
El0-93-92

I.Stekl, A.Kreipe, A.V.Salamatin

APPLICATION OF RESIDENT PROGRAMS,

HARDWARE INTERRUPTS

AND EXPANDED MEMORY

IN PHYSICAL EXPERIMENTS

~

<

@ 06be.zlHHeHH .. ii HHCfHTYT ll.!lepu .. x HCCJie)IOB3HHii • .IJ,y6ua, 1993

At present many personal computers IBM PC AT,XT are used

in the JINR. Some of them are connected to CAMAC crates by

the controller KK009, which was proposed and constructed in

the Laboratory of Nuclear Problems. The controller is fully

described in
/1/ The possibilities of IBM PC AT for the

tasks of the real time are limited. Hardware interrupt is one

of the chances to implement the task of the real time on the

computers PC AT and improve the performance of computer PC

AT.

The data acquisition from CAMAC through the controller

can be performed by two types of software. The first type

tests all the time the registers of CAMAC controller for

signal LAM. The computer is fully engaged in the testing. The

second type uses the hardware interrupt. The advantage of

interrupt lies in the fact that cOmputer co-operates with any

modules in the crate CAMAC only when the data are prepared.

It was decided to write for our experiments terminate and

stay resident programs (TSR } working with the interrupt.

The computers IBM PC AT have also often the expanded

memory. The expanded memory is memory over 640kBytes. Our TSR

programs use this memory for data buffers. It decreases the

volume of the conventional memory (below 640kBytes

?Ccupied by TSR programs. Software was written on Turbo

Pascal. The interrupt procedures were written in Turbo

Pascal's inline assembler.

1. Controller KK009

The connection between the computer and modules in the

crate CAMAC is performed by the controller KK009 and a

computer bus adapter PK 009. The bus adapter occupies one

slot on the computer main board. The following features are

included in the controller - i} up to 7 crates in one CAMAC

system, ii} access to the registers of CAMAC as part of

I

the computer memory, iii) the execution of multi-crate

commands. The bus adapter contains the switches which define

number of interrupt and the address of the system of the

crates. System of crates occupies addressable space 32kBytes

long. The first 128 bytes o.f the memory space are reserved

for the control and status registers and for the multi-crate

commands. Writing to the control registers performs some

commands (e. g.' select crate, init controller, reset

signal Inhibit) . The control register 0 the first five

bits determines modules which are the source of the

interrupt. The most significant bit IE of the control

register 0 must be set to logical 1 to enable the interrupt

in the controller.

2. How to Stay Resident, Delete Resident Program

As mentioned above the program for the data acquisition

from any modules in the crate CAMAC was made to be resident

and reacting on interrupt. The resident program is loaded in

the operating memory and starts to run at some moment (e.g.,

when the hot key is pressed or the interrupt appears). The

program can stay resident by INT 27H or by Disk Operating

System (DOS } function 31H

INT 27H

function 31H

expects

returns

expects

returns

DX = last address+! to keep resident

none

AH

AL

DX

none.

31H

exit code

memory size to keep resident in

16-byte paragraphs

INT 27H or DOS function 31H set the initial memory allocation

to the size specified by register DX and return control to

the parent process. DOS function 31H supersedes INT 27H which

2

does not send back an exit code and cannot install resident

program larger than 64kBytes. It is possible to use the

procedure Keep in Turbo Pascal. Procedure Keep terminates the

program and makes it stay in memory.

DOS function 49H releases memory occupied by the TSR

programs

function 49H expects

returns

Before either COM or

together with other

AH

ES

AX

49H

segment address (paragraph)

of allocated memory to release

error code if CF is set.

EXE format program is loaded, DOS

actions } makes a duplicate of the

current DOS environment for the program. DOS environment is

an area of memory that holds a set of strings. The strings

can be used by applications to obtain certain system level

informations. If resident program needs no DOS environment,

it is recommended that a TSR program sets free its

environment block during installation. This allows the next

program to use that memory block. It is possible to free

memory in Turbo Pascal in the following way

regs.AX:=49H;

regs.ES:=PrefixSeg:2CH;

MsDos(regs}; { release Dos environment ·}.

