


In Galois fields, full of flowers

- Primitive elements dance for hours
Climbing sequentially through the trees
And shouting occasional parities.

S.B. Weinstein.

1 Introduction

Possibility of an application of polynomial forms for constructing Galois fields
GF(2™) switching functions (GSF), the perspective of their using for syn-
thesis of universal dynamically programmable logic modules and modes of
layouts synthesis both for completely and 1ncompletely defined functions were
considered in [1,2]. The possibility of using’ GSF for constructing the new
types of EPROMS and PROMs is considered in this paper.

As well known EPROMs and. PROMS are w1despread used in modern
computer technique. However it demands the using of comphcated and ex-
pensive technology.. They have comphcated logic structure The typical
EPROM-module. includes decoder, memory array, .amplifier-shaper and so
on. All of this technique increases delay time and cost of module. In this
paper the prlnmpally new approach to the synthesis of a EPROM and PROM
which is based on the representatron of switching function of m arguments in
elements of Galois GF(Q’") field is suggested. As shown, the representation
of switching functions in the form of Galois field polynom is promising for
the calculation and synthesis of EPROM. The active part of our EPROM
is purely combinatorial and has no decoders, amplifiers, therefore, signal de-
lays in them are minimal. Besides the computer algebra apphcatron for the.
calculation of the Galois switching functions (GSF) in the field GF(2™) is
used. ~ «

2 Basrc attrlbutes and deﬁnltlons

As the Galois field GF(2™) is a natural extension of a Boolean ﬁeld the repre-

~ sentation of GSF as polynomials where both the variables and the coefficients

are field elements has a number of fundamental advantages.
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1. Tt is possible to perform algebraic operations on GSFs, which simplifies
the problem of minimization and its formal representation.

2. In a Galois field there are operations like addition, multipvlication and
division which give additional advantages over Boolean fields.

3. The representation of switching functions in the form of polynomial
makes it possible to use standard programming systems to. calculate
complicated logic structures.

4. Since the ihput and output states of a lo"g"ic"‘struc‘tur‘é are coded by
field elements, the following state can be represented as a polynomial
functlon of the current state and the current output.

5. The descrlptlon of multivalued and multilevel schemes is very compact
‘whlch s1mphﬁes their theoretlcal study (3] B

The case p=2 is considered, however all results are valid for 6ther simple
p, therefore the actuality of the given direction is increasing with the creation
of multivalued logic devices [2]. Let us introduce-a field of coefficients GF(2)
with elements 0 and 1, modulo 2 addition as a field’s addition operation and
a conjunction as'a field’s multiplication operation. In this-field the operations
of addition and -subtraction are completely identical. Introduce over GF(2) a
. field GF(2™) as a field of polynoms with coefficients from GF(2) and degree
less"than m. The primitive root of ‘irreducible polynom of degree m with

its-all degrees will play the role of variables. The degrees of the primitive -

- polynom- cover all the field GF(2™). The addition operation in this field is
* the usual operation of polynom’s addition, where the coefficients are added
in the field GF(2). Multiplicationis a multiplication of polynoms in modulo
of a polynom. The first m degrees of primitive root a°,a,a?, a3,...,a™! are
linearly independent and can be given as a basis of the Galois field. This
means that any field ’s element X can be represented in the form:

(1) X—ao*a +a1*a+ +am1*a },

where a; € 0,1. If we take any blnary number (ao, al, . ,a,ﬁ.i) of length m
as.a set of coefficients a; from (1), we may interpret it as the element of the

Galois field. - | .

,,,,,,

Menger has shown [4] that any switching function f(X) can be represented
in the form (aud in a unique way)

2m_1
(2) ~ J(X) = F(0) + 36X,
' ™1 :
(3) , Gi= Y Oz}’(f(())—fj),
. o .

where f; = f(e;), and a; = o’ - j-th degree of a.

