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K.llaCTepu3aU.HSI H BH3yaJIH3aU.HSI o6pa30B 
KaK MeTOA npeACTaB.lleHHSI peaKTOPHhlX IIIYMOB 
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PacCMOTpeHhl BOilpochl HCilOJih30BaHHSI KJiaCTepHoro aHaJIH3a H BH3y­
aJIH3aU.HH AJISI uay11eHHSI CTpyKTYPhl MHOroMepHhlX AaHHhlX. OcHOBHaSI U.eJih 
paOOThl COCTOHT B TOM, 'ITOOhl IlOKa3aTh IlOTeHU.HaJlhHhle B03MO)KHOCTH H 
OTPHU.aTeJihHhle CTOpoHhl AeTepMHHHCTCKHX MeTOAOB pacno3HaBaHHSI o6pa30B, 
TaKHX KaK KJiaCTepuaaU.HSI H BH3YaJIH3aU.HSI, a TaK)Ke OTMeTHTh poJib an:­
ropHTMOB IlOHCKa rJIOOaJlhHOro 3KCTpeMyMa, HCilOJih3yeMhlX AJISI aHMH3a MHO­
roMepHhlX AaHHhlX. IloKa3aHo, 'ITO B npHMeHeHHH K uiyMOBOH AHamOCTHKe 
SJAepHhlX peaKTOpoB MeTOAhl pacn03HaBaHHSI o6pa30B, AOilOJIHeHHhle MeTOAaMH 
aHaJIH3a HX CTpyKTYPhl, MOryT cy~eCTBeHHO IlOBhlCHTh sqxf)eKTHBHOCTh AHar­
HOCTHpoBaHHSI H COKpaTHTh HCXOAHhlH o6heM aHaJIH3HpyeMOH HHq>opMaU.HH. 
B Ka11ecTBe npHMepa npHBeAeH aHa.n:ua IIIYMOBhlX COCTOSIHHH peaKTOpa MBP-2. 

Pa6orn BhlnOJIHeHa B Jla6oparopuu HeiiTpoHHOii cpH3HKH HM. 11.M.<l>paHKa 
OMSIM. 

Coo6mem1e Q6,,e;\Hlle1111oro 11HCTHT)'Ta 11;\epHblX 11CCJJe;\OBllH11H. Jfy6Ha, 1994 
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Some problems of using cluster analysis and visualization to . study 
multidimensional data structure are discussed. The main point of the work is to 
demonstrate potentialities and drawbacks of deterministic methods for pattern 
recognition, such as clustering and visualization, and to note the role of global 
extremum search algorithms used in various multidimensional data analysis 
methods. The methods of pattern recognition together with the methods of 
pattern structure analysis applied to noise diagnostics of nuclear reactors are 
shown to be able to essentially increase the efficiency of diagnosis and to reduce 
the scope of the analyzed information. The analysis of the noise conditions of 
the IBR-2 reactor is given as an example. · 

The investigation has been p~rformed at the Frank Laboratory of Neutron 
Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna, 1994 



1. INTRODUCTION 

Many modem diagnostics and control systems as for example the nuclear 
reactor safety systems, suffer from the . fundamental disadvantage (see 
[l,2,3]). 

They give large amount of abundant information that can­
not be used as efficiently. as required. 

The pattern recognition approach for the nuclear reactor noise analysis with 
pattern mapping methods proposed by the authors could be an issue to 
overcome this trouble. 

The main goal of this lecture is to show the potential possibilities and 
drawbacks of deterministic pattern recognition methods as: 

• ma attems, 

and the role the global optimization algorithms: 

• simulated annealing SA, 
• threshold acce tin TA, 

play for presentation and analysis of multidimensional data. The definition of 
multidimensionality assumed involves the recorded data to be represented 
as points in the Banach space. 

The examples presented concern the IBR-2 Dubna (Russia) nuclear 
reactor data. They were collected during the time period 1988-1992. 