When TSR program ends

release code from the

its operation, it

operation memory.

is necessary to

The following

sequence deletes TSR program from the computer memory and the

part of memory occupied by TSR program can be used by another

application :

regs.AH:=49H;

regs.ES:=PrefixSeg;

MsDos(regs}; { release code }.

3

J. Interrupts

Our program changes vectors for several interrupts. One

of the following

I IRQ 4), 71H I

for PC XT) can

hardware interrupts : OBH

IRQ9, only. for PC AT) or

IRQJ), OCH

OAH I IRQ2, only

be selected for the controller KK009. It

depends on the switch at the controller board. Further TSR

program changes the hardware interrupts D8H timer) , 09H

keyboard and the software interrupts ZBH and SOH. DOS

functions 35H and 25H are used for saving of the original

interrupt vector and for installing new one :

function J5H expects

returns

function 25H expects

AH

AL

35H

interrupt number { DOH - OFFH)

ES: BX address of the interrupt

vector

AH

AL

25H

interrupt number

DS:DX = address of the new vector

returns : none.

Turbo Pascal has for this purpose the two procedures,

GetintVec and SetintVec.

Demands for hardware interrupts are accepted in IBM PC

AT by the integrated circuit INTEL 8259A 121
• This circuit is

programmable and can serve 8 interrupts. It also contains

interrupt mask register (IMR). IRQO corresponds to the low

significant bit of IMR and IRQ7 to the most significant one.

The demand for hardware interrupt is blocked, if the bit of

IMR corresponding to interrupt is logical 1. This is the

reason why it is necessary to carry out unblocking of the

corresponding hit for the interrupt used by the controller

CAMAC :

in AL,ZlH for IRQ9 address is OAlH

mov AH,int~mask e.g., int_mask for IRQ4 = 0001 OOOOB

4

•

not AH

and AL,AH

out 21H,AL for IRQ9 address is OAlH.

On the contrary, the following sequence blocks the

corresponding hardware interrup~

in AL,ZlH

or AL,int_mask

out 21H,AL

for IRQ9 the address is OAlH

e.g., int_mask for IRQ3 = 0000 10008

for IRQ9 the address is OAlH.

The procedure for hardware interrupt should include at the

end the sequence which sends End-Of_-Interrupt signal to 8259A

in-service register :

mov AL,20H

out 20H,AL ; for IRQ9 address is OAOH.

We should not forget in the new interrupt procedures about

the old. ones. Their addresses were saved and if it makes

sense the original interrupt procedures are carried out when

the corresponding interrupt appears { !NT OBH, INT 09H, !NT

28H) . Generally,_ the interrupt procedure is always with the

attribute FAR, return address and register of flags are saved

in the stack. Return from procedure is performed by

instruction !RET. Calling of the original procedure

fulfil these requirements and looks like this
must

push£

call OldintVec

save flag register

OldintVec = segment + offset

address of the original procedure.

The following remark is concerned with using of the stack.

You can define your own stack or use stack of the interrupted

program. But if you use stack of the interrupted program, it

is not possible to find depth of the stack. Overfilling of

the stack means mistake e.g., for operating system it is

5

DOS internal stack overflow fault) and the operating system

stops. Two ways exist to solve this problem. The former way

is to define your own stack and to control the depth of the

stack. The latter way mea,ns not to allow nested hardware

interrupts during data reading from CAMAC modules. In this

case it is not possible to use in the procedure for serving

CAMAC module instruction STI. Instruction STI sets interrupt

enable flag (IF). IF is automatically reset after interrupt

acceptance and set after instruction !RET. So next hardware

interrupt is blocked and stack cannot be overfull.

3.1. INT OBH { Timer }

This hardware interrupt is executed approximately in

every 55 ms (accurately 1193180/65536 times ln second). ROM

BIOS code for the interrupt updates the clock value and turns

off the diskette drive motors after about two seconds without

read or write activity. We used it together with DOS re

entrancy flag { DosRF) for writing the data buffer to hard

disk. Calling of DOS functions in TSR programs is impossible,

if another DOS function is working. It means crash of the

operating system. Writing to hard disk uses DOS functions and

that is why it is necessary to test DOS re-entrancy flag

before every saving of the data to a file. If DosRF is non

zero, it is impossible to call DOS functions :

push ES

push DI

mov ES,Dos_F_Seg ; Dos_F_seg

mov DI,Dos_F_Ofs ; Dos_F_Ofs

test byte PTR ES: [DI],OFFH

pop DI

pop ES

jnz @exit

call WriteToFile if DosRF

6

seg. address of DosRF

ofs. address of DosRF

0, write data t~ file.

