


In Galois fields, full of flowers

Primitive elements dance for hours-
Climbing sequentially through the trees
And shouting occasional parities. ‘

S.B. Weinstein. !

1 Introduction

One of the most fundamental functions in data processing is data switch-
ing (or line switching). The role of this function is essentially increasing in
modern digital systems. Itis welllknown that the switching speeds of com-
puter devices are approaching a limit, any further improvement of computer
throughput can be due to increasing the number of bits processed simulta-
neously. In a crossbm switch every input port can be connected w1th a free
output port without blocking. The ¢rossbar network can prov1de any-to-any
routing with very small delay, but becomes increasingly costly for large num-
bers of processors. The reason for the cost is that the switching elements,
may lhave to be complex, and there are N? of them, where N - the number
of processors. There are two possibilities to make the crossbar network [1].
One is a network using dual port memories. Number of dual port memories
is number of input multiplied by number of output. It is not practical to use
- dual port memory modules for large scale network. A crossbar 2 x 2 switch is
widely used for the construction of networks [1,2] . But the cost of network
is proportional to Nlog(N);-and the transit.delay, to log(N).

As noted in [3], there are no switches with reasonable cost and perfor-
mance which have prevented the growth of large multiprocessor systems.. The
crossbar switch [4] is complicated also.

A new method of synthesis of multipoint full crossbar sw1tches is oased
on the transformation of input information, considered as a binary unitary
code, to codes over which simple logical ‘operation is executed.  Then -this
information is decoded. - This method allows one to construct full crossbar
switches having useful properties. One class of switches has correcting capa-
bilities. This method allows one to construct switches for analog and light
pulses also. Two methods of the synthesis are described: switches over Ga-
lois field GF(2™) and with correcting capability. These ones have modulo
structure, small delays and simple logical structure is needed for their real-
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ization. And besides, the switches have algebraic structure what makes their
synthesis easier.

2 Crossbar switches over Galois field GF(2™)

In this section we consider the method of . switches construction which is

based on the properties of Galois field GF(2™) widely used for the construc-
tion of effective error correcting codes which correct ¢t < n /4 mistakes in

. n-binary words (BCH-codes). Other areas of application of finite fields are ’

known. The authors have shown that using the algebraic theory of BCH-
codes one can construct coordinate processors and majority coincidence cir-
cuits for large inputs[5,6]. .

2.1> Some rules of executlon of operatmn in Galois
ﬁeld GF(2"‘) |

In order to make this abstract easier for the readers who are not familiar
with the rules of the execution operations over GF(2™ ) elements, necessary
information on these rules is present below which has no claim on complete-
~ ness and generality. Concrete examples are given for m = 4. ‘As is known,
Boolean algebra is the theoretical base of modern computer technology where
the discrete function is equal to 0 or 1 in the binary case. As shown in [7,8],
Boolean ‘algebra is the particular case of Galois algebra. Operations in Ga-
lois algebra are determined over the main field GF(2) having two elements
0 and 1 and the extended field to m-th power having (2™~') nonzero ecle-
ments which are considered as m-bits words of cyclic codes. The number
of nonzero elements of the finite field GF(2™) is equal to some power of its
characteristics, i. e. n = 2™"!. The number of different elements of the
field is called its order.. All elements of the finite field can be obtained by
means of irreducible polynomials which tables are presented in [9]. We have
chosen the irreducible polynomials of the 3rd (X3 + X + 1) and 4th degrees
(F(X) = X*+ X +1) (m = 4). Tt should be noted that sign ”+” will be
used to denote modulo 2 additions. For m = 4 the number of nonzero ele-
ments equals 15. Among these elements there are four linearly independent

(basis) elements:a® = 1000, a = 0100, a®> = 0010 and a®> = 0001. Onc of

these elements, a' , is the root of the polynomial F/(X). Then each nonzero

element can be presented as a degree of element @' . This means that the
multiplicative group of the finite field is cyclic in character. The least posi-
tive number n, for which a™ = a° = 1, is referred to as the order of element

al. If the order of element a! equals n, elements a°, a?, a2 .a® 2, a1 are
different. Thus, in our example n = 15. Therefore, e. g, a® = (a'®)? = a°
; (@) = a®®a’® = a!, etc. Taking into account that a! is the root of the

polynomial F( X’) the remaining elements of GF(2%) can be obtamed from
the equation a*+a+1 =10, i.e. a* = a+1 = 1100; a® + a! = a® = 0110

~and so on. There are at all 15 nonzero elements over GF(.‘Z“) Galois ﬁeld.

