is, however, stable’ agamst s1ngle po1nt error variations and in

B _th1s sense is locally robust.

Analogous properties exhibits the so-called Chebyshev norm, i.e. the
discrete Holder norm with p = co. ‘

To sum up, any scalar objective functional G in the form of some d1screte
Holder norm or its involution modification, which can be imagined as a point
in the G- space is either fragile (nonrobust) or semi- fraglle (locally robust).

3 Local Robustization via PTT (Philips—Twomey—
Tikhonov)—Regularization

Another direction of the LSQ local robustization is associated with the PTT-
regularization [6]. Here tbe drastic improvement is done by means of the

transfer to the vector objective functional G, which improvement is, unfor-

tunately, compensated by the pseudo-scalar form of that functional:

G=lAt—fli+alt] =GitaG -~ ()

where ais the s0- called regula.rrzatron parameter
. The 1ntegral form of the second term proposed by Pl’llllpS [7]
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can be used only for small input error cases, since any error—stricken
function ¢ is fractal-like and, consequently, has no analytical derivatives. The
artificial approximation means like. e.g.* spllne techniques [8], ‘are in fact

Aimplicit low-pass filtering tricks elrmrnatlng the most physrcally s1gn1ﬁcant

component of the unfolding solution.
Our direct tests of all PTT~regularlzed processmg codes show that they

. provrde the stable unfolding only for data sets f with the input relatlve errors

. e—n/f<1%[1]

4 Global Rever51ble Robustlzatlon

4.1 Global Robustlzatlon via Integral Holder Norms

: The transfer to the: Holdcr mtegral analogs of the a.bovc dlscrcte norms [2]
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significantly improves the robustness of the inverse problem solutlon even
in a simple scalar form. This enhanced stablllty is achieved, however, due to

"the same "deterioria.ting»low-pass ﬁltering effect.

4.2 The All—Matrlx Llnear Model in an Integer Num-

ber Ba31s

The more mathematically sound and safe robustization can be achieved by
means of the reversible all-matrix linear model [1]:



AT = F+N Sl (8)

solved within an integer number basis. ‘The tested unfoldlng algorlthrn
uses the Hermite or Smitk Normal Forms (HNF or SNF) to factorize the
apparatus matrix A. This factorization whithin the integer number basis does
not require any. divisions to be made, which is quite essential for an integer
ring.  The subsequent computation of the inverse matrix A~ is performed
“within a real number basis. The unfolding process is stable for arbitrary
“‘errors in the input data set f, thustproducmg satisfactory results without
any regularization ,used.

| 4 3 Global Optrmrzatlon

All the standard LSQ procedures are sub]ect to two main defects: first, these
use local opt1m1zat10n codes and, second, the’ most popular weighed - LSQ
" procedures 1ntroduce a wrong mathematlcal obj ject’in the form of the Holder
" norm with p < 1. The latter, in turn, produces a set of virtual local minima.
* In addition, the minimized objective functional, G, is usually assumed to
posses some analytical features, e.g. to be twofold differentiable. ;
All these facts appeal to the effective global opt1m1zat10n procedures to be
used instead of ineffective standard local optimization ones: The developed
till.now global optimization: codes ensure, however, the global character of
the detected minimum w1th some probablllty Prob < 1.0 [9] '
" Our' studies ‘show[10];"[11] that the most effective. global opt1rn1zat10n
algorithms must incorporate both integration and an asymptotic search for
~ the global minimum. The 1ntegrat10n step. ensures a low-pass filtering of
* all fractile-like nonanalytlcal singularities of the objective functional under
study, i.e. it transforms af initial error-stricken functional into an analytical
(smooth; monotone, " differentiable etc. .- VII): one,  while the asymptotic
search step ensures a reliable detection of the position of the- global minimum.
Unfortunately, the first step-performs the filtering: of. the most. physically
informative "high frequency” component of the processed spectra. As a
..net result; such- algorlthms can -be recomrnended for processmg nonspectral
objects like nucleon structure functions [12]. ~~  °
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4.4 Global Optrmlzatlon of Vector ObJectrve Functi-
onal

Even the standard matrix-vector linear model (1) allows to ‘construct in the
G-hyperspace multidimensional vector object1ve funct1onals with a hlgh de-
gree of inherent robustness. The PTT-regularized objective functional ()
can be considered as a two-dimensional G-vector. A three—dlrnenswnal G—

.

vector looks like TR P

G=Gi+G+G=At=flp + =t + el (9

Instead of transforming this vector functlonal 1nto a (cornpletely math-
ernatrcally nonmot1vated VH) PTT- regular1zed quasi- scalar functional we
postulate that any mlnlmlzed vector is composed of mlnlm'zed prolectlons
In other words the vector. rnlnlrnlzatwn requ1rement -

G G1+G2+G3—MIN' (10)

is cons1dered to be equ1valent to the three 1ndependent scalar minimiza-

tion requlrements e IR S

Gy = MIN! & Gy = MIN'& Gy = MIN! . - (1)
realized by means of the global minimization codes cited above (see e.g.
[11]). All these operations can be performed within’a réal:number basis and

the obtained results can be checked by a comparison “with those obtained
within an 1nteger number bas1s by means of: the HNF.or/and SNF factor1za—
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5 Analysis and Comments

One can easily see that the standard matrix-vector linear model (1) can
be used only for an additive lathological (error) model with a nonunique

‘apparatus matrix A. Some advanced factorization techniques like the SVD

in a real number basis and/or the HNF and SMF in an integer number basis
allow the unfoldmg problem to be reliably solved for arbitrary input error
levels.



* Thé transfer to the mathematically rigorous reversible'all:matrix linear
model (8) enables to incorporate arbitrary (multiplicative, compound etc.)
lathological models with a unique apparatus function A. The potential pos-
sibility of factorizing the remalnlng matrlces T F and N prov1des a set of
powerful novel unfoldlng versions.

6 Conclusions

Thus, the novel reversible:approach provides the globally robust LSQ tech-
n1ques specified by the main followmg features:

-1 The first seml—globally robust LSQ solution can be obtained by means
of some advanced SVD—factorlzatlons of the matrlx A w1th addltlonal iter-
ctional G within a real number basis.

2. The second globally robust. LSQ solution can be obtamed by means
of some 1ntegral global optlmlzatlon of a scalar or vector G within a real
-number basis." 7nh s

3. The third globally robust LSQ solutlon can be obtalned by means of

some HNF- or/and SNF- factorizations of the matrices A T, F and N for
a scalar or vector G 'within an integer number basis:
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