


1 Introduction

The main trend in modern high encrgy physics is the gradual transition from
relatively high statistics experiments to relatively low statistics ones [1].

As a semiquantitative boundary between these two regions we use the
value 10% evenis/bin, which corresponds to the relative error of 1% for Pois-
son statistics. This limit corresponds to the applicability threshold of the
PT'E {(Philips-Twomey-Tikhonov) - regularnzation, which 1s presently the
only mathematical means to solve inverse problems with erraneous input
data. Lor a standard 100 bin histogram the overall low statistics will amount
to 16° events,

Another semiquantitative estimate follows from probabilistic nature of the
generally accepled and the only existing now Gaussian theory of errors rooted
in the algebraic theory of quadratic forms. The logically nonmetivaied choice
of the squared discrete Holder norm with p = 2 (FEuclidean norm) results
in nonrobust. (fragile, i.c. crror-dependent) local optimization solutions of
scalar objective Dmetionals.  All estimates of data sample — mean values,
deviations ete. are valid onlv in the limits due to the Big Number Theorem
(BNT) I other words, the mnain underlying mathematical hypothesis of the
standard theory of errors is that of normal distribution.

[ere we deseribe the fivst version of the determinisiic theory of errors - la-
thology ( rom the Greek word lathos - ervor - V1) based on the reversibility
axiom and free of any hypotheses concerning underlying statistical distribu-

Liomns.

2  The Second General Form of Inverse Prob-
lem Solution

The standard mixed matrix-vector form of direct problem {folding or conve-
lution) solution — mainly known in the diserete form of the System of Linear
Alpebraie Fquations (SLAE) s

At = f+n {1

where A - a square matrix, { - a columm vector of true solution, f - a
column vector of input data and n - that of input data errors. It is useful



to note the three following important features: first, the very elements of
the SLAE (1) do not form an algebraic group, second, this standard mixed
matrix-vector form allows only an additive error hypothesis to be described
algebraically and, third, all computations are usually performed within a real
number basis with the inherent rounding-off errors.

The first general form ( and up to now the only known one — VII ) of
inverse problem solution (unfolding or deconvolution) looks like

t=A"(f+n) (2)

where A~ is an inverse matrix of A. In trying to compute (2} we always
observe the fundamental computational instability patterns in the form of
a bin-by-bin periodic (sinus-like) function within positive and negative en-
velopes of input data vector f, which we call the Signature-Envelope Func-
tion (SEF) and which looks like SEF(m) = (—1)™ f(m), where m - the bin
number and f(m) - the input data vector (envelope).

What is the source of this instability 7 The only presently proposed
answer is based on the Riemann-Lebesgue theorem well-known in the theory
of Fourier series coefficients [2], i.e.

/ A(z,s)sin(a*s)ds = 0 (3)

o0

This Limiting Virtual Zero (LVZ) is usually added to the left-hand-side
(Lh.s.) of the SLAE (1) in a discrete form to yield a solution with the
accompanying periodic instability

SEF(m)=A~(f +n) 1)

The Riemann-Lebesgue theorem is not, however, the only version of the
LVZ - any converging series tending to zero will serve as well, i.e. the number
of potential candidates is infinite.

Now let us differentiate the above relation (1):

At+ At = (f +n) (5)

to get the second general form of the inverse problem solution

E=(A)[(f +n) - Al (6)



where all r.h.s. terms contain derivatives. The behaviour of numerical
derivatives of error-stricken functions has been systematically studied ealier
[3]. Their patterns closely fit those observed in solving (2).

3 Standard Gaussian Theory of Additive Er-
rors

3.1 General Exposition

C.I.Gauss { 1777-1855 ) developed his theory of additive errors in 1821-
1823 for processing mainly astronomical and magnetic measurements [4], [5]
specified by typical relative errors of 107%. Tt is important to note that the
modern-like notions of matrix and SLAE were advanced for the first time by
A.Cayley { 1821-1895 ) only in 1851 [6] and were quite naturally not used by
C.F.CQauss. The Gaussian theory of additive errors is strongly motivated by
the main object of mathematical studies by C.F.Gauss, i.e. quadratic forms.

