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1 Introduction 

Tlw main trend in modern high cncrgy physics is the gradual transition from 

relatively high statistics cxpcrirncntt> to relatively low statistics ones [1]. 

As a semiquantitative boundary between these two regions we use the 

value 101 events/bin, which corresponds to the relative error of 1% for Pois~ 

son statistics. This limit corresponds to the applicability threshold of the 

PTT (Philips-Twomey- Tikhonov) regularization, which is presently the 

only rnathema.t.ical means to solve inverse problems with erraneous input 

data. For a st<utdard 100 bill histogra.m t.he overall low statistics \Viii amount 
to I 0(; events. 

A not her scn1iq ua.nt itativc estimate follows from probabilistic nature oft lw 

g('ncrall_y accepted and the only existing now Gaussian theory of errors rooted 

in t.hc algcLril.ic 1.heory of quadratic forms. The logically nonmotivatcd l:hoicc 

of l.hc ~qnarcd discwtc lloJdcr norm \Vith p = 2 (Euclidean norm) result~ 

in !JOHrollli~t (fragile. i.e. cnur dqwndeJJt) local opti~ization solutions of 

scr1lar objective fnw:t.ion;t\s. All estimates of data. ::;ample- nwa.n V~lhwf', 

d1'via.t.ions et 1. ilJ'(' Y<t.lid onlv in the limits due to the Uig Number Theorem 

( B .\T). I u otlw1 \VOT"(.b. (. h(' lllit i 11 u!ldcdyin,e; mat hemaJ. ica\ hypothesis of i.ltr 

sta.nd<tnl t.lwor_y of errors ~s t h<d. of normal distribution. 

lien~ we 1h~snibl' t l1e first VITf>ion of 1 he det.errninisLic t.bcory (Jf (·~rrors · l<t.

tlwlogy ( fro111 t.hc (;reck word Ltth(Js error VII} ha~wd on1.1H" rcvnsihi]it..v 

ax1orn <Htd fret~ t>f an_v bypot.h{'ses conccrninp; underlying statist.icd dist.rihn· 

1 ions. 

2 The Second General Form of Inverse Prob·· 

lem Solution 

The standard mixf'd rna.t.riX-\'<~r1 or form of direct prohkrn (foldi11g or convo

lution) solution rna.illly known in t.hc discrete form of the System of Linear 

Alg<'braic Equations ('lLAE) rs 

ill= J + n ( l) 

when~ A a square matrix~ r1 column vector of true solution) f - a 

column vector of input da.ta and n that of input data errors. It is useful 
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to note the three following important features: first, the very elements of 
the SLAE (1) do not form an algebraic group, second, this standard mixed 
matrix-vector form allows only an additive error hypothesis to be described 
algebraically and, third, all computations are usually performed within a real 
number basis with the inherent rounding-off errors. 

The first general form ( and up to now the only known one - VII ) of 

inverse problem solution (unfolding or deconvolution) looks like 

(2) 

where A- is an inverse matrix of A. In trying to compute {2) we always 
observe the fundamental computational instability patterns in the form of 
a bin-by-bin periodic (sinus-like) function 'Yithin positive and negative en
velopes of input data vector J, which we call the Signature-Envelope Func
tion (SEF) and which looks like SEF(m) = {-1)mf(m), where m ·the bin 

number and f(m) ·the input data vector (envelope). 
What is the source of this instability ? The only presently proposed 

answer is based on the Riemann-Lebesgue theorem well-known in the theory 

of Fourier series coefficients [2], i.e. 

J A(x, s) sin( a • s)ds-> 0 {3) 

This Limiting Virtual Zero (LVZ) is usually added to the left-hand-side 
(l.h.s.) of the SLAE {1) in a discrete form to yield a solution with the 
accompanying periodic instability 

SEF(m) = A-{f + n) ( 4) 

The Riemann-Lebesgue theorem is not, however, the only version of the 
LVZ- any converging series tending to zero will serve as well, i.e. the number 
of potential candidates is infinite. 

Now let us differentiate the above relation {I): 

A't +At'= (f + n)' {5) 

to get the second general form of the inverse problem solution 

t = (A'n(f + n)'- At'] {6) 
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where all r.h.s. terms contain derivatives. The behaviour of numerical 

derivatives of error-stricken functions has been systematically studied ealier 

[3]. Their patterns closely fit those observed in solving {2). 