Some results and conclusions presented here have preliminary character 
because a lot of fundamental questions are still open, are in proiect stage 
or are under realimtion. 



2. INTEGRAL~ AND DIFFERENTIAL CHARACTERISTICS 

The simplest monitoring of a nuclear reactor consists in tracing whether some 
pre-determined parameters overcome some pre-determined level.· Fig.la can 
serve as an example, where the integral parameter - power fluctuations E of 
the pulsed research nuclear reactor IBR-2 - during two year operation period 
is depicted. However, because of significant E oscillation and the closeness of 
the reactor stop threshold (=10%) the threshold criterion is insufficient any­
more. A more accurate criterion is necessary to monitor early failures, deg­
radation trends and their possible sources to determine as precisely as pos­
sible the necessity and the time of restoration. The restoration action under­
taken in the proper time could increase; in turn, the reactor life time. 
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Fig.I a. The power fluctuations£ during the IBR-2 reactor operation period 
from the end of 1987 to the beginning of 1992. The approximated degradation 

is shown 
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Fig.lb. The average power spectral density (PSD) (from almost 200 spectra 
covering the IBR-2 reactor two years operation period) with ±a in each of 
frequency channels. 
The analysis of such a picture may consist in, e.g.: 
• splitting the frequency interval into three regions reflecting main sources 

of power fluctuations and analysing them separately, 
the main peaks extracting and analysis 

The differential characteristics like time series or, above all, power 
spectral densities (PSD) and vibration spectral densities of the controlled 
mechanical parts of construction (e.g. moving reflectors, pumps, cooling 
system components), are more sensitive to the reactor operation changes. The 
changes in, e.g., PSD form (may not be followed by the changes of- their 
respective integrals) can reflect an abnormal reactor operation, incipient 
degradation, and even help to find the source of failures. Nevertheless, in 
contrast to the clear threshold criterion for integrals, the spectra and other 
differential characteristics must be conditioned in a quite different way. The 
criteria can be built on the basis of 

• extraction, evaluation and analysis of characteristic details of the 
spectral densities, e.g., peaks analysis, domain split, etc. (see Fig.lb), 

• discriminants approach, 
!_pa_tt~ni recognition and neural network. 
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The first item refers "to the most popular, especially in experimental physics, 
and very important method of spectrum's analysis. This method gives good re­
sults for relatively low number of data, of stable and static character. The re­
sults of such an analysis (the peaks areas, positions, lengths of the highest or 
lowest gradients, etc.) can be also used for the further approaches itemized 
~~- . 

3. PATTERN RECOGNITION - DATA CLASSIFIERS 

Let us consider the pattern recognition approach which, in our oplillon, 
should fill the gap between the standard "passive" monitoring system and, 
in the future, an intelligent supervisor. 

Pattern recognition is the very wide branch of science covering 
deterministic ( digital) and syntactic (logical) methods of patterns 
classification, recognition, processing and analysis. It encompasses such 
widely known problems as image processing, features selection, data 
classification - clustering, discriminants analysis, principal component 
analysis, etc. 

3.1 Discriminants 

The method of discriminants [ 4] consists in comparison of a subsequent 
spectrum with the specified number of stencil patterns or a base (possibly the 
bases) of a number of spectra corresponding to the known system responses. 
The set of discriminating parameters has to be defined in such a way that 
they describe different features of the signal representation. Membership of 
an incoming spectrum to the base ( or its distance to the stencil pattern) 
determines immediately the sort of information carried by the current signal. 
Let us suppose, · however, that the incoming spectrum distortion represents 
unessential deviation from the normal operation of a nuclear reactor. The new 
spectrum must not be neglected but has to be included as the nearest base· 
member. The degradation processes like ageing, requiring the continuous 
base update, contribute to its expansion and compactness loss. The new 
discriminants have to be introduced to prevent the membership mistakes and 
an accuracy loss. Additionally, to establish the relationship of tens of 
processes controlled the exponential increase of computational power can be 
anticipated. Therefore, the authors recommend to use ·this method for 
monitoring of independent reactor components with well defined and stable 
signal representations, covering rather short time scales: 
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3.2 Clustering 