•

~

Segment and offset address of DosRF can be found by DOS

function 34H

function 34H expects

returns

AH = 34H

ES:BX = address of flag.

INT OBH is also used for the time measurement. Some type of

experiments require to measure exact time. Ordered time of

the experiment is decremented in every call of INT OBH and if

it is zero, the TSR program stops its activity. Dead time of

the spectroscopy system cqn be found. It is possible to

compare number of ticks which occur during procedure serving

hardware interrupt from CAMAC module with one coming alone.

Measurement of the dead time increases time of procedure for

serving CAMAC module by 1-2%.

3.2. INT 09H (Keyboard)

IRQl is generated upon each press and release of a key.

TSR program tests which key was pressed. If the key was Fll

and the computer is in the text mode, the information window

appears on the screen. It provides some basic informations

about the program (name, simple help, status of the program,

the remainder of the experiment time) . The next press of

the Fll key tells to TSR program to restore original contents

of the screen. The hot key F12 was selected to stop TSR

progra~.

If the key Fl1 was pressed, the original procedure for

keyboard is blocked and the following code is needed to

satisfy the keyboard interrupt

in AL,61H

mov AH,AL

or AL,BOH

out 61H,AL

xchg AH,AL

get value of keyboard control lines

set the enable keyboard bit

and write it to the control port

7

out 61H,AL

mov AL,ZOH

out 20H,AL.

3. 3. INT ZBH

write back or_Lginal control port value

send End-Of-Interrupt to 8259A

This software interrupt is executed by DOS as it waits

for a keystroke and as a predecessor to DOS functions higher

than OCH. It is also trapped by a variety of TSR programs.

When DOS calls !NT ZBH, it is safe for TSR program to use DOS

functions { e.g., perform file I/0) . Our program changes

interrupt vector forINT 28H and if it is needed (e.g., data

buffer is full) sets a flag. Then, upon execution of INT

28H, our interrupt procedure first calls the original !NT 28H

handler, then, if our flag is set, it executes the procedure

for writing the data buffer to a file.

Unfortunately, INT 28H has some limitations. You must

not use DOS functions less than or equal to OCH and when DOS

for a long time does not call any DOS function, !NT ZBH is

blocked. Therefore, the second method mentioned above

OBH) for I/0 operations is applied in the program.

3.4. User Interrupt

INT

Sometimes it is necessary to control the measured data

and the activity of the TSR program during the experiment.

TSR program should be as small as possible not to occupy the

memory of the computer. So a separate program for a graphic

presentation of the measured data was written. Mutual data

exchange is required between the TSR and graphic program. The

data exchange can be performed by some unused software

interrupt. !NT SOH was chosen for this purpose. Originally,

INT BOH is reserved for BASIC. \~hen BASIC is non-active, it

is free. !NT 80H looks in TSR program like this:

8

l

.)
J

{$F+}

procedure INTBO{Flags,CS,IP,AX,BX,CX,DX,SI,DI,DS,ES,BP:word);

interrupt;

begin

case AX of

0:

1:

2: begin

AX:=seg{seconds);BX:=ofs(seconds);

end;

end;

end;

{$F-).

Now if we want to know in the program for graphic

presentation the time to the end of a measurement, we should

perform in graphic program the following sequence:

regs.AX:=2;

Intr($BO,regs);

Number_Of_Seconds:=Ptr{regs.AX,regs.BX);

write('Number of seconds : ',Number Of SecondsA};,

where Number_Of_Seconds is pointer to longint. It is also

possible to direct the TSR program by changing the parameters

between two programs { e.g., calling INT 80H with regs.AX:= 1

is used to clear the data buffer).