3 Standard Gaussian Theory of Additive Er

rors 

3.1 General Exposition 

C.F.Gauss { 1777-1855 ) developed his theory of additive errors in 1821-

1823 for processing mainly astronomical and magnetic measurements [4], [5] 

specified by typical relative errors of 10-4 . It is important to note that the 

modern-like notions of matrix and SLAE were advanced for the first time by 

A.Cayley ( 1821-1895) only in 1851 [6] and were quite naturally not used by 

C. F. Gauss. The Gaussian theory of additive errors is strongly motivated by 

the main object of mathematical studies by C.F.Gauss, i.e. quadratic forms. 

Part 1 of the above cited work [4] is dedicated to the systematic and the

oretical development of the theory of additive errors based on probability 

theory. From two principally different types of errors ~ systematic and sta

tistical (Zufa.llsfehler, i.e. random errors - Vll ) the Part I deals only with 

the latter ones. Gauss defines the function 'P(x) as a relative error for an 

observation x. Then <p(x)dx is the probability of an error between x and 

x + dx, with <p(.T) to be normalized via the condition 

+oo 

j <p(x)dx = 1.0 {7) 

-oo 

The subsequent basic minimum requirement leads to the Legendre-Gauss 

Leas\ SQuares (LSQ) being the main topic of Par\ II of the cited Gaussian 

work: 

.I x 2<p(x)dx =MIN! (8) 

Here Gauss used the implicit hypothesis that the most suitable weight 

for an error is its square. 
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With the conceptual basis of the theory of errors formed, one must find 

out a suitable function rp(x). As has been truly indicated in [5], generally 

the error distribution is unknown beforhand and one can choose any arbi

trary function satisfying (7). Once again Gauss introduces some kind of 

(exponential) quadratic form 

(9) 

which is well known presently as the normal distribution. 

The modern noncritical version of the Gaussian theory of errors can be 

found e.g. in [1]. In particular, there it is shown that " ... the Gau~sian 
or normal distribution gets its importance in large part from the Central 

Limit Theorem ... " also known as the Big Number Theorem (BNT). The 

BNT applicability limits are, however, known only qualitatively- in general, 

its validity dirnini::dtes with the statistics involved. Here again the absence 

of alternative theories ot errors forces these BNT applicability limits to be 

implicitdy extended to low fitnJistics as well. 

3.2 Main Defects of the Gaussian Theory of Errors 

FroJJJ our point of view, based orl ;;Jany years of computational expPriencc, 

the first main defect of the Ca.lJssia.n theory of errors is due to its arbitrary 

conceptual basis, with all underlyiug initial hypotheses taken from the theory 

of quadratic forms. 
The second defect is illustrated by the author of the theory himself in the 

Part II of [4], where he describes an involved procedure for discarding "bad" 

observations. In other wonls, already Gauss observed the nonrobust, i.e. 

error-dependent, character of statistical estimates- means, deviations etc. -

of the statistical samples under study. In the language of normalized spaces 

Gauss used the squared discrete Holder norm with p = 2 (Euclidean norm) 

as an objective functional to be minimized. All the subsequent attempts to 

find out some discrete robust Holder norms e.g. with p = 1 (Manhattan 

norm) or p = oo (minimax or Chebyshev norm) failed. 

Moreover, the analysis of the weighed LSQ results shows that the relevant 

objective functional behaves like a disrete Holder norm with p < 1, i.e. 

it possesses a set of weight-induced parasitic local minima. Since all the 

presently used minimization codes with discrete objective functionals realize 
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only local minimization algorithms. all t.hf' final data processing result.s are 

noJJrohuf>t by definition. This latter point is amply illustrated hy the so

c;dl<-d history plots ( see [1], Fig.2 on p. llS:l ) and multi peak structures 

in the wcight•d average plots (see [1]. p.I:H;J f.) witnc.'i.sing the effects of 

systematic and otht'r non-·randorn errors. As a net. rt'sult., the widely popular 

x2-critcrion tending t.o 1.0 per each dt>grec-of-frecdom becomes obsolete. 

To sum up, t.!w only existing nmv t hcory of errors is probabilistic in its 

COJH·cptua.l hosis, wit.h a.ll undt'rlying illli:llytical hypot.hcses chosen fron1 the 

Caussion theory of quculrat ic forms. This t.bPory deeds only \Vith sta.t.ist.i

c<i\ (random) errors. the BNT cont.rollPd samples and is nonrohust (crror

dt'pcndcnt.) by definition. 

4 Reversibility Axiom 

The reversibility axiom forming the logical basis of rcn~rsihlc mathematics 

ccui lw forrnulat.cd as follows: " The kft.-hand-sidc and t.lll' rip;ht-hand-sidt' 

of any equation must. satisfy reversibility criterion:;, i.e. t.hc requirements of 

the unique term-by-term correspondence and equivalence relations'' [7]. 