Just the clustering was the first of pattern recognition methods (to the best of 
authors'knowledge) applied for a reactor data monitoring by Gonzalez R.C. 
et al. (1974) [4]. Fig.2 presents the main idea of this approach. The mapping 
of patterns application constitutes one of many improvements made by the 
authors of this paper to this idea. • 

The noise patterns, as for example the power spectral densities, 
recorded subsequently during reactor operation and represented as points 
in the N-dimensional Euclidean space are classified using clustering 
procedures. Changes of the clusters structure, as for example the new clusters 
appearance, can reflect an anomalous reactor operation. The authors 
accomplished diagnostic system which bases on this idea (it differs 
considerably from the prototype quoted, see authors'earlier works). 

Figs.3a,b show how the clustering part of this system works. The 
analysis of figures shows which one of moving reflectors is responsible for 
PSDs distortion. The question arises: 

How can an operator analyse the mutual relationships of maps, as those 
presente_!i_ above, for multicomponent (not only three) !l_()!S~_patterns? 

The maps contain too many details, but time diagrams like that in Fig.3b, in 
turn, says nothing about the cluster structure. Moreover, some distinct 
changes in the OPO vibrations spectra with distinct responses in PSD pattern 
do not create separate clusters. 

For long term nuclear reactor diagnostics point of view the processes 
like ageing must b'~ taken into account. They may influence the clusters 
structure in a quite different way . To control such effects, detailed analysis 
of the full recorded clusters structure is necessary. Therefore, apart from 
the point-to-cluster membership, additional information as: cluster compact­
ness, cluster-to-cluster distances, results of statistical analysis, etc., must be 
supplied to an operator. Finally, the advantage of information squeezing ob­
tained by the clustering techniques may be seeming only. Additionally, the 
numerical analysis is. not able to give any information about the clusters 
· shapes, which is very important especially when the clusters forms are non­
spherical in the chosen space and undergo the continuous changes. 
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Fig.3a. Topological maps of the PSD and spectral densities of the moving 
reflectors vibrations (the main -OPO - and additional one - DPO) for the IBR-
2 (Dubna) reactor two years' operation period. The lines drawn correspond to 
the cluster-to-cluster transitions presented in Fig.3b 

Just these sorts of clusters are responsible for the ambiguous clustering 
results presented in Fig.4. Six different clustering algorithms· were used for 
the reactor data [5], and six different results were obtained (however one can 
see that some stable clusters are present in all or almost all diagrams shown). 
The sources of difference; between · K-mean type algorithms and Moving 
ones are obvious. These two methods base on different aggregation principles 
each of them uses. The substantial differences inside these groups are caused 
by the fact that each result represents the other local minimum of a functional 
("energy") minimized in course of clustering. The example presented in Fig.5 
explains b~tter this problem. But the ways to find the global minimum will be 
discussed at the end of this paper. 
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Fig.3b. The point-to-cluster membership diagram for the PSDs and spectral 
densities of the moving reflectors OPO/DPO vibrations. The diagram shows 
to which cluster (represented by numbers 1-14) the subsequent reactor spec­
tral density falls 

The trouble with clustering is not the only one. The next problem is the 
proper selection of space where N-dimensional points (spectra representa­
tions) are classified. Fig.6 shows the clustering results of the three skew lines 
in the six five-dimensional spaces determined by the metrics chosen [5]. This 
time, the hierarchical clustering algorithms were used. 