a® = 1000 al = 0100 a’ = 0010 a® = 0001; a* = 1100; a® = 0110; ®

0011; «” = 1101; a® = 1010; a® = 0101; ¢'° = 1110; a'* ——0111 al? = 1111
a® = 10113 a!* = 1001; a®® = 1000 = 1. It is also convenient to present the
field elements A and B as polynomial of degree m — 1. For m = 4 we have:
A = A + Ala; + A?ay + A3a3 and B = B + Blay + B%a; + B3a3 ,
where Ag + A3z and By <+ Bs are equal to 0 or 1. Thus, if element A = a8,
then Ag = Ay = 1 and A; = A3 = 0. Addition and subtraction operations
in the field GF(2™ ) are equivalent and carried out by modulo 2 addition.
The operation of multiplication of two elements is carried out in the same
manner as that of ordinary numbers with the difference that this operatlon
is perforrned by modulo irreducible polynomial. ’

2.2 Scheme of the one-bit 1 x n crossbar switch

The following method for switch construction is suggested. Input bits arriv-
ing from n(n = 2™1) senders are presented as unitary code one-bit words
which is encoded to Galois field elements in increasing order of their degrees.
The outputs of the encoders are connected to the first group of the inputs
of the modulo 2 adder. The addresses of the receivers are supplied to the
second. group of inputs according to the table of addition of two elements in
GF(2™). The outputs of the senders are numbered as 1 to 2™~!. Then the
results of addition are decoded. Each decoder has m inputs and 2™ outputs.
The output 0 is not used and the corresponding outputs of the decoders are
connected. For example, to send one bit from input 2 (position a') to receiver
5, it is necessary to deliver the control word a® . We get a' + a® = a® = 0101
at the outputs adder. As a result, we get a pulse corresponding to a logical
one at 5th output of the binary decoder. Fig.1 gives a typ1cal scheme of one
(first in order) unit.
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Figure 1: One unit’s scheme of one-hit 15 x 15 crossbar switch

It is clear that the scheme of the encoders is very simple. They arc the
sources of logical one and logical zero. The delay T of a switch can be
calculated from the relation T = 27, + 274 , where Tp - is the delay of
the AND-gate which is in the decoder and Ty - the delay of a modulo 2

adder which equals the two delay of the AN D-gate. Then the total delay is -

4T AND-gate. It should be noted that next approach can be suggested
to construct a switch having inputs (outputs) which are multiple a degree of
two as Galois field GF(2™) has 2™~! nonzero elements: ‘to use the modular
nature of the Galois field. For example, to construct a one-bit 16x16 switch,
the GF(2° ) field can be used instead of the Galois field GF(2*) and modulo
2 can be minimized. It is clear the switches over Galois field GF(Q’") have not
possibility of errors correction. The number of control(addresses) bits needed
for N-bit n x n switch is equal to N x n x logz(n). One can recommend the
following next irreducible polynomials for the construction of switches for n
= 31, 63, 127, 511 and 1023: X5+ X2+ X +1; X6 4+ X +1 s XTH X +1;
X+ X'+ X34+ X241 X°+ X +1 and X4 X34

3 Crossbar switches with error correcting
capabilities

As known the error correcting codes are wide-spread used in automatics

~and computing technique. These codes are applied especially eflectively for

checking errors in memory units. As we show below the error correcting
codes can be effectively used in suggested by us switches for construction a
new class of switches with correcting capabilities.

3.1 Use of Hamming codes

Hamming binary codes are widely used in technique. It is the reason to
research switch’s structure in which, for instance (7.4) Hamming code, the
generated polynom of which is g(X) = 1 + X + X3, is used. Then generated

matrix (7 has the following form:

9(X) 1101000
o Xg(x) | ou0100 | _
X2(X) | oo11010 gk
X3%(X) \ 0001101

The remaining code vectors are obtained through summation of G-matrix
strings in any possible combinations. Let us now enumerate all code vectors

*in order to information symbols were ascendly ordered by binary numbers

(10]. Coding table which in our case is used for obtaining addresses of delivers
has the view shown in table 1.

Table 1
Code vector
Code vector
N | Check | Information NTC oke \(IC fm- _
bols |  symbols 'hec nformatiion
SyTIOO )1000 symbols symbols
‘l 9 011 1001
2 011 0100
10 110 0101
3 101 1100 \
11 000 1101
o 0010 12 010 0011
b 001 1010 =
: 13 100 - 1011
6 100 0110 .
- 14 001 0r11
[ 010 110 15 111 Il
S| - 101 0001
5



The parity check matrix which is written through the vector A(X) =
14+ X + X2 + X* has the form