This axiom allows to identify c-t set of mat.hcmat.ical and/or physical trans

forms resulting in the <til-matrix SLAE form: 

AT= V+ N ( l 0) 

It is very important. that. the very d{'mcnt.s of t.hc latter SLAE now form 

a group. The invcrf'ie transforms from the old SLAE (I) t.o the novel Ollt"' ( 10) 

are very simple, thus preserving a.ll the algcbra.ic results so far valid for the 

standarrl mixed vcct.or-m<tl.ri x S LA E form. 

5 Fundamentals of Lathology 

By means of the reversibility axiom the all-mo.t.rix SLAE (10) co.Jl lw written 

down as 

( 11) 

where AF and J\+N arc the square mat. rices rorn·sponding to the relevant. 

r.h.s. terms F and +N. First., t.hc novel all-matrix SLAE form enables these 
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new matrices to be computed explicitcly, while the standard mixed form (1) 

does not. 
Second, the true solution T is assumed to be devoid of any errors. 

Third, we can map to the l.h.s. of the basic equation (10) the r.h.s. Prror 

terms of any type, i.e. statistical, systematic, individual etc. without any 

explicit assumptions about the underlying distributions, in other words, in a 

quite deterministic way. 

As an example, let. us consider a Poisson data vector f specified by the 

error interval ±n. In lathology this vector will be specified by the "data" 

matrix A1 and two lathological ('1error") matrices A+n and A-n· For the 

purpose of convenience these three basic matrices can be described by some 

relevant matrix Holder norms II * liP, i.e. by three sralars, 

d =II AI II, 
+l =II Atn liP and 
-I =II A_n liP, 
or another characteristic matrix parameters like determinants etc. 

Another example is illustrated by the so-called regular unfolding, when 

the direct (folding) problem is written down as 

At·~ (I%+ R)t = .f,, = t + r (12) 

where J% the diagonal scalar unit matrix and H- the residual («-~rror) 

matrix with the Zf~ro main diagonal. This i3 the case of a spectrometer with 

the unity acceptance factor matrix and only the resolution errors present in 

the r.h.s. input data vector fr~g· Then the non-resolution (systematic et.c.) 

error vector, s, can be evaluated from the difference 

( 13) 

A.nother version of the systematic. error evalua.ticm can be~ n;alizcd in 

t.he case of two or more spectrometers measuring the same physi.cal process 

in t.hc same particle beam, which situation is quite typical for modern big 

accelerators and colliders. 
The problem of th<' robustness, i.e. the error independence of final com

putational results (vector t) can he also cfficiPJJt!y solved within the revcrsihlc 

mathematical appro<H"h hy rrwa.ns of gcnera.li~cd nJL:ltiple constrai11t mathe

matical means and will be exposed by tluc present a.ut.hor in some subsequent 

paper. 
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By using the all-matrix SLAE form (10) one can evaluate the systematic 
errors of different origin, e.g. intrarun ones. 

6 Classification of Systematic Errors 

The problem of systematic errors seems to be most difficult to be handled 
even at conceptual and/or phenomenological level. The existing data on the 
properties of elementary particles (1] demonstrate, however, their presence in 
all pvblished data sets - see, e.g. the summed-up data with two and three 
Caussians and history plots with different systematic trends. 

The possible sources of systematic errors can be, nevertheless, classified 
into two main categories: mathematical and engineering-physical. 

6.1 Some Software (Mathematical) Sources of Sys
tematic Errors 

1. The first source of these errors is self-evident -- this is due to the very 
folding (convolution) operation like (1) or (10). For a typical effective mass 
spectrum (S) with two main components - peaks (P) and combinatorial 
background (B)"- the first will be broadened and shifted, while the second 
will be gradually enhanced. The standard fitting procedures usually approx
imate B as a smoothed polynomial, which is afterwards subtracted from S 
to provide "clean" final data on P. This procedure, if done without a previ
ous unfolding, results in an elimination of lower (substrate) parts of P, i.e. 
in a systematic uuderestimation of the P content (e.g. area). The second 
important systematic error term stems from nonresolved rnultiplets seen and 
interpreted in the folded spectrum S as singlets. 