Part I of ihe above cited work [4] is dedicated to the systematic and the-
oretical development of the theory of additive errors based on probability
theory. From two principally different types of errors - systematic and sta-
tistical (Zufallsfehler, i.e. random errors — VII ) the Part I deals only with
the latter ones. Gauss defines the function ¢(2) as a relative error for an
observation z. Then w(z)dz is the probability of an error between x and
z + dx, with ¢(z) to be normalized via the condition

+oo
f wlz)dr = 1.0 (7)
The subsequent basic minimum requirement leads to the Legendre-Gauss
Least $Quares (LSQ} being the main topic of Part 11 of the cited Gaussian
work:

/a:?'z,o(a:)dz = MIN! (8)

Here Gauss used the implicit hypothesis that the most suitable weight
for an ervor is its square.



With the conceptual basis of the theory of errors formed, one must find
out a suitable function (x). As has been truly indicated in [3], generally
the error distribution is unknown beforhand and one can choose any arbi-
trary function satisfying (7). Once again Gauss introduces some kind of
(exponential) quadratic form

wlz) = e (9
which is well known presently as the normal distribution.

The modern noncritical version of the Gaussian theory of errors can be
found e.g. in [1]. In particular, there it is shown that ”..the Gaussian
or normal distribution gets its importance in large part from the Central
Limit Theorem...” also known as the Big Number Theorem (BNT). The
BNT applicability limits are, however, known only qualitatively - in general,
its validity diminishes with the statistics involved. Here again the absence
of alternative theories of errors forces these BNT applicability limits to be
implicitely extended to low statistics as well.

3.2 Main Defects of the Gaussian Theory of Errors

From our point of view, based on nany years of cornputational experience,
the first main defect of the Gaussian theory of errors is due to its arbitrary
concepiual basis, with all underlying initial hypotheses taken from the theory
of quadratic forms.

The second defect is illustrated by the author of the theory himself in the
Part I1 of [4], where he describes an involved procedure for discarding "bad”
observations. In other words, already Gauss observed the nonrobust, i.e.
error-dependent, character of statistical estimates — means, deviations etc. -
of the statistical samples under study. In the language of normalized spaces
Gauss used the squared discrete Holder norm with p = 2 (Euclidean norm)
as an objective functional to be minimized, All the subsequent attempts to
find out some discrete robust Holder norms e.g. with p = 1 (Manhattan
norm) or p = co {minimax or Chebyshev norm) failed.

Moreover, the analysis of the weighed LSQ results shows that the relevant
objective functional behaves like a disrete Holder norm with p < 1, ie.
it possesses a set of weight-induced parasitic local minima. Since all the
presently used minimization codes with discrete objective functionals realize



only local minimization algorithms, ail the final data processing results are
nontobust by definition.  This latter point 1s amply illustrated by the so-
called history plots { see [1}, Fig.2 on p.1183 ) and multipeak structures
in the weighed average plots (sce [1], p.1343 1) wilnessing the effects of
systematic and other non-random errors. As a net resuit, the widely popular
vi-criterion tending to 1.0 per cach degrec-of-frecdom becomes obsolete.

To sum up, the only existing now theory of errors is probabilistic in its
conceptual basis, with all underlying analytical hypotheses chosen from the
Gaussian theorv of quadratic forms. This theory deals only with statisti-
cal {random) crrors, the BNT controlled samples and is nonrobust (error-
dependent) by definition.