3 EPROM layout synthesis

Starting from (1), when performing raising to a power by means of multipli-
cation of (1) by itself (appropriate number of times), one gets all the X* from
(2) in polynomial form. If for a concrete switching function coefficients G; are
calculated from formula (3) and its values with degrees of X in polynomial
form are substituted into (2), after eliminating of equal values we can get a
GF(2) polynom system. Each polynom will be represented as a coefficient, of
basic element o'. However,in this case the values of G; will be hardwired in
layout.

We separate EPROM to the active and passive parts. The active part
of EPROM changes its states in each clock but the passive one reserves all
preliminary loaded adjusting coefficients and does not change its states when
process of access to memory. The variable X is the input for active part of
EPROM. Coefficients G; are loaded into passive part of EPROM (file regis-

ters) in sequential mode. G; are represented in the general polynomial form

through basis as we have represented X in (1):G; = b;pa® +--- + b;,_,a™ L.

The given expressions with the expressions for all X* are substituted into
(2). As a result we will get the required polynom for EPROM, in which X
and all G; are variables given via expansion in the basis. On its basis one can
synthesize EPROM, X and all G; being inputs for layout, but G; are loaded
from passive part of EPROM. To adjust EPROM to a concrete function it is
enough to calculate values of all G; for this function from formula (3) and to
load them into file registers. The values of G; are directed to the inputs of
layout together with the values of X during operating EPROM. The expres-
sions obtained for X* are bulky, therefore all the calculations are performed



on computer. Using the fact that X* = X x X*~1, the layout of EPROM
can be simplified by means of increasing the number of cascades in it, i.e.
by increasing the delay time [2]. For example, only even parity degrees of X
can be realized (their expressions in average simpler), and odd parity degrees
are obtained on the further cascade by means-of multiplication X#*! = Y’ X,
where Y is outputs from layout of X% and 1=1,2,...,(2™"! — 1)/2.

Example 1. For the Galois field GF(2*) and the irreducible polynom
z* =z 41 formula (2) has the following form:

C P(X)=F0)+ G1X + GaX? ++-- 4+ G15X'5 = F(0) 4 [G1X + G2 X% + Ga X3+

X4[G4 + Gs X + G6X2 + G7X3] + XS[GS + GgX + GlOAX + G11X3]+
X2(Gyy 4+ GiaX + G14X2 + G5 X3

Substituting the expressions for G; and X k¥ in polynomial form we get a
two-cascade layout of the calculation of any 4-input switching function (4
input EPROM). The first cascade represents the calculation of the expres-
sions in brackets, the second is the realization of the remaining operations of
multiplication and addition. However, the expressions for X3, -X'? are still
large. Using only the expressions for X, X%, X*, X8 we get the following
expressions for F(X): -

F(X) = F(0) + GiX +G2X? + G3X°X + GaX* + GSX“‘X + GGX4X2-+ ,
G7X X X + G X¥+ GoX®X + G1oX®X? + GuX®X°X + G12X8X4+
L GsXEXAX + (;14)(8)(4)(2 L GisXBX4X2X = .
F(0)+ [X¥(Gs+ GraX )] + [G1 + X¥(Go + G1aX X + G2+ GaX +
8(G10 + GuX + GraXX? + [Gs+ G5 X + (Ge + G7X)X2]X“
Gus[(X°X X 2X )]

The genera,l la,yout of suggested EPROM is shown on fig.1. It includes the
coincidence matrix with-m +m(2™ —1) inputs, file register having m(2™ —1)
registers, sequential interface and group of modulo 2 'adders. The coincidence
matrix and modulo 2 adders are active parts of the EPROM. The sequential

interface is used for loading the adjusting coefficients into file register. Two
modes of suggested modules can be:constructed. The first-is' in EPROM
type-and the second one is in:the 'view of PROM. Technology of creating