More troubles arise for the very high ·dimensions, M>l00 (see [6]). 
Strange effects (seemingly out of imagination) appear, as is presented in 
Fig. 7a. It represents the two-dimensional pattern (result of mapping) of the 
100-dimensional pseudo-random points uniformly distributed in the hyper­
cube C(l, 0). The points marked are space averages of the total 1000 points 
generated. This result comes from the fact that for N-dimensional space _the 
probability that the randomly generated point gets closer to the hypercube 
centre decreases as RN-1 while for the reverse direction the probability 'is 
determined by the_ box size. These results mean that in N-dimensional space 
the points "infected" by random noise _ create quasi-hyperspheres. The 
random component change ( e.g. noise increase) may be the reason of the two 
clusters emergences, as.is shown in Fig.7b. Fig.5 shows, however, that the 
standard clustering methods need five clusters to reveal this structure, instead 
of two. Decrease of the number of clusters causes the internal sphere sticks to 
the other, one out of external clusters (see Moving 1 algorithm in Fig.5). ' 
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Direct use of the extraordinary human ability for pattern recognition 
seems to be the best way for instant clusters structure analysis. To resolve 
this problem.two main questions arise, the conceptual and technical ones, i.e.: 

• How can one compress the multidimensional picture into the two­
( or three-) dimensional one, preserving the real cluster structure? 

• How can one visualize the best resulting pictures for anal)-'~is? 

Fig.4. The results of six algorithms applied for the IBR-2 reactor data (PSD) 
clustering. The "energies" reached - the average standard deviations in clus­
ters - for each method are as follows (from the left upper comer in rows): 
1450, ·1490, 1490, 1512, 1474, 1434. The closest to the global minimum is 
the New Moving algorithm. 
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Fig. 5. The results of clustering of the clusters structure shown in the first 
chart using five non-hierarchical methods. Minimum five clusters are 
necessary to represent this structure adequately. The lesser number of clusters 
assumed will cause clumping the internal cluster with an outer one (like for a 
method Moving 1). One can see that any of methods gives 100% internal 
sphere selection. Some of its points belong to the outer sphere clusters 
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Fig.6. The clustering results for the structure which consists of three non­
crossing lines in the 5D space. Five hierarchical algorithms (snglnk, cmplnk, 
centr, median, ward) were used for the six different n;ietrics (euclidean, man­
hattan, angle, correlation, meanerrl, meanerr2). Only a few combinations of 
algorithm-metncs detect the structure adequately, i.e., three separate clusters 
represented as three equal stairs on the diagrams shown 
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Up to now, to the best of authors' knowledge, the mapping of patterns 
techniques are the only way to resolve the first problem. 

4. PATTERN RECOGNITION - MAPPING OF PATTERNS 

Generally, the mapping of patterns algorithm realizes the transforma­
tion 9?; 

I W; RN:::, ll) 
91 ➔ m' c Ji' ,N >> n,E(m, m') = mill I 

where, E(.) - the functional, often called "energy", which differentiates the 

sorts of algorithm used. Fig.2 shows the role the mapping can play. 

There are two sorts of mapping algorithms: 

• linear mapping: 

a. simple projection 
b. principal component mappings 
c. declustering mapping 
d. projection pursuit 
e. least squares mapping 

• non-linear mapping: 

a. multidimensional scaling 
b. triangulation mapping 
c. k-nearest neighbour mapping 

A good overview of mapping techniques is presented by W.Siedlecki et al. 
(Pattern Recognition, 21(5), 1988) [7] and M.Aladjem (Pattern Recognition, 
24(6), 1991). 

For visualization of the real multidimensional complex structures (e.g. 
non-spherical, elongated, oblate or patterns like that presented in Fig.5), as 
was shown by the authors in the earlier publications [8,9,10], the non-linear 
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methods are recommended. Especially those, which use Sammon's criterion 
(the receipt of "energy" computation). 