4 Reversibility Axiom

The reversibility axiom forming the logical basis of reversible mathematics
can be formulated as follows: ™ The left-hand-side and the right-hand-side
of any equation must satisly reversibility criterions, i.c. the requirements of
the unique term-by-term correspondence and equivalence relations” [T}

T'his axiom allows Lo identify a set of mathematical and/or physical trans-
forms resulting in the all-matrix SLAL form:

AT = P+ N (10)

I is very important that the very elements of the latter SLAE now form
a group. The inverse transforms from the old SLAEK (1) to the novel one (10)
are very simple, thus preserving all the algebraic results so far valid for the
standard mixed vector-matrix SLAL {orm.

5 Fundamentals of Lathology

By means of the reversibitity axiom the all-matrix SLAE {10) can be written
down as
(Ap+ Agp)T'=F 4+ N (11)

where Ap and Ay are the square matrices corresponding to the relevant
r.hs. terms 17 and +N. First, the novel all-matrix SLAL form enables these



new matrices to be computed explicitely, while the standard mixed form (1)
does not.

Second, the true solution 7' is assumed to be devoid of any errors.

Third, we can map to the Lh.s. of the basic cquation {10) the r.h.s. error
terms of any type, i.e. statistical, systematic, individual etc. without any
explicit assumptions about the underlying distributions, in other words, in a
quite deterministic way.

As an example, let us consider a Poisson data vector f specified by the
error interval +n. In lathology this vector will be specified by the "data”
matrix A; and two lathological ("error”) matrices Ay, and A_,. For the
purpose of convenience these three basic matrices can be described by some
relevant matrix Holder norms || * ||, i.e. by three scalars,

d :il Af Hm
+1=[ Ayn ||» and
1 ={| An |l

or another characteristic matrix parameters like determinants etc.
Another example is illustrated by the so-called regular unfolding, when
the direct (folding) problem is written down as

At =(I*" 4+ R)t = frg =1+ (12)

where % - the diagonal scalar unit matrix and R - the residual (error)
matrix with the zero main diagonal. This is the case of a spectrometer with
the unity acceptance factor matrix and only the resolution crrors present n
the r.h.s. input data vector fre;. Then the non-resolution { systematic cte.)
error veclor, s, can be evaluated from the difference

s= [ fren (13)

Another version of the systematic error evaluation can be realized in
the case of two or more spectrometers measuring the same physical process
in the same particle beam, which situation is quite typical for modern big
accelerators and colliders.

The problem of the robustness, i.c. the error independence of linal com-
putational results {vector ) can be also cfficiently solved within the reversible
mathematical approach by means of generalized muitiple constraint m athe-
matical means and will be cxposed by the present author in some subsequent

paper.



By using the all-matrix SLAE form (10) one can evaluate the systematic
errors of different origin, e.g. intrarun ones.

6 Classification of Systematic Errors

The problem of systematic errors seems to be most difficult to be handled
even at conceptual and/or phenomenological level. The existing data on the
properties of elementary particles {1] demonstrate, however, their presence in
all published data sets - see, e.g. the summed-up data with two and three
Gaussians and history plots with different systematic trends.

The possible sources of systematic errors can be, nevertheless, classified
into two main categories: mathematical and engineering-physical.

6.1 Some Software (Mathematical) Sources of Sys-
tematic Errors

1. The first source of these errors is self-evident ~ this is due to the very
folding {convolution) operation like (1) or (10). For a typical effective mass
spectrum (S) with two main components — peaks {P) and combinatorial
background (B) - the first will be broadened and shifted, while the second
will be gradually enhanced. The standard fitting procedures usually approx-
imate B as a smoothed polynomial, which is afterwards subtracted from &
to provide "clean” final data on P. This procedure, if done without a previ-
ous unfelding, results in an elimination of lower (substrate) parts of P, i.e.
in a systematic underestimation of the P content (e.g. area). The second
important systematic error term stems from nonresolved multiplets seen and
interpreted in the folded spectrum S as singlets.