4. Expanded Memory

One of our TSR programs works with 16 amplitude-digital

convertors (ADC). It saves to the memory 16 spectra, 4096

channels each. One spectrum is 16kBytes long and the TSR

program demands only for data 256k8ytes of memory. We decided

to use for data buffers expanded memory to spare 640kBytes

conventional memory address space. Expanded memory is the one

9

above 640kB limit. It uses an ~xpanded Memory Specification

EMS) compatible memory board and some software driver

e.g.EMM386.sys). EMS board creates four 16kBytes physical

pages of addressable memory and up to JZMBytes total memory

available to be swapped in and out. This 32MBytes memory is

devided into 16kBytes logical pages. The direct access is

only to the physical pages. All functions connected with

expanded memory are provided by !NT 67H with different

contents of the register AH. First of all it is necessary to

test the presence of Expanded Memory Manager (EMM). Program

should take the address of the interrupt procedure for !NT

67H, and examine offset OAH from this address. It should

contain the characters "EMMXXXXO". Next step is finding a

segment address for physical pages

frame)

they are called EMS

INT 67H expects

returns

AH

BX

41H

segment address

AH = EMM status.

The segment address is valid only for the EMM status=O (no

error). The TSR program also controls the number of EMS

logical pages needed for the data buffer and number of EMS

logical pages currently available. The program stops its

activity if the number of logical pages needed for the data

buffer is higher than one currently available. INT 67H,

function 42H can be used for finding the number of non

allocated EMS logical pages

!NT 67H expects

returns

AH

DX

BX

42H

total EMS pages in system

number of EMS pages that are

currently available

AH = EMM status (it should be 0).

Using INT 67H, function 43H program opens EMM handle and

allocates logical pages (each 16kB)

10

!NT 67H expects

returns

AH

BX

DX

AH

43H

number of logical pages requested

EMM handle

EMM status (0 means no error).

Every program working with expanded memory has unique EMM

handle. It is used for following operations. As mentioned

above program has addressable access only to the four

physical pages. So INT 67H, functions 44H or SOH make one or

four logical pages accessible :

INT 67H expects

returns

!NT 67H expects

returns

AH

AL

BX

DX

AH

AH

DX

ex

AL

AH

44H

physical page number (from 0 to 3)

logical page (0 to n-1, where n is

the number of logical page allocated

by a handle

EMM handle

EMM status

50H

EMM handle

count of 4-byte elements in array at

DS:SI

subfunction number

0 : DS:SI ~ series of 2-word elements.

1

In each element, the first word is

logical page number and the second

is a physical one.

the same as AL = O,but second word

of each element is segment address

EMM status.

But before calling one of these functions you shOuld save the

current mapping of physical to logical pages by !NT 67H,

function 47H. Only after that a resident program can page in

II

its own logical pages. The original mapping is restored by
INT 67H, function 48H :

INT 67H expects

returns

INT 67H expects

returns

AH

DX

AH

AH

47H

EMM·handle of requesting process
EMM status

481{

DX = EMM handle of requesting process
AH EMM status.

At the end of TSR program it should be INT 67H, function 45H.
It releases all logical pages allocated to handle :

INT 67H expects AH 45H

OX = EMM handle
returns AH EMM status.

5. TSR Programs Test, Velocity Measurement

To test TSR programs working with interrupts there were
written several resident programs serving different modules
and experiments. The simplest program co-operates with ADC
KA007 or KA011 and measures Pulse Height Analysis (PHA
spectrum. TSR program for ADC occupies in m_emory 31. 4kB
{ including 16kB spectrum). In addition various versions of
TSR program for ADC exist 1 ADC,

16.8kB

spectrum in

); 16 ADCs,

expanded

all data memory occupied memory is
buffers in expanded memory (program needs 43.3kB).

TSR programs are

experiments. The first
multidetector correlation

now tested in several physical
one

device

is connected with the
MUK } . The TSR program

controls two connected data buffers KL006. The second TSR
program was written for 4-detector system using in the
measurements of the time differential perturbed angular
correlations. System is based on modules KA 010 QDC),

12

KA007 (ADC) and master module. TSR program creates during
experiment 12 time spectra. The next TSR program supervises
16 HPGe detectors equipment for measurement of double beta
decay. TSR program reads all data from three connected crates
(l.crate contains 16 ADC - KA007, 2.crate 16 QDC - KA001 and
3.crate 16 TDC- KA304). All reading data are saved into the
file and 48 spectra are formed during experiment. All spectra
are saved in expanded memory.