0010111
H =1} 0101110
1011100
The block-diagram of one-bit 15 x 15 -switch is shown in fig.2. }
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Figure 2: Block-diagram of one-bit 15 x 15-switch \vith‘(torrecting capabilities.
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The switch has 15 one-type logic layouts the first of which is shown more
refining. The signal from the first source is passed to the strobing inputs
of elements AND group, the codes of delivers addresses are passed to the
second inputs of this group. The outputs of the AND elements are joined
to the inputs of calculating syndrom layout. Besides information bits are
passed to the inputs of decoder. Outputs of decoder 1 are joined to the set
inputs of register but outputs of decoder 2 are joined to counting inputs of
this register. Let us shortly see the principe of the switch’s work. Let us
suppose that we need in transformation simultaneously signals from the 1st
source to the 15th receiver, from the 2nd source to the 14th receiver, from
the I4th one to the 1st one and from the 15th one to the 2nd one. The
signals form remaining sources equal zero. As the result we have the table

of communications:
Source number- Receiver number Receiver address

1 ‘15 11111111
2 14 00100111
14 1 11010000
15 . -2 01101000

Let us see the signal path from 1st source to 15th receiver on-conditions
that the error appeared in the Tth bit during the transmission of the address.
In other words‘the code address 1111110 will be on'the outputs of the group
of the elements AN D instead of the 111111. Then the code 1000 which suits -
to 7th column of the matrix H will be obtained on the outputs of the layout
syndrom calculation. The correction of the register value is fulfilled by means
of the decoder D1." As a result, the data from source 1 is transformed through
the decoder D2 without error to the receiver 15. In the same way we can
check if the other channel of the switch works correctly. Thus switch works
without errors even if up to one error in each address (15 errors in total)
appeares simultaneously. N such modules are needed for the construction of
N-bit switch. The codes of the addresses are common for the appropriate
bits in this case. We can use the modified Hamming code instead of the usual
code of Ha{mming however in this way we need in complement logic elements
for implementation of a switch. We can use the binary Hamming code as it



is frequently done in practice. Such approach does not change the structure
of a switch. Let us estimate the switch speed T¢:

Tc =Tanp +2-Tp+ Tp + Try,

where Tanp - delay of AN D-gate; Tp - delay of a decoder; Tp - delay of a
parity checker and Tg, - the time of a register switching. Rough estimation
shows that To = 10 x Tynp. If the scheme of the full decoding of coding
words which have the error are used instead of the classic scheme, the speed
“of the switch will essentially increase due to increasing of the number of logic
elements. Each channel has only one group of elements AN D and 7 decoders.
Besides, asignal at the first output, for instance, must appear not only when
there appears the code 1111111 on its inputs, but the codes with mistakes:

0111111, 1011111 and, etc. In this case T, = 3 - Tanp and it is very small.

3.2 Use of Bose—Chaudhurl-Hocquenghem
(BCH)-codes

BCH-codes are one of the most important classes of random-error-correcting
codes which are known. The implementation of such codes permits one to
construct switches with wide functional possibilities. Together with correct-
ing capabilities the fast detection of appearance of a catastrophic number of
errors during transformation and switching data is possible. In general the
logic layout of such switch is the same as shown earlier, but the majority
coincidence scheme is added for detecting a large number of errors. So far as
the problem is to construct fast switches we suggest to use well-known table
of methods of BCH-code error decoding (11,12]. '

We consider the use of such codes for construction of the switches with
error correctlng capabilities on the example of BCH-codes with m = 4 and

t = 3, where t - set of independent errors within the block of n bits. Consider |

the finite field GF(2*). The generator polynomial for ¢ = 3 is g(X) = (1 +
X+ XH(1+ X+ X2+ X3+ X*)(1 4+ X + X?). The parity check matrix of
the (15,10)-code may be [9]

1000 1000 1000
0100 0001 0110
0010 0011 1110
0001 0101 1000
1100 1111 0110
0110 1000 1110
0011 0001 1000
HT =] 1101 0011 0110
1010 0101 1110
0101 1111 1000
1110 1000 0110
0111 0001 1110
1111 0011 1000
1011 0101 0110
1001 1111 1110

Withm =4t =3mxt=4x2+2=10 check bits are required. We also

suggest to use the well known W.Peterson theorem. For any BC H(’ 1.d)
code and any j such that 1 < j <n—1, thej X J matrix

S L 0 0 0 e 0
Ss S S 1 0 e 0
Lt: 55 514 8

Sy &2

Sat-1 Swu—z Sa—z Sycy Saes -t S
is nondegenerate if the power symmetric functions S S; depend on # or + + |
field elements, it is singular if the S; depend on fewer than (¢ — 1) different
field elements. In other words, to Cal(ulato { itis necessary to calculate
the determinant L, in Galois field. The expressions for the determinants f.o‘rv
t =1 -3 are given in table 2. : L '
Table 2

d(itLt
S
S? + 53
6 o
S? 4+ 5755 4+ 5185 + S2

[ VR




We see that det L, can be zero or any field value. Therefore, the logic
expressions for majority coincidence scheme (MCS) contaiuing n iuputs and
t outputs have the form.[6]

output, = detL;VdetL,V detLs...detL;V ...detL, > 1
outputy, = detL,VdetLs...detL; Vv ...detL, > 2
outputs = : detLs...detL; Vv ...detl; >3
3 : : o Do)
output; = - detL; Vv ...detL, Zj
output, = ' detL, > t

