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1 Introduction 
The Artificial Neural Networks (ANN) approach was sufficiently used last 
years for solving many difficult optimization and recognition problems [1, 
2]. The track finding in high energy physics is one of them [3, 4]. It can 
be considered as the research on the global minimum of some ANN energy 
function. The computer time of this research depends on, at least, two main 
factors: 

• capability of ANN algorithm to avoid sticking into one of local minima; 

• number of ANN degrees of freedom, which for ANN with N signals is 
equal to N2 for a conventional ANN algorithm. 

Between the methods overcoming the first factor the most known is the sim­
ulated annealing schedule [5], that is rather time consuming. Therefore we 
concentrate ourself on the different approach with looking for such an initial 
ANN configuration that is situated in a vicinity of the energy function global 
minimum. A specially constructed cellular automaton was used with this 
purpose in [6]. We also use so-called rotor model of ANN, since it allows, in 
particular, to decrease the number of the ANN-degrees of freedom. In this 
rotor model each neuron щ is associated with a rotor, i. e. an unit vector s;. 
On the energy function such constraints are imposed that the ANN-evolution 
leads to orienting of every rotor along its track. 

So in our previous work [7] we applied the modify rotor model for the track 
reconstruction in multiwire proportional chambers (MWPC) of the ARES 
spectrometer (JINR, Dubna). In our modification we used specific features of 
MWPC to set up an initial rotor configuration, where each rotor direction and 
position determine, the tangent and coordinates of a corresponding particle 
track. We used rotors as non-unite vectors, so their length was considered 
as an activation level characterizing their belonging to track. Such an initial 
configuration brings the ANN to a neighborhood of the global minimum of 
the energy function. 

Besides we suggested a quite natural view of the connection strength 
(weight) u>ij between щ and rij which depends from the geometrical features 
of a particle trajectory, but does not depend on the distance between n,- and 
nj. It allows to fulfil some fitting procedure obtaining track parameters and, 
from the another hand, to simplify the expression for energy function, which 
does not include any special constraint terms. Calculations were speeded up 
by rejecting the non-significant neurons. 

This modification had demonstrated its satisfactory behavior on the statis­
tics of 10* real three-track events. 
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Nevertheless, we realized quite well that our model is too tightly oriented 
on MWPC applications. It undoubtedly needs for further working out to the 
region of TeV-energy events with their higher multiplicity and crossings of 
close going tracks. Besides there are some indications of noise sensitivity of 
such ANN-models [8]. 

Therefore, in the present paper we study the following problems of track 
information extraction by our ANN model: 

• providing initial ANN configuration by an algorithm general enough to 
be applicable for any discrete detector in- or out of a magnetic field; 

• robustness to heavy contaminated raw data (up to 100% signal-to-noise 
ratio); 

• stability to the growing event multiplicity. 

One could find similar consideration [9], where the authors propose a quite 
reasonable track finding approach, combining the local Hough transform with 
the deformable template method. 

However, starting from our ideas mentioned above, we introduce here 
considerable innovations in almost every stage of ANN algorithm: 

1. On the stage of initial determination of rotors (i. e. their directions 
and lengths) we decline the Hough transform due to its computational 
requirements and substitute it by a special one-dimensional histogram­
ming (see next section). In principle, it was a good possibility to create 
templates (track candidates) and specify a number of them, but we did 
not go this way, leaving for the network itself to develop this initial 
information into the most significant neuron connections. 

2. A repulsive force allowing to neglect noise and other non-significant 
neurons, we multiply the weights by a specially designed robust multi­
plier [11]. 

3. We replace the simulated annealing schedule by the ANN dynamics 
with an optimally fixed temperature. 

Our approach is valid for both circular and straight (non-magnetic) tracks 
and tested on 2D simulated data, although there is no problem to generalize 
it to 3D straight or helix tracks. Therefore, after inferring below the gen­
eral mathematical formalism, we use further data simulated for non-magnetic 
tracks emanating from different vertices inside target. That gives tracks cross­
ing each other under very small angles. A similar model is also used in [9]. 
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Track data are contaminated by 100% noise points distributed uniformly. 
To be closer to some reality in our simulation, we keep parameters of the 
cylindrical spectrometer ARES [10] (see an example on fig. 5). 

Although this paper is bearing a preliminary character and the study is 
supposed to be continued, the results of simulations presented in the last 
section look very promising. 

2 Initialization 
We consider ANN rotor model with N 2D signals (measured points ( i j , y,) t = 
1,7V of tracks and noise signals) assuming tracks to be whether circles or 
straight lines (which is a particular case of circle with R = oo). Every rotor 
Si starts from (x,-,y,) in direction determined by its angle y?,- with the axis 
OX and has the length |s°,| = s,-. 

The best initiation of an ANN would be to attach every rotor s,- to its 
signal (xi,yi) varying <pi,si in such a way that the ANN energy function 
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would appear as close as possible to its global minimum. 
Here weights Wij are determined following [7] as functions of the angle 

<fi. -~xY between OX-axes and segment Lu connecting neurons n,- and ПА. 