Sammon 's Criterion 

let 

m={ x f x j =( x} ,xJ , ... ,xf ),j =l, ... ,M} 
, { . ( 1 2 n) · 1 Mj 01= Yj,Yj= Yj,Yj, ... ,yj ,J= , ... , 

then 
m 

E(01,01')= L s~·!11,(s .. -s~ .) =min 
. . l ,J l ,J l ,J 

J<l 
where 

si,j=( xi-x j }( xi-x j) 

S~ • =(Y. -y . )o(y. -y . ) 
l ,J l J l J 

and both w (equal to 1,0 or -1) and m (mostly equal to 2) are problem de­
pendent parameters. Let us assume that the clusters are not spherical and they 
may reflect some operation trends ( e.g. the nuclear reactor ageing), which may 
cause clusters elongation. Substituting w= 1 and m>3, the oblate ·clusters are 
stretched out additionally,which may cause overlaps in ro', while for w = -1 
the trend of ·better preservation of the nearest neighbours distances is ob­
served with simultaneous deterioration of the long range s!fucture. 

In that case consider that w=O and m=2. Then: 
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the method collsists ill preservatioll oftlte Euc/ideall distallces betweell M 
poillts of N-dimellsio11a/ space ill the 11-dimellsio11a/ olle, where ll<<N. · 

The problem arises: 

How to find the global minimum of EO, to fulfil the mapping_criterion? 

Each of the mapping algorithms based on the Sammon criterion as for 
example the Niemann method [I l], tries to· find the minimum of E0 using 
sophisticated but still standard techniques. It means that the results obtained 
for relatively high dimensions and different starting configuration (first 
iteration) are, as a rule, different. They represent miscellaneous local minima 
of E(.) being the first kind of artifacts produced by the mapping. The 
resulting two-dimensional pictures may show the points of different clusters 
partially (Fig.Sa) mixed. It might happen by chance, of course, that the better 
minimum will be obtained. 

· To gain a minimum closer to the global one, the Simulated Annealing 
(SA) model can be used (Kirkpatrick, S. et al. [12]). The sketch below 
presents the most elegant (and efficient) mutation of SA model, i.e., 
Threshold Accepting algorithm, presented first by Dueck, G. and Scheuer, 
T. [13]. The classical methods trace the configuration space along a path with 
decreasing step-by-step "energy",which causes the algorithm stop in the first 
encountered local minimum. The TA (and SA) algorithm allows one to free 
from the local minimum and inspect the wider area in search for the global 
solution. The uncertainty factor T decreasing gradually in accordance with the 
chosen annealing paradigm .f(T,t) to the zero value, represent~ the 
"temperature" of the algorithm. At the end, to obtain the higher accuracy (to 
gain the "bottom" of the minimum reached), a classical minimization method 
may be used. As shown in Fig.Sb, much better result was obtained. The 
various clusters do not overlap each other. However, the considerable in­
crease of computational load with simultaneous decrease in efficiency are the 
main drawbacks of this approach. 
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Threshold Accepting 
General Purpose Optimization Algorithm 

lt=o, EFE(ro,rot'), T=To • Set the initial configuration I 
IAA: t = t + 1 Main iterations loop I 

1 = rnd (l, ... ,M) 
l/or i=l ton 
p = rnd (-1, ... ,1) 
y1t+ 1 = y1t + P•Rstep(T) 
endfor 

Et+ 1 =E( ro,rot+ 1 ') 
L\E = Et+ 1-Et 

if (L\E stable) T = j(T,t) 

lif(L\E < T) goto AA 

lelse 
for i=l ton 

y1t+l = y1t 
t = t-1 

endfor 

lendif 

(goto AA 

• 

• 

Choose a random point 

and move it at random 

• Compute energy for new 
configuration and energy change 

• Use annealing model.fO 
to decrease the temperature T 

• Accept new configuration I 

• Reject new configuration 

Go to the beginning I 
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Fig.8 The results of mapping of the pulsed nuclear reactor IBR-2 data 
(256-dimensio~al) into 2-D space for, three mapping algorithms used : 

a) the old Niemann method, 
b) simulated annealing approach, 
c) Niemann's algorithm with pre-clustering of data 

17 

8 



,. 