file register must be energy dependent in the first mode because the data
must be saved after source power turn off. However if file register is a usual
trigger register or dynamic memory, all coefficients must be loaded at the
beginning of the work from host computer. Since the file register does not
demand high speed it may be realized by means of cheep technology. We
need not file register in the second case. It is enough to program the values
of logic levels (high-low) for reserving.of beforehand calculated coefficients
for instance through the fuse-programmable method. We can see from fig.1
that delay time Tgprom is TEprom = Tc+ Tm, where T¢ is the delay time in
coincidence matrix and T}, is the delay in the modulo 2 adder. As known a
modulo 2 adder realized in usual AND-gates. That is the reason of high speed
of suggested type of EPROMs and PROMs. The active part has polynomial
structure, all expressions are known in analytical forin that is the reason to
use computer algebra and analytical calculation for their synthesis in hard-
ware. The analog schemes are absent in the active part of our unitsthat lead
to high reliability of suggested EPROM.

For the calculation of G; the EPROM layout 1tself may be used. It is
sufficient to load into registers of preserving of GG; the values of the functions
F; for all i=1,....2™ — 1 and sequentially put into the inputs of layout values -
of X =aF, where k=1,..,2" — 1 (for k = 2™ — 1 value f(0) is added). On

the output we get the required values of (; with the minimal time delay.

"It is possible also to use systolic structures for the calculation of G;. If for

readjusting EPROM from one function to another only a small number of
values of outputs is changed, changes of the volume of the calculation for
(3) will be drastically reduced. So by changing one value of the output at
the point oy from the old Fj, to the new Fg, ., expression (3) becomes as
follows: Gi,.., = Giyy + (Finew — Fry)ai', forall i=1,.,2" ~1

4 anstrucfion of EPROM through
EPROM of a less number of inputs

With increasing m the complexity of the expression for EPROM increases,
therefore it would be useful to get values of any switching function of m
inputs by means of EPROM of a lesser number of inputs/outputs, iy other
words, working in Galois fields of lesser order. Let us consider any function
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F with m inputs and m outputs. The domain of its definition X is a set
of all binary of.m length. Let Y be a domain of values of F(the length
m binary number). We assume that the inputs/outputs of the function are
from left to right. Let us call for convenience m; left inputs/outputs lower,
the remaining m, = m —m; inputs/outputs higher (we have m > m, > ma).
Partitioning X into 2™2 classes' K; is as follows: element z from X belongs
to K; if its higher bits represent number i in binary form. Each class has 2"
elements. They differ only in lower bits. In each K; let us define a pair of
functions F;, and F;, as follows. Any z belonging to K; may be represented

in the form (x1, 22, ..., Tm1, Tmig1,. -, Tm)y (Tmt1y- -+, Tym) being a constant -

for any z from K;. If y = F(z), then y can be also represented in the form
(Y1,Y2,- -+ Ymi» Ymy 415 - - - » Ym ), and in accordance with the definition assume
Fole) = (y1,...,Ym,) and Fi, = (ymy +1,...,Ym). As for each K; the high-
order bits of inputs values are constant, we may take for any Fi, (I=1,2) as

7™ |EPROM v
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XiX3X3——| . TRIGGERS
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'Fig.2. Global structural scheme for m=5, m,=3, my=2, _
g x; ~inputs, y;-—outputs, Gy, Gj —~adjusting coefficients. -



inputs only lower bits, and consequently to realize it in m; inputs/outputs
of EPROM. For each F,, let us calculate from expression (3) coefficients G;,;
for4;=0,...,2™2 —1, j=1,...,2™ — 1. Designate as z; an input element
from K; that has lower bits equaled zero. Then we may get the values of the
function F' (separately lower and higher bits) by formulae analogous to (2)
through GF(2™ field operations:

Fy(z) = DI Fahpli, o) + K207 G X0, Gl = T2 Ginger,

where X = (xl, yZmy ), (1, m) equal 1, when the higher bits of = coin-
cide with ¢ in the blnary representation and equal zero otherwise. In other
- words, p(i,z) is a term from all (z,n, +1,...,Zm,) and zj is ‘negated if in the
k-th position of the number 7 in the bmary representatlon is 0. To obtain all
the bits of the outputs, 2 EPROMs with m,; inputs/outputs are necessary.
The mode with EPROM with m; inputs/outputs and EPROM with m in-
puts/outputs is possible. Then G;; from F, is put into the firss EPROM,
but Gj; from Fj, is put into the second EPROM (with m, inputs/outputs),
besides for the second EPROM the lower bits act as the higher ones and vice
versa. In this case the memory capacity for storing the adjusting coefficients
1s equal to the storage for EPROM for m inputs/outputs, but layouts for
EPROM themselves are simpler because of a lesser number of inputs /outputs.
The global structural scheme for m = 5,m; = 3 and my = 2 is represented
in figure 2. It is obvious that the problem is simplified for a function with
the number of outputs less than the number of inputs. In this case one can
take m; equal to a number of outputs, and EPROM for obtaining F;, is not
needed. So if the structural scheme in fig.2 for m—5 inputs had 3 outputs
8 x 4 matrix for GF(22) would be absent.

5 Synthesis of ROM and sequential
automata

Let us show the rules for synthesis of ROM and sequential automata as
particular case of PROM in the concrete example.

Example 2. Let us calculate the scheme of sequential automata and"

ROM simultaneously having capacity 2* for bit words. - The Galois field

ADDRESE -
v A .
——— 'xl

COUNTER o
* IN GF(2') |y, . o
SHIFT : Xs
e T &
-1 &
S/R - S
- &
-] & ,
[ | - -y
{ 1 &
&.
1
~ &

MODULD 2
ADDERS

OUTPUTS

Fig.3. Block schame of sequantial automata/ROM.
S/R=1 - mode of sequential automata,
S/R=0 - mode of ROM..



GF(2*) elements generated over the irreducible polynomial X* + X + 1 ar-
range corresp‘ondingly in increasing order of their powers at the inputs in
case of sequential automata. At the outputs we obtain the same elements in
the given sequence (as shown in Table). The Galois field GF(2*) elements
in increasing order of their powers can be rather simply obtained with the
help of the counter in the GF(2*). 1t is a shift register with the logical oppo-
site connections. If we carry unit into the low-order digit and zeros into the
other ones the successive shifts of the register will give us presentation of the
a' element powers and the root of the polynomial X* + X +1 as they are
shown in Table on the left. To construct a scheme the sequential automata
and ROM it is necessary to calculate 15 coeflicients in the polynomial GSF
representation of 4 variables.

Table
Inputs Outputs
X:XO,'Xl,Xg,Xg F(X)
0 = 0000 0 = 0000
a° = 1000 a; = 0100
a' = 0100 0 = 0000
a? = 0010 "a” =1101
a® = 0001 a® = 0110
a? = 1100 ‘a =1110
a® = 0110 a'l = 0111
a6 = 0011 a® =1011
a” = 1101 0 = 0000
8 =1010 1 a® = 0001
a® = 0101 a' = 1001
a'® = 1110 - a® = 1001
a'l = 0111 0 = 0000
al? =1111 a® = 1010
a'® = 1011 et =1100
a' = 1001 .a® = 1000
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By calculation of the G(k) coefficients and elimination of similar terms
on ‘computer we get the following smtchmg fllllCthIlb

XoX1+ X2+ XoXo + Xo Xz + X, Xy + Y1X3+ XoX1 X5+ ¥1\2X3+

/\OX X,X3 <a’ >
KXo+ Xz + X3+ X1 X3 + XoX; Xa+ X1 X X5 < {11 >
Xy + XoX, + XoXs + X1 X0 4+ X1 Xs + X100 X5 + Xo X1 X2 X5 < a? >
Xo+ X X5+ X’ X X3+ XoXo X3 <d® >

With the aid of these functions a scheme of sequentlal automata ShO\Hl in
fig.3 was obtained. Such schemes can be used to get a given sequence of
binary digits for example in microprogramming control devices. It is enough
to turn off feedbacks and to load parallel-in according address codes to the
inputs of address counter for using this scheme.