_ / c o s ( 2 ^ ^ ) s i n ^ - ^ A 

If t'-th and other points lie on the same circle, the transform (2) turns 
tangents of all other points on this circle to the same direction as the tangent 
to t'-th point. It looks especially easy for a straight track, when all angles 
^1,'~дх ^ о г P 0 ' n t s belonged to this track are equal and differ for all other 
points. 

Thus, for the non-magnetic case that gives us the following procedure of a 
rotor Si initializing. For given point t we histogram all angles <PL-~fix- Then 
we look for three neighboring bins with the maximum number of points in 
them. The initial rotor angle ifn is determined as the center of gravity of these 
three major bins. The starting activation level e; is determined by their mean 
value (l/k of the total number of points in them, where к is the number of 
used chambers). 
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Since for any experimentally measured track the results of this procedure 
depend on the bin width, it must be chosen accurately. For our ARES-like 
simulated model a step between wires in MWPC of the setup is about 2 mm, 
therefore experimental points (hit wires) are not lying exactly on the line. In 

Angle difference, deg 

Figure 1: The distribution of the 
angle between a simulated stra­
ight track and lines, connecting 
all pairs of hit wires. 

Figure 2: An example of histo­
gramming method application. 

fig. 1 the distribution over 100 tracks of the angle between a simulated straight 
track and segments connecting all pairs of hit wires is shown. Since the square 
above the interval (—0.75", 0.75") covers over 80% of this distribution, the 
step of histogramming Atp = 0.5" is enough to divide a peak into three parts. 
An example of the histogramming method application is presented in fig. 2. 

The above initialization procedure could become a main time-waster of 
any program, if one would vary j over all po'ssible values. To decrease the 
number of sorting trials, geometrical and physical considerations must be 
taken in to account. Since in our model each track starts from its own origin 
in the target area and crosses every chamber only one time, we ignore neurons 
lying on the same chamber and test others only from an admissible range 
lying between two straight lines crossing in the given point and embracing 
the target area. 

This trick diminishes the number of each neuron degree of freedom from 
N2 to (p — 1)JV >̂, where p is the maximal track point number (number of 
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used chambers) and ф is a small coefficient. In our model ф « r/2irR, where 
R and г are, correspondingly, radii of the spectrometer and target. N$ ~ 1 
for very small r. 

An ana'ogous histogramming procedure can be fulfilled in the case of cir­
cular tracks, though it is more complicate, since one needs at least three 
points to draw a circle, so the number of trials is larger. The region of admis­
sible circles is determined similarly by two circles of the physically smallest 
radius. Besides there can be used some obvious physical restrictions relating 
to the specific setup of a given experiment. 

3 Robustness and temperature considerations 
Starting from this initial rotor configuration, we have to develop an algorithm, 
intended to change rotors iteratively approaching on the every iteration to 
the global minimum of the energy function (1). 

A common simulated annealing procedure [5] allows to fulfil that avoiding 
local minima by thermalizing our set of neurons, i. e. assuming them randomly 
disturbed due to placing in a thermostat with a temperature T. According to 
the mean field theory (MFT), we substitute each rotor by its thermal average 
щ = (si)r- In fact, this averaging over all other neurons is carried out by the 
updating equation [3]: 

^ m + D = jffH_ Л(|яИ|/г) 
| # И | i0(\HJm)\/T)' 

where m — is the iteration number, the local field Я,- = £ j Wytft is 
obtained by vector summing up over all significant neurons (significant means 
with non-zero weights, tuy ф 0 ). The temperature T determines the slope 
of the function (3) at the origin, when T —• 0 it converges to a step-function. 

This updating rule is asynchronous: the iteration is completed, when all 
neurons get new values one by one. 

The simplified view of the energy function (1) without any constraint 
terms like in [2, 3, 4] could lead, in principle, to a track number increase due 
to appear Active tracks. 

To prevent this, we use the modified robust approach. Instead of using 
an implicit robustness of the Potts factor (see, for example [9]) we amplify 
the repulsive force explicitly by multiplying u>,j by a special robust multiplier 
responsible for the "soft" rejecting of all outlying neurons. 
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As such a multiplier we use the optimal weight function 

W ° * ( ' ) = l - f c e x p ( * / 2 ) ' ( 4 ) 

which was derived for the robust Af-estimate of the average [12]. Here the 
only parameter с is inversely proportional to the signal-to-noise ratio within 
the narrow corridor around a track. The argument in (4) is equal to 

*=̂ я (5) 

with Vj = WijVj. 
Due to the closeness of iv„pt(t) to the famous Tukey's bi-weights [11] 

-М(!)Л ^ - М О У • l ' ^ w (6) 
and for the sake of computing time economy in our calculations we use (6) 
instead (4) with ex = 2°. 

Temperature 

Figure 3: Final average activati­
on level as a function of the tem­
perature for 10 points per track. 