2.5 

1.5 

0.5 

a) 

: 
I 
I 
z 

•• • . . : 
• • 2 

:, :, : 
3 

3 f I •. 2 I I I I I 

:, :, I Ill I l 
. . l2 JI I l I 1 

I I I I I l•A; I ·. 

I I I I I I I . 333 

I I I I 2 03 
2 •• I 3 ':s 3 
2 •• 
: 33 

-0.5 

-1.5 ' .. · · ..:o.i. -1.5 

,, I 
1.0 

•2 •• 

·~) 0.0 :l 

-1.0 :l 2222 

22222 

-2.0 --1 

-3.0 , ... 
"-.:2.0 -i.o -3.0 

.2 3:, f •• 

: 
2 
2 

0.5 

b) 

i."5 

j 
I •• 
~- .... ••• ••• 

\''• ., ,, '• 
'1 1111 

\ •1 
I 
I 

o:o 1.0 

2.5 

2.0 

Fig.9 The result of mapping of three linear clusters from 5-dimensional 
space into 2-D one. The lines do not doss each other in 5-D. 

a) The Niemann algorithm was applied, 
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The non-coherency of the mapped N-dimensional and transformed 
low-dimensional Euclidean spaces is the second and main source of inevi- · 
table artifacts. This sort of artifacts produced by the non-linear mapping 
do not depend on the chosen minimization technique. In Fig.9a the effect of 
spaces non-coherency is shown. The skew lines in the five-dimensional space 
cross each other in the two-dimensional one. 

The authors believe that the mapping can only support an operator in 
clusters analysis, enabling him the direct view into their structure, but can­
not substitute clustering. There exist many better and more sensible metho_ds 
for clusters extraction than discerning them directly from disfigured patterns 
produced by the mapping techniques. 

I The mapping should supplement the clustering and vice versa. I 
Because, the low-dimensional configuration co' should reflect the clusters 
structure of the high-dimensional input data, the results of clustering can help 
to overcome the problem of initial configuration for mapping algorithms 
(stated above), giving valuable information about the global minimum of 
"energy" function. To force the appearance of resulting clusters in the co', the 
artificial disturbance of the input squared distances array is introduc~d. The 
method (proposed by the first author) based on pre-clustering of data and 
clusters shrinkage factor K introduction for the clusters visualization 

(assuming high non- coherency between mapped and target spaces) can help 
to overcome partly the non-coherency problem. As is shown in Fig.Sc good 
results were obtained, even better than those obtained using TA algorithm. 
Moreover, the computational time is much lower than that for TA approach. 
Fig.9b shows how the algorithm works in the presence of inevitable space 
non-coherence. · 

5. THE NEAREST FUTURE INVESTIGATIONS PLANS 

In this short overview we do not touch on the problem of measurement" 
error representation and its influence on clustering and mapping (mis -
classification problem). This problem is under consideration. Some ideas will 
be stressed here only. 

As show Figs. 7, a single measurement with components disturbed by 
the random noise can be represented as hypersphere with a given radius. The 
mapping picture will consist of rings instead of points. We expect to obtain 
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Fig.to. The mosaic diagram of 2-D mapping pattern reflecting the cluster 
structure determined by the 257-dimensional points representing PSDs of 
IBR-2 nuclear reactor during one and a half year operation period after mov­
ing reflector replacement 

the mapping result (ro') like that presented in Fig.to being the mosaic map of 
the earlier result (without error assumed). Too high dimension of incoming 
data is the next problem which must be solved. Some of, e.g., frequency 
components, are useless and are the sources of misclassification errors. The 
computer experiments are being carried out to answer the question: How 
does the spurious, additional, randomly generated dimensions influence the 
clustering and mapping results? 

The genetic algorithm approach (introduced first by Holland) will be 
testified (as a different one than simulated annealing and neural network ap­
proach to the global optimization problem) for diagnostic decision making and 
principal data extraction. Taking advantage of the network resources (i.e. 
distributed· computing) to speed up calculations must be accomplished 
ultimately in the nearest future. 
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