spectrum in mem.< 640kB spectrum in EMS

computer without EMM with EMM memory

386, 16 MHz 56 140 220

8 MHZ 110 400 700

386, 20 MHz 12 70 370

10 MHz 25 200 1100

386, 25 MHZ 12 33 140

8 MHZ 24 100 370

286, 16 MHz 12

8 MHz 20

Table 1. The hardware interrupt velocities (all times are in
microseconds

The velocity of hardware interrupt serving CAMAC module
KA007 (ADC) on different computers was also measured. The
measurement can be done either by electronic
software. The results are given in table

equipment or by

1. The highest
velocity was reached on computer with microprocessor INTEL 80
2.86. The velocity does not depend on the number of hardware
interrupt. It is the same for interrupt IRQ3 or IRQ9, which
is accepted by the second integrated circuit INTEL 8259A.
Maximum velocity of the interrupts for ADC is approximately
35000 events/s { of course computer is then fully busy with
hardware interrupt).

13

6. Conclusions

We see two major advantages in using this type of TSR

programs. The first one is background activity of program,

computer may be used for other tasks e.g., compilation,

editing and together high velocity of events registration

is achieved. The second one is work with expanded memory. TSR

program occupies minimum of memory space below 640kB and it

is possible to increase the volume of the saved informations

during experiment.

We would like to thank V. T. Sidorov and A. V. Zernov for

support of the work and for valuable advices.

REFERENCES

[1] Georgiev A., Churin I.N., A CAMAC Crate Controller KK009

[2]

[3]

[4]

for the Pravetz-16 and IBM PC/XT Personal Computers.

Valasek P., Monol1thic Microprocessors and

Microcomputers, SNTL, Prague, 1989.

Ryskunov A. ,

Ryskunov A. ,

Computer Press 4/92, p.3.

Computer Press 5/92, p.53.

Received by Publishing Depanmenl
on March 24, 1993.

14

WILL YOU FILL BLANK SPACES IN YOUR LIDRARY?

You can receive by post the books listed below. Prices- in US$, including the packing

and registered postage.

013-85-793

01,2-86-668

03,4,17-86-747

D9-87-105

07-87-68

D2-87-123

D2-87-798

D14-87-799

D17-88-95

E1,2-8B-426

D14-B8-833

013-88-938

D17-8B..{i81

09-89-52

E2-89-525

D9-89-801

0],9-90-457

Proceedings of the Xll International Symposium on
Nuclear Electronics, Dubna.., 1985.

Proceedings of the VITI International Seminar on High
Energy Physics Problems, Dubna.., 1986 (2 volumes)

Proceedings of the V International School on Neutron
Physics. Alusht.a, 1986.

Proceedings of the X All-Union Conference on Charged
Particle Accelerators. Dubna, 1986 (2 volumes)

Proceedings of the International School-Seminar on Heavy Ion

Physics. Dubna, 1986.

Proceedings of the Conference "Renonnalization Group-86" ..

Dubna. 1986.

Proceedings of the VIII International Conference on lhe
Problems of Quantum Field Theory. Alushta. 1987.

Proceedings of the International Symposium on Muon
and Pion Interactions with Matter. Dubna, 1987.

Proceedings of the IV International Symposium
on Selected Topics in Statistical Mechanics. Dubna, 1987.

Proceedings of the 1987 JINR-CERN School of Physics.
Varna, Bulgaria, 1987.

Proceedings of the International Workshop on Modem
Trends in Activation Analysis in JINR. Dubna, 1988

Proceedings of the XIII International Symposium
on Nuclear Electronics. Varna, 1988 ·

Proceedings of the International Meeting "Mechanisms
of High-Tc Superconductivity". Dubna..,1988.

Proceedings of the XI All-Union Conference on Charged
Particle Accelerators. Dubna, 1988 (2 volumes)

Proceedings of the Seminar "Physics of e•e- -Interactions".

Dubna, 1988.

Proceedings of the International School-Seminar
on Heavy Ion Physics. Dubna, 1989.

Proceedings of the Workshop on DNA Repair on Mutagenesis
Induced by Radiation. Dubna, 1990.

14.00

23.00

25.00

25.00

25.00

12.00

10.00

13.00

14.00

14.00

8.00

13.00

10.00

30.00

10.00

19.00

15.00