Figure 4: The dependence of 
cut-off temperature on a number 
of points per track. 

In the simulated annealing schedule the ANN dynamics begins from some 
starting temperature and lowering with every iteration passes the phase tran­
sition point Tptp [5, 9]. As it was mentioned above, our initial rotor values 
are designed to set ANN in a vicinity of the global minimum, i. e. below Trtp. 
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Therefore, it is reasonable to substitute the simulated annealing recom­
mendation to use a decreasing temperature sequence by applying the only 
temperature Topt optimally chosen for all iterations. As a criterion of the 
optimum we use the average value of the rotor activation levels 

In our calculations we suppose the following criteria of ANN stable state 
and neuron non-significance: 

1. The global minimum is reached, if 

max |of m + 1 ) - 4m)\ < 0-05. (8) 

2. Neuron is ignored, if 
|* | < 0.5. (9) 

Thus, from (7) and conditions (9) a track with В < 0.5 can be considered 
as a random cluster of neurons. The dependence of В upon temperature 
after attaining the stable state is shown in fig. 3. One can see, that holding 
(9) the temperature must be less than a critical value 2.9 to keep 10-points 
track. Therefore, we can use this temperature as a cut-off parameter. Fig. 4 
shows the dependence of this cut-off temperature on a number of points per 
track. In our case T = 1.5 is suitable to keep tracks having more than 5 
experimental points-(neurons). 

4 Simulation results 
This robust rotor model of neural network was tested on simulated events 
obtained on the basis of parameters of the ARES spectrometer (i. e. 10 cylin­
drical chambers with a distinctive set up). As was mentioned above, all the 
events contain only straight tracks and have 100% of noise counts. An ex­
ample of 30-track event is presented in fig. 5. In this event there are about 
300 points corresponding to tracks and 300 noise points (10 noise points per 
track). The result of the application of the robust rotor model one can see 
in fig. 6. Here rejected points are denoted by dots, but active neurons are 
shown as vectors with lengths proportional to their activation levels. Outer 
lines indicate simulated straight tracks. In this case 251 noise points are re­
jected by our network and the rest 49 are attached by tracks (on the average 
1.6 per track). 
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Figure 5: An example of Figure 6: The result of the 
30-track event with 100% noise. application of the robust neural 

network to data presented on 
the previous figure. 

The results of simulation of 1000 events are presented in fig. 7-9. As it 
is seen in fig. 7, the average number of iterations grows in dependence of the 
multiplicity of events. In the same time the dispersion of the iteration number 
is rather big. For example, its range for events with 25 tracks is vary from 
4 to 22. More detailed analysis shows the iteration number growth depends 
mainly on the random track condensations, than on multiplicity. The latter 
influences implicitly due to the higher probability of cases track intersecting 
under the small angles or going close, almost parallel. 

A comparison of simulated tracks and track-candidates found by network 
demonstrates that suggested criteria (8, 9) allow to include to a set of track-
candidates all the simulated tracks. However, in this set there are some Active 
track-candidates formatted both by noise points and by "spoiled" tracks ob­
tained whether by parts of close going ones or .combined from pieces of tracks 
with addition of noise points. 

The corresponding information is presented on fig. 8 given the dependence 
of the point number of track-candidates upon event multiplicity. The average 
of this point number decreases from 10 (number of chambers) to 7 for 50 
tracks per event. 

The next quality characteristic of our algorithm is the rate of the noise 
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Figure 7: Average number of 
iterations as a function of event 
multiplicity. 

Figure 8: Average point number 
of track-candidate as a function 
of event multiplicity. 

reduction. It is shown in fig. 9, where the total number of points rejected 
as noise is given as a function of event multiplicity. It also decreases almost 
linearly, since in our simulations the number of real track points is doubled 
by noise points. Latters are getting closer and closet to simulated tracks with 
growing multiplicity, so the probability increases, inevitably, to include noise 
points among points of some real track. 

5 Conclusion 
Concluding we can state the results of testing the suggested innovations to 
our previous algorithm [7]: 

1. Algorithm liberates from its orientation on a concrete detector, becomes 
more general and with comparable simple changes can be adapted to 
magnetic field case and/or 3D search. 

2. Quality of algorithm improved considerably: 

• it becomes less sensible to multiplicity. The dependencies shown 
- in fig. 8 and 9 are to be much weaker, when algorithm will be 

adapted to 3D search. 
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Figure 9: Total point number 
rejected as noise points. 

Number of track-. 

• it is quite robust in Af-estimate sense. 

3. Due to both an essential decrease of the number of degree of freedom 
and the satisfactory initial ANN configuration, our algorithm is fairly 
fast and suitable for parallel processing. 

In our outlook we should stress again that in this paper we restrict our-
self on the stage of track filtering leaving for the future problems of track 
fitting for removing from track-candidates Active tracks and purifying ac­
cepted tracks from noise signals. We do not touch also a problem how would 
change the algorithm quality due to transition from the asynchronous ANN 
mode to synchronous one used in parallel ANN implementation. 
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