2. The second source of the syfitematic errors is due to the run structure 
of the data samples gathered in dif[ercnt. experimental runs (intrarun shifts). 
The standard lirwar model ( 1) deals f'ither witb partial run data samples or 
an. integral data sample. The principal feature of the all-matrix linear model 
( 1 0) is the possibility of individual treatment of run samples as elements of the 
r.h.s. matrix F and of tlw mtegral statistics with a preserved run structure. 
In addition, we can pr~cess randornized matrix samples, thus eliminating 
artificially the effect of the intrarun shifts. The resulting difference is an 
estimate of this type of systematic errors. 
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3. At the majority of modern high energy accelerators and collidcrs 8ev

eral similar setup8 are positioned along the same beam line. This provides a 

possibility of measuring the same physical process simultaneously hy means 

of all acting spectrometer setups to evaluate intrasetup shifts. With one of 

the setups chosen as a basic one it is possible to analyze the relevant systpm

atic error terms. 

6.2 The Folding Shifts Induced along Abscissa Axis 

The above phenomenology pertains mainly to the folding shifts induced along 

ordinate (amplitude, number of events etc.) axis. 

The folding shifts induced along abscissa (wavelength, energy etc.) axis 

are due to the symmetry of the apparatus matrix A and of its factor rna trices. 

The resolution factor matrix is mainly Toeplitzcan and hence symmetric, 

while remaining three factor matrices are asymmetric by definition. The 

resulting shifts are bipolar so that e.g. the folded peaks can shift to any 

position relative to the true peak one depending on the specific form of the 

factor matrices. 

6.3 MC Modelling Versus Experimental Data 

The physical sources of systematic errors are of the most involved origin anf 

can be extracted only after very intricate crosschecks. One of this sources is, 

however, quite evident-· in many cases systematic errors are estimated from 

the difference observed between MC modelled and experimental data sets. 

Here again we have to remember that the linear model forms the basis of both 

such data sets, hence the extracted difference is in fact the difference between 

the MC modelling systematic error and the experimental data systematic 

error. 

7 Some Hardware Sources of Systematic Er

rors 

The main hardware source of systematic errors is due to data transmission 

channels between detectors and data acquisition systems, between front-end 
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elcct.ronics and on~linc processing units etc. The produced systematic er
rors can he corrected here by means of the so-called Prror-correcting codes 
effectively used for writin~ and rcadinfo'; inforrnat.ion on compact discs, in 
transmitting informatim1 in space rornrilunication linPs Pte. 

Another sP1 of the potential systt~matic error sources is associat<:>d with 
improperly accounted parameters of cxpcriment.aJ setup. For example, when 
using a target with a large aspect. (length/diameter) ratio irradiatPd with a 
high energy diverging part ide beam and measuring the beam flux by means of 
a rnonil,or dct.ect.or positioned at the Lugct front t·nd one will systcmat.irally 
overcstinJat.c tl1t~ rcctl beam flux, t.hus producing syst.Pmat.ic t•rrors itl pa.rticle 
yields. production cross-scr:tions and other flux-associated values. 

I 11 short, the hardwnre sources of systematic errors ilff' crucially dcpcntknt. 
on t.hc specific structurP of t.h(' wlevant f'dups and ne<'d to be considf'n•d on 
the more dO\vn-t.o-ccut h bits is. 

8 Conclusions 

To ;-;um up, it is possibh· t.o for:llula.t.c t.iw following gt'ncral umclusions: 
1. In addition t.o the reversible arithtrwtir [7] t.hc reversibility axiom 

r1llows to develop the dt'!crmilJist.ic theory of error."- la.tlwlogy. 
2. As opposed to t.hc GaussiaJJ probabilisit.ic t.hf'ory of C'ITOrs, dealing only 

v .... ·ith additive sta.tistica.l errors. 1.he latho!OKY can dC'<ti with errors of arb it ra.ry 
origin without any limiting a.ssnmpt.ions concerning tlH'ir distribution and/or 
underlying statistics. 

3. The transition from the standard mixed vector-matrix form of linear 
model computed within a real number basis to its all-matrix one computed 
within an integer number basis allows to solve unfolding problems with ar
bitrary input errors and without any regularization imposed . 

.-I. The preservation of close and simple analytical links bci\vee-n the old 
and new linear models allows their cross-checks to be easily pnformcd . 

.5. The true reversible solutions arc assumed to he devoid of any errors 
except of those associated with numerical basis and computer's machcp.s. 

6. The problems to be solved deal with extensions of the reversible math
meties into different application domain, e.g. LSQ. 

7. The reversibility axiom results not only in a novel arithmetic but also 
in the deterministic theory of errors -- lathology and the robust t(•chniques 
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for solving LSQ, SLAE and many other fundamental problems of data pro

cessmg. 
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