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1 Introduction 

The solution of the computationally unstable inverse problem ( unfolding, 

deconvolution etc. ) is one of the most difficult due to the mathematically 

noncontrollable solution process - e.g. all the existing algorithms and codes 

including the most powerful SVD (Singular Value Decomposition) do not 

allow to calculate explicitly ranks of the involved matrices. In addition, all 

the existing textbooks and handbooks on computational mathematics either 

do not deal with this problem at all or expose it as a second-hand item [1], 

[2]. 
Under these conditions any systematic attempts to solve the unfolding 

problem are of some significance per se. One of such attempts is the first 

mass production processing of high energy phy~ics data specified by low 

statistics ( ::; 10E4 event/bin ) [3]. 
All the data processing in the above workshop has been done by means 

of the unfolding algorihm (BUA) developed in 1984 by V.Blobel at CERN 

[4]. 
Here we analyze the principal mathr.rna.tical characteristics of the unfol

ding phenomenology including the BlobePs uufolding algorithm and consider 

the role of the Riemann- Lebesgue theorcrri as a potential source of inherent 

instabilities. 
The newly found second form of unfolding solution suggests the real 

source of the fundamental computational instability. 

2 Unfolding Phenomenology 

It is well known that all the integral, differential, integro-differential, non

linear etc. analytical (c.ontinuous) equations, when solved by means of a 

computer, are reduced to the discrete System of Linear Algebraic Equations 

(SLAE) like 

At= J + n (1) 

where A - a square (apparatus) matrix, t - a column vector of true 

solution, f ~ a column vector of erroneous input data and n ~ a column 

vector of input data errors. The form ( 1) corresponds to the formulation of 

direct problem (folding, convolution etc.). 
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Thus, the only purpose of data processing seems to be the solution of the 
corresponding inverse problem (unfolding, deconvolution etc.): 

(2) 

where A- is the inverse matrix of A. 
In reality, due to the unavoidable obstacle in the form of the fundamental 

computational instability, any mass production data processiilg boils down 
to an odd mixture of some smoothing and fitting of the input data sets, 
i.e. of the vector f. Any smoothing in fact is a low-pass filtering, i.e. an 
implicit elimination of the most physically informative "high-frequency" data 
component. In turn, any practical data processing (i.e. fitting) deals only 
with the vector f and not with the vector t. Such fitting techniques are 
principally nonrobust (fragile or error-dependent) due to local optimization 
effects inherent in all modern Least SQuares (LSQ) computer codes. 

Moreover, the very standard SLAE form (1) allows only the additive 
statistical errors to be analyzed. Any nonadditive and/or nonstatistical errors 
(systematic, multiplicative, compound etc.) cannot be described by this 
SLAE form. 

2.1 Regular Unfolding 

Generally, the apparatus matrix A can be factorized as [5]: 

(3) 

where As - the particle sorting factor matrix, Ar - the apparatus resolu
tion factor matrix Aa - the apparatus acceptance factor matrix and Ac - the 
apparatus correction factor matrix. 

With A, = Aa = Ac = J%, where J% is the diagonal scalar unity matrix, 
we have A = A, i.e. the apparatus is completely described by its resolution 
factor matrix and we deal with the case of regular unfolding. 

Then this matrix can be in turn. partitioned as 

(4) 

where R - the resolution residual factor matrix with the zero main diag
onal. 
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The regular unfolding solution will look like 

At = A,t = (I% + R)t = fcc9 = t + r 

where r- the resolution residual (error) column vector. 

2.2 Irregular Unfolding 

( ,'j) 

The different kinds of irregular unfolding correspond to different factor ma

trices in (3) being unequal to I%, i.e. 

A, f J% 
A. f J% 
A, f J% 
and their combinations. 

Then the non-resolution errors (statistical 1 
systematic, compound etc.) 

can be evaluated from 

(6) 

where s- the non-resolution error column vector. In fact we can construct 

a chain algorithm with each step corresponding to some individual error 

evaluation. 
The relevant deterministic error theory - lathology - is described in an 

accompanying paper [6]. 

3 Additive Instability Source Hypothesis 

Riemann-Lebesgue Theorem· 

Notwithstanding the fundamental character of the unfolding computational 

instability, till now there is no exact identification data concerning its source. 

One possible explanation can be, however, inferred from SVD factorization 

studies of the apparatus Toeplitz matrix A. The resulting diagonal SV

matrix So/o provides a specific SV-spectrum, which usually consists of two 

components, i.e. a normal one with large SV 1s ~ 1.0 (SVL) and that corn

posed of decreasing SV's down to small values SV "' macheps "' E - 06 

(SVS). The SVS component can be considered as a signal-plus-noise mixture 
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and the subsequent truncation and optimi2ation procedures support this as
sumption. This, in turn, suggests the instability source to be inherent in the 
very structure of the linear model. 