2. The second source of the systematic errors is due to the run structure
of the data samples gathered 1 different experimental rons (intrarun shifts).
The standard linear model {1) dcals either with partial run data samples or
an.integral data sample. The principal feature of the all-matrix linear model
(10) is the possihility of individual treatment of run samples as elements of the
r.hs. matrix F and of the rotegral statistics with a preserved run siructure.
In addition, we can process randomized matrix samples, thus climinating
artificially the cffect of the intrarun shifts. The resulting difference is an
estimate of this type of systematic errors.



3. At the majority of modern high energy accelerators and colliders sev-
eral similar setups are positioned along the same beam line. This provides a
possibility of measuring the same physical process simultaneously by means
of all acting spectromeler setups to evaluate intrasetup shifts. With one of
the setups chosen as a basic one it is possible to analyze the relevant system-
atic error terms.

6.2 The Folding Shifts Induced along Abscissa Axis

The above phenomenology pertains mainly to the folding shifts induced along
ordinate {amplitude, number of events etc.) axis.

The folding shifts induced along abscissa {wavelength, energy etc.) axis
are due Lo the symmetry of the apparatus maftrix A and of its factor matrices.
The resolution factor matrix is mainly Toeplitzean and hence symmetric,
while remaining three factor matrices are asymmetric by definition. The
resulting shifts are bipolar so that e.g. the folded peaks can shifl to any
position relative to the true peak one depending on the specific form of the
factor matrices.

6.3 MC Modelling Versus Experimental Data

The physical sources of systematic errors are of the most involved origin anf
can be extracted only after very intricate crosschecks. One of this sources is,
however, quite evident — in many cases systematic errors are estimated from
the difference observed between MC modelled and experimental data sets.
Here again we have to remember that the linear model forms the basis of both
such data sets, hence the extracted difference is in fact the difference between
the MC modelling systematic error and the experimental data systematic
erTor.

7  Some Hardware Sources of Systematic Er-
rors

The main hardware source of systematic errors is due to data transmission
channels between detectors and data acquisition systems, between front-end



clectronics and on-line processing units ete. The produced systematic er-
rors can be corrected here by means of the so-called error-correcting codes
effectively used for writing and reading information on compact dises, in
transmitting information in space communication lines ete.

Another set of the potential systematic error sources is associated with
improperly accounted parameters of experimental setup. For example, when
using a target with a large aspect {length/diameter) ratio irradiated with a
high energy diverging particle beam and measuring the beam flux by means of
a monitor detector positioned at the target [ront end one will systematically
overestimate the real beam finx, thus producing sysiematic errors in particle
yields, production cross-sections and other flux-associated values.

In short, the hardware sources of systematic errors are crucially dependent
on the specific structure of the relevant setups and need to be considered on
the more down-to-carth basis,

8 Conclusions

To sum up, 1t s possible to formulate the following general conclusions:

I, In addition to the reversible arithmetic [7] the reversibility axiom
allows to develop the deterministic theory of crrors - lathology.

2. As opposed to the Gaussian probabilisitic theory of errors, dealing only
with additive statistical errors. the lathology can deal with errors of arbitrary
origin without any limiting assminptions concerning their distribution and/or
underlying statistics.

3. The transition [rom the standard mixed vector-matrix form of linear
model computed within a real number basis to its all-matrix one computed
within an integer number basis allows to solve unfolding problems with ar-
bitrary input errors and without any regularization imposed.

4. The preservation of close and simple analytical links between the old
and new linear models allows their cross-checks 1o be casily performed.

5. The true reversible solutions are assumed to bhe devoid of any errors
except of those associated with numerical basis and computer’s macheps.

6. The problems to be solved deal with extensions of the reversible math-
metics into different application domain, e.g. L5SQ.

7. The reversibility axiom results not only in a novel arithmetic but. also
in the deterministic theory of errors — lathology ~ and the robust techniques



for solving LSQ, SLAL and many other fundamental problems of data pro-
Cessing.
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