6 Conclusion

The new variant of a programmable memory unit is suggested. This one
may have higher speed and reliability in compare with already known units
because an active part of such unit consist only from AND-gate elements.
Suggested EPROM can be used as module of associative processors or uni-
versal dynamic programmable logic module. The basic problem is as follows:
when the number m is big the complement researches are required due de-
mand of large calculation of adjusting coefficients in GSF polynomial form
and aids of optimization multistage schemes (for example the delay times
and required AND-gates). The support is needed for this researches.
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Hoselit THI nporpaMMMpyemou naMaTH c anre6pauqecxou c-rpyxrypon . .

I'Ipe)moxceﬂ npnmmnua.nbuo Honbm IIO}J,XOJI K cnmeay EPROM u PROM 6aanpyromm‘7rcsx :
Ha IOJIMHOMMAJIBHOM TPENCTaRNEHUH IEPEKAIUATENBHBIX bynxumit m nepeMesHsIx B nossix F'aya -
GF (2~m). EPROM nenutcs Ha 2KTUBHYIO M NACCHMBHYIO YacTH. AxtusHag yacrs EPROM menger

* CBOM COCTOSHMS B K2JKAOM TAKTe, B MACCHBHOM xpamrrcsr BCE npeunapmenhuo 3arpy>r<euume Ha-
CTPOCUHBIE x0apduLHEHTRI, HE Memuoume CBOMU cocrommsr B TNIpoLEcce JOCTYna K mamary. Koxpl

A7PecoB SRNSIOTCH 'BXORAMM AN AKTHBHOI . uactu EPROM. I'Ipem;apmeumro HOACYUTAHHLIE

- 1o popmyJie Menrepa HACTPOEUHBIE. xostb(bnuuembr 3arpy>xaloTcd B naccusHylo yacte EPROM

(dbaitnosptit perncTp) B MOCNEAOBATENBHON MOAE. AKTHBHAA yacTh npepnaraemoit EPROM co-

AepxuT TON6K0 AND-BEHTIWIM 1 He uMeeT uexonepon M TIpeRyCHIHTENEH, TOITOMY 33IEPXKKH B HEH
. MuHUManbHBL 15 60bILMX m npnmeuﬂercn CYMeprO3ULS B 10X I‘a,rrya MEHBILEH PAIMEPHOCTH.

Ina BBINUCIICHUS Koacbcbuuuemon nepexmoqareubﬂmx (byﬂxuvm npumemercn xomnb}orepﬂasx -

’ Dtel
Pa601a BBITOJIHEHA B JIa60paropun nhrcoxux auepmu OHSIPI» Lo e

‘New Type of Programmed Memory wnh Algebralc Structure L BRI

Alexandrov LN. efal. -+ o ST f:"-EIOf94—513

The pnncxpally new approach to the symhesxs of EPROMs and PROMs which is based on the rep—’.
resentatxon in"a polynomlal form of -switching " functions of m arguments is- elements of Galois

‘" GF-(2~m) field is suggested ‘We separate EPROM to the active and passive parts. The active part

of EPROM changesits statesin each clock but the passwe one reserves all preliminary loaded adjusting
coefficients and does not change its 'states in the process of time access to memory. A code of address

.is the input for active partof EPROM. Polynomial coefficients that are preliminary calculated through

the formula of Menger are loaded into passive part of EPROM (file registers) in the sequermal mode. -
The active part of our EPROM includes AND-gates only and has no decoders, amplifiers, therefore, ’

ksxgnal delays in them are minimal. The superposition of Galois fields GF (27m1) and GF @~m2),

where “m = ml + m2, is apphed for' large m. Besides, the computer : algebra apphcauon ;
for the calculatlon of the Galois swntchmg funcuons in the held GF ($2"m$) is used.- :

The mvesugatxon has been performed at the Laboratory of ngh Energles J INR
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