In fact, the only presently proposed hypothesis about the origin of this 
instability is based on the Riemann-Lebesgue theorem [8], [9] well-known in 
the theory of Fourier series coefficients [10], [11], i.e. 

j A(x,s)sin(o >s)ds ___, 0 (7) 

This Limiting Virtual Zero (LVZ) is usually added to the left-hand-side 
(l.h.s.) of the SLAE (1) in a discrete form to yield a solution with the 
superimposed periodic instability 

SEF(rn) = A-(f +n) (8) 

where 8/i;F- the Signature-Envelope Function in the form of a signature 
like sinus wave superimposed upon the envelope of the vector f and m - the 
bin number. 

The Riemann-Lebesgue theorem is not, however, the only version of the 
LVZ -- any converging series tending to 2ero will serve as well, i.e. the number 
of potential candidates is infinite. 

4 The Second Unfolding Solution 

The ba...:;ic reversibility axiom requires an term- by- term equivalence relation 
between the left hand side and the right hand side of any equation to be really 
valid. As a consequence, any identity transforms like transfers of terms from 
one side to another or differentiation of both sides satisfy this axiom by 
definition. 

So let us differentiate relation (1 ): 

A't +At'= (f + n)' (9) 

to get the second general form of t.he inverse problem solution 

t = (A't[(J + n)'- At'] (10) 

5 



where all r.h.s. terms contain derivatives. The behaviour of numerical 

derivatives of error-stricken functions has been systematically studied ealier 

[7]. Their patterns closely fit those observed in solving (2), i.e. t.he SEF (8). 

5 Blobel's Unfolding Algorithm (BUA) 

It is useful to analyze the set of initial hypothesis forming the ground of the 

BGA [1]: 
l. "The measured distribution differs from the true 

distribution by statistical errors". 

This statement overestimates the role of statistical errors and excludes from 

the analysis systematic and other errors of different origin, since the standard 

data processing means cannot deal with these latter by definition. 

2. "These errors are additive". 

Again the analysis is too restricted because the standard linear model ( 1) 

cannot consider any nonadditive errors at all. 

3. ''The reconstruction of the true distribution from 

the measured one is called unfolding and it is 

a statistical estimation problem". 

From our point of view, the unfolding (or deconvolution VII) is a purely 

algebraic problem, especially, if one considers other nonadditive and nonsta

tistical errors. 

4. "Acceptable unfolding results can be obtained by 

regularization methods". 
The existing regularit.ation methods use mathematically improper ( quasis

calar VII) objective fundionals and inadequate local minimization tech

mques. 

5. "The true distribution can be represented by 

some smoothed pattern e.g. in a spline form". 

Any smoothing procedure is equivalent to a low-pass filtering, which elim

inates the most physically informative "high-frequency" component of the 

measured data samples. In fact, any measUred data sample is purely fractal 
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due to point-to-point (bin-to-bin) errors of various kinds. 
Other B U A hypotheses concern mainly computational means, but are 

also logically and mathematically unsafe. 

6 Reversible Unfolding 

As has been stated above, we consider the problem of unfolding as a purely 
algebraic one. We can postulate that in the absence of errors the unfolding 
like (2) has to be stable. This postulate becomes, however, invalid, if we 
arc aware of the consequep_ces following from the simple fact that the very 
elements of the standard mixed matrix-vector linear model (1 ), i.e. A, t 
and f do not form an algebraic group. One of such consequences is the 
impossibility of any unfolding relative to the matrix A: 

(11) 

where t- is the inverse vector of t. The product of the column vector f 
and of the row vector t- is a matrix of rank one 1 i.e. a scalar, to result in 
a non unique matrix A due to the purely Diophantine character of the initial 
linear model (1). This feature wa.s somehow missed in the existing literature 
on linear model. 

Now by means of simple reversible physical or/ and mathematical trans
forms we shift to an all-matrix analog of (1): 

AT=F (12) 

with the relevant reversible unfolding solution like 

(13) 

and the corresponding solution for the apparatus matrix A. 
The elements of the reversible linear model (12) form a group and are 

unique. For example, here the SVD techniques can be applied to all matrices 
to produce very simple symmetric algebraic structures. In addition, the novel 
model allows any error (lathological - see [6]) model to be incorporated in 
the simplest possible manner. Moreover, this linear model provides some 
mathematical means to analyze systematic errors of different origin [6]. 
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Finally, by shifting to an integer number basis and using the matrix fac

torizations via the normal Hermite and Smith forms (NHF and NSF) one 

can continuously control the ranks of the involved matrices, while solving 

the unfolding problem (13) in a stable way under arbitrary input data errors 

without any regularization used [5]. 

The use of the advanced global regularization [12] and/or global opti

mization [13], [14] is supposed to provide additional means of the unfolding 

robustization. 

7 Conclusions 

The newly developed approach based on reversible mathematics produces 

the following results: 
1. An identity differentiation transform provides the second unfolding 

solution. 
2. The explicit form of this unfolding solution contains only derivative 

forms of the known linear model terms, thus indicating the general source of 

the fundamental computational instability. 

3. Such an interpretation of the instability source justifies the transfer 

to an integer nm:nber basis performed earlier due to different mathematical 

reasons. 
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