If to the MCS descrlbed by Egs. (1) we add simple schemes for analyzing
determinants for Os and l_s, we can also obtain rigorous equalities, as shown
in fig.3. It should be noted that such devices can be realized in practice by
using fast tabular methods. - The circuit shown in fig.3 was designated so
that it can be realized for large numbers ¢ by using PROMs containing 2m
address inputs. Note that the length of a word and complexity of the error
correcting layout essentially increase with increasing of ¢. It is the reason that
we limited ourselves to the case when ¢ = 2. The simple and fast methods
for searching for places of errors are well known for this case [11,12].

detly = S

OR }

Figure 3: Circuit for calculating determinants in the field GF(2™) for t = 1 <+ 3.
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Example. We assume the code word (addresses of a receiver) in ques-

tion to be A = 100000111100000. With two errors occurring at the fifth
and the tenth positions from the left, the received sequence takes the form
1000101!1000000 Computing S; for j = | = 3 it can be obtained S, =
Ty = " S = a?4a¥ =0, 5 =d +d® = a0, detl, = a't;
detl, = a”, (l€t13 = 0. The general form of the quadratic error is [12]
X248, X+(53+55)/5,. Transformation forin X+5/xY yields Y24Y +d = 0,
where d = (.S + S3)/S;. The roots are find by only d;. If roots corresponding
to all possible d;’s ‘are stored in memory as a table, they can be directly
obtained. The root X; is Xy = S; x Y. Only ¥} can be stored, 110\\e\e1 since
X, = S, + X,. For our e\ample d = a® and Y] = ¢®. Then X, = S1¥; = d’.

Thus the scheme of two errors correction and detection of the lalge nun-.
ber of errors work in accordance with the folIOWS algorlthm

det Ly = 0 - error are absent.

- detly #£0, I)ut detL, = 0. We have onc ‘error and ‘31 is the coordinate of
it. :
(léiLz #0, but detLy = 0. We ha\-'e two errors a,ud their coordinates can
be fast calculated through the table.

delLs # 0. The solving is ¢ > 3.

4 Conclusmn

The main dlffelcnce of the switches (l('scubed in this paper is that not iu-

~ formation but addresses of an active source are switched. As a result, these
“switches have a simple modulo structure. The absence of a bus which re-

quires high power current switches, the correcting possibility. small delays
and advanced technology make it possible to construct effective switches
with many inputs for multiprocessor systems and hlgh speed networks and

- communication with wide functional possibilities.
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AnexcaHupOBI/IH Map. ER T -_T',.?‘EIOV-94-5‘I_4,

Kommyranna HH(bopmaurm B IIO.J’ISIX l"anya GF(Z'")
Hpeunoxen Honhm THII Mnoroycrommsmx TIONHEIX Kommyraropon c a.nre6- ,
panyecKoi CTPYKTYPOi. ITH KOMMYTAaTOPH MMEIOT MAJICHBKHE BDEMEHHEHIE 3a-

"|.0EPXKH H MOTYT IIEPEKTI0YATE ONHOBPEMEHHO TIOTOK J:(ammx C n BXOROB HA m
'BREIXOHOB. - IIpeacraBieHbl Takxe KOMMYTATOPH, KOPPEKTHPYIOIHE ornu61<n '
‘KO).'(I:I XoMMHuHTA H BqX—KO/:[hI HCIIOJIB30BAJINCE AT TIOCTPOCHHS yKa3aHHEIX
| xomMyTaTOpPOB." Hpezmoxerra xom(pemaa cxeMma MHoroyc'rommBoro IIO.J’IHOI‘O

KOMMyTaTOpa c KOIIOM XBMMHHI‘a

Pa6ora maonHeHa B JIa6opaToprm BHCOKHX 9Hepmu OI/ISII/I

- ‘Hpenpu'HrO&,euuHeHHoroyuucm'ryra'suie'pumx uccnegosaumit. Hybua, 1994 - 2100
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The new type of multlpomt full crossbar sw1tches wrth algebrarc structure;

; ” is: suggested Such switches have small delays and possrbrllty of sw1tchmg S
S simultaneously any n mputs and m outputs ‘The swiches w1th error—correctmg 1
s possrbllmes arealso supported Hammmg and BCH error-correctmg codes were
| .used for construction of such switches. The concrete sheme of 15 X 15 multlpomt
ol full crossbar sw1tch w1th Hammmg code is glven e
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